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■ Abstract The paper is about cellular automaton models in materials science. It
gives an introduction to the fundamentals of cellular automata and reviews applications,
particularly for those that predict recrystallization phenomena. Cellular automata for
recrystallization are typically discrete in time, physical space, and orientation space and
often use quantities such as dislocation density and crystal orientation as state variables.
Cellular automata can be defined on a regular or nonregular two- or three-dimensional
lattice considering the first, second, and third neighbor shell for the calculation of
the local driving forces. The kinetic transformation rules are usually formulated to
map a linearized symmetric rate equation for sharp grain boundary segment motion.
While deterministic cellular automata directly perform cell switches by sweeping the
corresponding set of neighbor cells in accord with the underlying rate equation, prob-
abilistic cellular automata calculate the switching probability of each lattice point and
make the actual decision about a switching event by evaluating the local switching
probability using a Monte Carlo step. Switches are in a cellular automaton algorithm
generally performed as a function of the previous state of a lattice point and the state
of the neighboring lattice points. The transformation rules can be scaled in terms of
time and space using, for instance, the ratio of the local and the maximum possible
grain boundary mobility, the local crystallographic texture, the ratio of the local and
the maximum-occurring driving forces, or appropriate scaling measures derived from
a real initial specimen. The cell state update in a cellular automaton is made in syn-
chrony for all cells. The review deals, in particular, with the prediction of the kinetics,
microstructure, and texture of recrystallization. Couplings between cellular automata
and crystal plasticity finite element models are also discussed.

INTRODUCTION TO CELLULAR AUTOMATA

Basic Setup of Cellular Automata

Cellular automata are algorithms that describe the discrete spatial and tempo-

ral evolution of complex systems by applying local (or sometimes long-range)
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deterministic or probabilistic transformation rules to the cells of a regular (or

nonregular) lattice.

The space variable in cellular automata usually stands for real space, but orien-

tation space, momentum space, or wave vector space can be used as well. Cellular

automata can have arbitrary dimensions. Space is defined on a regular array of lat-

tice points that can be regarded as the nodes of a finite difference field. The lattice

maps the elementary systementities that are regarded as relevant to themodel under

investigation. The individual lattice points can represent continuum volume units,

atomic particles, lattice defects, or colors depending on the underlying model. The

state of each lattice point is characterized in terms of a set of generalized state

variables. These could be dimensionless numbers, particle densities, lattice defect

quantities, crystal orientation, particle velocity, blood pressure, animal species, or

any other quantity the model requires. The actual values of these state variables are

defined at each of the individual lattice points. Each point assumes one out of a finite

set of possible discrete states. The opening state of the automaton, which can be de-

rived from experiment (for instance from amicrotexture experiment) or theory (for

instance from crystal plasticity finite element simulations), is defined by mapping

the initial distribution of the values of the chosen state variables onto the lattice.

The dynamical evolution of the automaton takes place through the application

of deterministic or probabilistic transformation rules (also referred to as switching

rules) that act on the state of each lattice point. These rules determine the state of a

lattice point as a function of its previous state and the state of the neighboring sites.

The number, arrangement, and range of the neighbor sites used by the transforma-

tion rule for calculating a state switch determine the range of the interaction and

the local shape of the areas that evolve. Cellular automata work in discrete time

steps. After each time interval, the values of the state variables are updated for all

lattice points in synchrony, mapping the new (or unchanged) values assigned to

them through the transformation rule.

Owing to these features, cellular automata provide a discrete method of simu-

lating the evolution of complex dynamical systems that contain large numbers of

similar components on the basis of their local (or long-range) interactions. Cellular

automata do not have restrictions in the type of elementary entities or transforma-

tion rules employed. They can map such different situations as the distribution of

the values of state variables in a simple finite difference simulation, the colors in

a blending algorithm, the elements of fuzzy sets, or elementary growth and decay

processes of cells. For instance, the Pascal triangle, which can be used to calculate

higher-order binominal coefficients or the Fibonaccy numbers, can be regarded as

a one-dimensional cellular automaton in which the value that is assigned to each

site of a regular triangular lattice is calculated through the summation of the two

numbers above it. In this case, the entities of the automaton are dimensionless

integer numbers and the transformation rule is a summation.

