Alloy design of nanoprecipitate-hardened high-Mn maraging-TRIP and -TWIP steels

Max-Planck-Institut für Eisenforschung GmbH
Düsseldorf, Germany
WWW.MPIE.DE
d.raabe@mpie.de

The 1st International Conference on High Manganese Steels 2011
Hilton Hotel Seoul, Korea, May 15-18, 2011
Overview

- Introduction
- Compositions and processing
- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging
- Conclusions
Steel for automotive applications:

Good combination of **strength**, **ductility**, **price**

- Lean Maraging TRIP Steels

 - Ductile low carbon martensite matrix
 - Small amount of austenite (TRIP, TWIP)
 - Controlled precipitation hardening
Overview

- Introduction
- **Compositions and processing**
 - Mechanical properties and microstructures
 - Characterization of precipitations
 - Formation of new austenite during aging
- Conclusions
Compositions in mass%: classical maraging steel

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Ni</th>
<th>Co</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraging</td>
<td>0.01</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>1.6</td>
<td>0.15</td>
<td>0.05</td>
<td>Balance</td>
</tr>
</tbody>
</table>

- **Low carbon: ductile martensite**
- **Precipitation hardening**

Expensive for automotive applications!

Optimised for very high strength + toughness

We want high strength + ductility
Compositions in mass%: new lean maraging steels

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Ni</th>
<th>Co</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraging</td>
<td>0.01</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>1.6</td>
<td>0.15</td>
<td>0.05</td>
<td>Balance</td>
</tr>
<tr>
<td>09MnPH</td>
<td>0.01</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1.0</td>
<td>0.15</td>
<td>9</td>
<td>Balance</td>
</tr>
<tr>
<td>12MnPH</td>
<td>0.01</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>Balance</td>
</tr>
<tr>
<td>15MnPH</td>
<td>0.01</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1.0</td>
<td>0.15</td>
<td>15</td>
<td>Balance</td>
</tr>
</tbody>
</table>

Low carbon: ductile martensite

Precipitation Hardenable

Mn (+Ni): austenite (TRIP)
Processing

Vacuum induction melting

Annealing

Hot deformation

Solution heat treatment

Quenching \rightarrow Martensite $+\text{retained austenite}$

Aging (450°C) \rightarrow “Maraging“ $\text{retained} + \text{new austenite}$
Overview

- Introduction
- Compositions and processing
- **Mechanical properties and microstructures**
- Characterization of precipitations
- Formation of new austenite during aging
- Conclusions
Hardness during aging at 450°C

Vickers hardness HV5

Time at 450°C (min)

- 09MnPH
- 12MnPH
- 15MnPH

12MnPH after aging (48h 450°C)

precipitates in α'

$$x_{Diff} \approx 2\sqrt{Dt} \approx 30\text{nm}$$

no precipitates in austenite

$$x_{Diff} \approx 2\text{nm}$$
Tensile tests

Ni-Maraging

(X3NiCoMoTi18-12-4)

12MnPH

Ni-Maraging (450°C/48h)

12MnPH (450°C/48h)

Engineering Stress (MPa)

Engineering Strain (%)

0 5 10 15 20 25

Engineering Stress (MPa)

Engineering Strain (%)

0 5 10 15 20 25

Engineering Stress (MPa)

Engineering Strain (%)

0 5 10 15 20 25

Ni-
Maraging

12MnPH

<table>
<thead>
<tr>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>bal.</td>
</tr>
</tbody>
</table>
Overview

- Introduction
- Compositions and processing
- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging
- Conclusions
Atom Probe Tomography (APT)

- **Tip-shaped sample** initiated evaporation by + or ~ 10 kV

- **Counts**
 - Mass to charge ratio

- **3D atom map**

APT: Time of flight measurement (chemical identification)

+ Ion projection microscopy (determination of position)
Atom Probe, 12MnPH aged (48h, 450°C)

Fe

Ni α'+particles γ (no particles)

Mn enrichment in interface?

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

09MnPH aging at 450°C, Proxigrams

<table>
<thead>
<tr>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>9</td>
<td>bal.</td>
</tr>
</tbody>
</table>

09MnPH
450°C/48h

matrix ⇐⇒ particle

09MnPH
450°C/192h

matrix ⇐⇒ particle

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Chemical compositions (09MnPH; 450°C/48h)

<table>
<thead>
<tr>
<th></th>
<th>at. % in particles</th>
<th>at. % in particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>39.99</td>
<td>52.88</td>
</tr>
<tr>
<td>Mn</td>
<td>24.70</td>
<td>32.66</td>
</tr>
<tr>
<td>Al</td>
<td>7.02</td>
<td>9.28</td>
</tr>
<tr>
<td>Ti</td>
<td>3.91</td>
<td>5.17</td>
</tr>
<tr>
<td>Fe</td>
<td>23.97</td>
<td>0</td>
</tr>
</tbody>
</table>

possible: $\text{Ni}_{50}(\text{Mn, Al, Ti})_{50}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>9</td>
<td>bal.</td>
</tr>
</tbody>
</table>
TEM results (09Mn PH after 192h/450°C)