Cellular automata were introduced by von Neumann (1) for the simulation of

self-reproducing Turing automata and population evolution. In his early contribu-

tions, vonNeumann denoted the automata as cellular spaces (1). Other authors used
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notions like tessellation automata, homogeneous structures, tessellation structures,

or iterative arrays. Later applications were mainly in the field of describing non-

linear dynamic behavior of fluids and reaction-diffusion systems. During the past

decade, cellular automata have increasingly gained momentum for the simulation

of microstructure evolution in the materials sciences.

Formal Description and Classes of Cellular Automata

The local interaction of neighboring lattice sites in a cellular automaton is specified

through a set of transformation (switching) rules. Although von Neumann’s origi-

nal automata were designed with deterministic transformation rules, probabilistic

transformations are conceivable as well. The value of an arbitrary state variable ξ

assigned to a particular lattice site at a time (t0+ 1t) is determined by its present
state (t0) (or its last few states t0, t0− 1t, etc.) and the state of its neighbors (1–4).

Considering the last two time steps for the evolution of a one-dimensional

cellular automaton, this can be put formally by writing ξ
t0+1t
j = f (ξ t0−1t

j−1 , ξ
t0−1t
j ,

ξ
t0−1t
j+1 , ξ

t0
j−1, ξ

t0
j , ξ

t0
j+1), where ξ

t0
j indicates the value of the variable at a time t0 at

the node j. The positions ( j+ 1) and ( j− 1) indicate the nodes in the immediate

neighborhood of position j (for one dimension). The function f specifies the set
of transformation rules, for instance such as provided by standard discrete finite

difference algorithms.

If the state of the node depends only on its nearest neighbors (NN), the array is

referred to as von Neumann neighboring (Figure 1a). If both the NN and the next-

nearest neighbors (NNN) determine the ensuing state of the node, the array is called

Figure 1 (a) Example of a two-dimensional von Neumann configuration consi-
dering nearest neighbors. (b) Example of a two-dimensional Moore configuration

considering both nearest and next-nearest neighbors.
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Moore neighboring (Figure 1b) (2). Owing to the discretization of space, the type
of neighboring affects the local transformation rates and the evolving morpholo-

gies (1–4). For the Moore and other extended configurations, for which a certain

medium-range interaction can be introduced among the sites, the transformation

rule can in one dimension and for interaction with the last two time steps be rewrit-

ten as ξ
t0+1t
j = f (ξ t0−1t

j−n , ξ
t0−1t
j−n+1, . . . , ξ

t0−1t
j−1 , ξ

t0−1t
j , ξ

t0−1t
j+1 , ξ

t0
j−1, ξ

t0
j , ξ

t0
j+1, . . . ,

ξ
t0
j+n−1, ξ

t0
j+n), where n indicates the range of the transformation rule in units of

lattice cells.

Even for very simple automata there exists an enormous variety of possi-

ble transformation rules. For instance, for a one-dimensional cellular automaton

(Boolean, von Neumann neighboring), where each node can have one of two pos-

sible ground states, say ξ j= 1 or ξ j= 0, the transformation rule assumes the form

ξ
t0+1t
j = f (ξ t0

j−1, ξ
t0
j , ξ

t0
j+1). This simple Boolean configuration defines 2

8 possible

transformation rules. One of them has the form

if
(

ξ
t0
j−1 = 1, ξ

t0
j = 1, ξ

t0
j+1 = 1

)

then ξ
t0+1t
j = 0 (1, 1, 1) → 0

if
(

ξ
t0
j−1 = 1, ξ

t0
j = 1, ξ

t0
j+1 = 0

)

then ξ
t0+1t
j = 1 (1, 1, 0) → 1

if
(

ξ
t0
j−1 = 1, ξ

t0
j = 0, ξ

t0
j+1 = 1

)

then ξ
t0+1t
j = 0 (1, 0, 1) → 0

if
(

ξ
t0
j−1 = 1, ξ

t0
j = 0, ξ

t0
j+1 = 0

)

then ξ
t0+1t
j = 1 (1, 0, 0) → 1

if
(

ξ
t0
j−1 = 0, ξ

t0
j = 1, ξ

t0
j+1 = 1

)

then ξ
t0+1t
j = 1 (0, 1, 1) → 1

if
(

ξ
t0
j−1 = 0, ξ

t0
j = 1, ξ

t0
j+1 = 0

)

then ξ
t0+1t
j = 0 (0, 1, 0) → 0

if
(

ξ
t0
j−1 = 0, ξ

t0
j = 0, ξ

t0
j+1 = 1

)

then ξ
t0+1t
j = 1 (0, 0, 1) → 1

if
(

ξ
t0
j−1 = 0, ξ

t0
j = 0, ξ

t0
j+1 = 0

)

then ξ
t0+1t
j = 0 (0, 0, 0) → 0

This particular transformation rule can be encoded by (01011010)2, where the

digits in brackets indicate the right-hand side of the table given above, and the ξ

indicates the Boolean description. Its digital description is, of course, only valid for

a given arrangement of the corresponding basis. This order is commonly chosen as

a decimal row with decreasing value, i.e., (1, 1, 1) translates to 111 (one hundred

eleven), (1, 1, 0) to 110 (one hundred ten), and so on. Transforming the binary

code into decimal numbers using

27 26 25 24 23 22 21 20

0 1 0 1 1 0 1 0

leads to the decimal code number 9010. The digital coding system is commonly

used for compactly describing transformation rules for cellular automata in the

literature (2–4).

In general terms the number of rules can be calculated by k(kn), where k is the
number of states for the cell andn is the number of neighbors including the core cell.
For a two-dimensional automaton with a Moore neighborhood and two possible
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cell states (i.e., k= 2 and n= 9) 229= 262144 different transformation rules

exist.

If the state of a node is determined by the sum of the neighbor site values, the

model is referred to as a totalistic cellular automaton. If the state of a node has a

separate dependence on the state itself and on the sum of the values taken by the

variables of the neighbors, the model is referred to as an outer totalistic cellular

automaton (2–6).

Cellular automata fall into four basic classes of behavior (2–4) (for almost any

initial configuration). Class 1 cellular automata evolve after a finite number of

time steps to a homogeneous and unique state from which they do not evolve fur-

ther. Cellular automata in this class exhibit the maximal possible order both at the

global and local scale. The geometrical analogy for this class is a limit point in the

corresponding phase space. Class 2 cellular automata usually create short period

patterns that repeat periodically, typically either recurring after small periods or are

stable. Local and global order exhibited is in such automata, although notmaximal.

Class 2 automata can be interpreted as filters that derive the essence from discrete

data sets for a given set of transformation rules. In phase space such systems form a

limit cycle. Class 3 cellular automata lead from almost all possible initial states to

aperiodic chaotic patterns. The statistical properties of these patterns and the statis-

tical properties of the starting patterns are almost identical at least after a sufficient

period of time. The patterns created by class 3 automata are usually self-similar

fractal arrays. After sufficiently many time steps, the statistical properties of these

patterns are typically the same for almost all initial configurations. Geometrically,

class 3 automata form so-called strange attractors in phase space. Class 3 is the

most frequent type of cellular automata. With increasing size of the neighborhood

and increasing number of possible cell states, the probability to design a class 3

automaton increases for an arbitrary selected rule. Cellular automata in this class

can exhibit maximal disorder on both global and local scales. Class 4 cellular

automata yield stable, periodic, and propagating structures that can persist over ar-

bitrary lengths of time. Some class 4 automata dissolve after a finite number of steps

of time, i.e., the state of all cells becomes zero. In some class 4 automata a small set

of stable periodic figures can occur [such as for instance inConway’s “game of life”

(5)]. By properly arranging these propagating structures, final states with any cy-

cle length may be obtained. Class 4 automata show a high degree of irreversibility

in their time development. They usually reveal more complex behavior and very

long transient lengths, having no direct analogue in the field of dynamical systems.

The cellular automata in this class can exhibit significant local (not global) order.