Particle: $a = 0.280 \pm 0.006\text{nm}$ (assuming bcc structure)
Matrix: $a = 0.275 \pm 0.003\text{nm}$
09MnPH aging at 450°C

Aging time at 450°C

<table>
<thead>
<tr>
<th></th>
<th>48 hours</th>
<th>192 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume fraction of particles</td>
<td>1.5%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Number density of particles (m⁻³)</td>
<td>3.6x10²⁴</td>
<td>1.9x10²⁴</td>
</tr>
<tr>
<td>Mean diameter (nm)</td>
<td>4.7 ± 0.7</td>
<td>6.1 ± 2.2</td>
</tr>
</tbody>
</table>

Iso-conc. surfaces:
- 14 at.% Ni
- only Fe and Ni shown

![Image of aged samples](image_url)
09MnPH (48h, 450°C)

⇒ Precipitation volume fraction f about 1.5%
Mean diameter $d = 4.7 \text{ nm} \ (± \ 0.7 \text{ nm})$

Assuming dislocations bypassing particles (Orowan looping):

$$\sigma_{OR} \approx \frac{MGb \sqrt{f}}{r}$$

$$\sigma_{OR} \approx \frac{3 \cdot 80 \text{GPa} \cdot 0.248nm \cdot \sqrt{0.015}}{2.35nm} = 3100\text{MPa}$$

From experiment:
ΔYS: ~300MPa

Shearable coherent particles ?
Cutting of particles (Friedel cutting) ?

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Assuming dislocations bypassing particles (Orowan looping):

Mean diameter \(d = 4.7 \text{ nm} \pm 0.7 \text{ nm}\)

\[\Rightarrow \text{Precipitation volume fraction} \ (f) \approx 1.5\% \]

From experiment:

\(\text{DYS:} \sim 300 \text{ MPa} \)

\[\text{09MnPH (48h, 450° C)}\]

Shearable coherent particles?

Cutting of particles (Friedel cutting)?

After aging (48h 450°C) nanosized precipitations in martensite
(Ø ~ 5nm; volume fraction ~ 1.5%)

Heusler Alloy (Ni$_2$MnAl)? B2 or L2$_1$? Coherent?
Cut by dislocations?
Overview

- Introduction
- Compositions and processing
- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging
- Conclusions
Effect of aging on ductility

12MnPH

12 wt.% Mn, 0.01 wt.% C, 2 wt.% Ni, 1 wt.% Ti, 0.15 wt.% Al, 1 wt.% Mo, 0.06 wt.% Si

TRIP effect (austenite transforms to martensite)

Maraging effect (precipitation hardening in martensite)

D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Scripta Mater. 60 (2009) 1141
Effect of aging on ductility

- **as-quenched**
- **aged 450°C/48h**

- Increase of austenite fraction during aging

<table>
<thead>
<tr>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>bal.</td>
</tr>
</tbody>
</table>

Engineering Stress (MPa)

Engineering Strain (%)

- **α-Fe (Martensite)**
- **γ-Fe (Austenite), vol. fraction 15-20%**
Effect of aging on ductility

Engineering Stress (MPa)

- as-quenched
- aged 450°C/48h

Engineering Strain (%)

1. strain 0%
2. strain 15%

Precipitation hardening

- Increase of austenite fraction during aging

Phase Identification

- α-Fe (Martensite)
- γ-Fe (Austenite), vol. fraction 15-20%

Chemical Composition

<table>
<thead>
<tr>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>bal.</td>
</tr>
</tbody>
</table>

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Effect of cold rolling after aging

~40% γ in equilibrium at 450°C (Thermocalc)

γ → α’ (TRIP)

γ formation during aging
450°C/48h

-aged (450°C/48h)

quenched

12MnPH X-Ray
APT results: Atomic map (12MnPH aged 450°C/48h)

Mn atoms, Ni atoms

Mn iso-conc: 18 at.%

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>bal.</td>
</tr>
</tbody>
</table>

70 million ions
Laser mode (0.4nJ, 54K)

Martensite decorated by precipitations

Austenite?
Overview

- Introduction
- Compositions and processing
- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging

Conclusions
Conclusions

Design of “Lean Maraging TRIP steel“

- Precipitation hardening ➔ Increase strength
- Austenite (retained + new) ➔ Increase ductility

- Martensitic Mn-steels (~0.01 wt% C): good ductility

- + controlled amounts of Ni (2 wt%), Al (0.15 wt%), … increase strength during aging by formation of nanosized precipitations without significant reduction of ductility

- By controlling the austenite stability (here by Mn) martensite can be refined and ductility can be further increased by retained and reverted austenite (TRIP)