These introductory remarks show that the cellular automaton concept is defined

in a very general and versatile way. Cellular automata can be regarded as a gener-

alization of discrete calculation methods (1, 2). Their flexibility is due to the fact

that, in addition to the use of crisp mathematical expressions as variables and dis-

cretized differential equations as transformation rules, automata can incorporate

practically any kind of element or rule that is deemed relevant.
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APPLICATION OF CELLULAR AUTOMATA
IN MATERIALS SCIENCE

Transforming the abstract rules and properties of general cellular automata into

a materials-related simulation concept consists of mapping the values of relevant

state variables onto the points of a cellular automaton lattice and using the local

finite difference formulations of the partial differential equations of the underly-

ing model as local transformation rules. The particular versatility of the cellu-

lar automaton approach for microstructure simulations, particularly in the fields

of recrystallization, grain growth, and phase transformation phenomena, is due

to its flexibility in considering a large variety of state variables and transforma-

tion laws.

The design of such time and space discretized simulations of materials mi-

crostructures, which track kinetics and energies in a local fashion, are of interest

for two reasons. First, from a fundamental standpoint, it is desirable to understand

better the dynamics and the topology of microstructures that arise from the inter-

action of large numbers of lattice defects, which are characterized by a spectrum of

intrinsic properties and interactions in spatially heterogeneous materials. For in-

stance, in thefields of recrystallization andgrain growth, the influence of local grain

boundary characteristics (mobility, energy), local driving forces, and local crystal-

lographic textures on the final microstructure is of particular interest. Second, from

a practical point of view, it is desirable to predict microstructure parameters such

as grain size or texture that determine the mechanical and physical properties of

real materials subjected to industrial processes from a phenomenological, though

sound, physical basis.

Apart from cellular automata, a number of excellent models for discretely simu-

lating recrystallization and grain growth phenomena have been suggested. They

can be grouped asmultistate kinetic PottsMonte Carlomodels, topological bound-

ary dynamics and front-tracking models, and Ginzburg-Landau type phase field

kinetic models [see overview in (6)]. However, compared with these approaches,

the strength of scaleable kinetic cellular automata is such that they combine the

computational simplicity and scalability of a switching model with the physical

stringency of a boundary dynamics model. Their objective lies in providing a

numerically efficient and at the same time phenomenologically sound method of

discretely simulating recrystallization and grain growth phenomena.As far as com-

putational aspects are concerned, cellular automata can be designed to minimize

calculation time and reduce code complexity in terms of storage and algorithm.

As far as microstructure physics is concerned, they can be designed to provide

kinetics, texture, and microstructure on a real space and time scale on the basis

of realistic or experimental input data for microtexture, grain boundary charac-

teristics, and local driving forces. The possible incorporation of realistic values,

particularly for grain boundary energies and mobilities, deserves particular atten-

tion because such experimental data are increasingly available, enabling one to

make quantitative predictions.
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Cellular automaton simulations are often carried out at an elementary level

using atoms, clusters of atoms, dislocation segments, or small crystalline or con-

tinuum elements as underlying units. It should be emphasized in particular that

those variants that discretize and map microstructure in continuum space are not

intrinsically calibrated by a characteristic physical length or timescale. This means

that a cellular automaton simulation of continuum systems requires the definition

of elementary units and transformation rules that adequately reflect the system

behavior at the level addressed. If some of the transformation rules refer to differ-

ent real timescales (e.g., recrystallization and recovery, bulk diffusion and grain

boundary diffusion) it is essential to achieve a correct common scaling of the

entire system. The requirement for an adjustment of timescaling among various

rules is due to the fact that the transformation behavior of a cellular automaton is

sometimes determined by noncoupled Boolean routines rather than by the exact

local solutions of coupled differential equations. The same is true when underlying

differential equations with entirely different time scales enter the formulation of a

set of transformation rules. The scaling problem becomes particularly important in

the simulation of nonlinear systems (which applies for most microstructure-based

cellular automata). During the simulation, it can be useful to refine or coarsen

the scale according to the kinetics (time re-scaling) and spatial resolution (space

re-scaling). Because the use of cellular automata is not confined to the microscopic

regime, it provides a convenient numerical means for bridging various space and

timescales in microstructure simulation.

Important fields where microstructure-based cellular automata have been suc-

cessfully used in the materials sciences are primary static recrystallization and

recovery (6–19), formation of dendritic grain structures in solidification processes

(20–26), and related nucleation and coarsening phenomena (27–36). The follow-

ing is devoted to the simulation of primary static recrystallization. For further study

of relatedmicrostructural topics, the reader is referred to the references cited above.

EXAMPLE OF A RECRYSTALLIZATION SIMULATION
BY USE OF A PROBABILISTIC CELLULAR AUTOMATON

Lattice Structure and Transformation Rule

The model for the present recrystallization simulation is designed as a cellular

automaton with a probabilistic transformation rule (16–18). Independent variables

are time t and space x= (x1, x2, x3). Space is discretized into an array of equally

shaped cells (two- or three-dimensional depending on input data). Each cell is

characterized in terms of the dependent variables. These are scalar (mechanical,

electromagnetic) and configurational (interfacial) contributions to the driving force

and the crystal orientation g= g (ϕ1, φ, ϕ2), where g is the rotation matrix and

ϕ1, φ, ϕ2 the Euler angles. The driving force is the negative change in Gibbs

enthalpyGt per transformed cell. The starting data, i.e., the crystal orientation map

and the spatial distribution of the driving force, can be provided by experiment,
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i.e., orientation imaging microscopy via electron back scatter diffraction, or by

simulation, e.g., a crystal plasticity finite element simulation. Grains or subgrains

are mapped as regions of identical crystal orientation, but the driving force may

vary inside these areas.

The kinetics of the automaton result from changes in the state of the cells (cell

switches). They occur in accord with a switching rule (transformation rule), which

determines the individual switching probability of each cell as a function of its

previous state and the state of its neighbor cells. The switching rule is designed to

map the phenomenology of primary static recrystallization in a physically sound

manner. It reflects that the state of a non-recrystallized cell belonging to a de-

formed grain may change owing to the expansion of a recrystallizing neighbor

grain, which grows according to the local driving force and boundary mobility. If

such an expanding grain sweeps a non-recrystallized cell, the stored dislocation

energy of that cell drops to zero and a new orientation is assigned to it, namely that

of the expanding neighbor grain. To put this formally, the switching rule is cast in

a probabilistic form of a linearized symmetric rate equation, which describes grain

boundary motion in terms of isotropic single-atom diffusion processes perpendic-

ular through a homogeneous planar grain boundary segment under the influence

of a decrease in Gibbs energy,

ẋ = nνDλgbc
{

exp

(

−
1G + 1G t/2

kBT

)

− exp

(

−
1G − 1G t/2

kBT

)}

, 1.

where ẋ is the grain boundary velocity, νD the Debye frequency, λgb the jumpwidth

through the boundary, c the intrinsic concentration of grain boundary vacancies
or shuffle sources, n the normal of the grain boundary segment, 1G the Gibbs

enthalpy of motion through the interface, 1Gt the Gibbs enthalpy associated with

the transformation, kB the Boltzmann constant, and T the absolute temperature.

Replacing the jump width by the Burgers vector and the Gibbs enthalpy terms by

the total entropy, 1S, and total enthalpy, 1H, leads to a linearized form

ẋ ≈ nνDb exp

(

−
1S
kB

)

exp

(

−
1H
kBT

)(

pV
kBT

)

, 2.

where p is the driving force and V the atomic volume, which is of the order of b3

(b is the magnitude of the Burgers vector). Summarizing these terms reproduces

Turnbull’s rate expression

ẋ = nmp = nm0 exp

(

−
Qgb

kBT

)

p, 3.

where m is the mobility. These equations provide a well-known kinetic picture of

grain boundary segment motion, where the atomistic processes (including thermal

fluctuations, i.e., random thermal backward and forward jumps) are statistically

described in terms of the pre-exponential factor of the mobility m0=m0(1g, n)

and of the activation energy of grain boundary mobility Qgb=Qgb(1g, n).
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For dealing with competing switches affecting the same cell, the determinis-

tic rate equation can be replaced by a probabilistic analogue that allows one to

calculate switching probabilities. For this purpose, Equation 3 is separated into a

deterministic part, ẋ0, which depends weakly on temperature, and a probabilistic

part, w, which depends strongly on temperature:

ẋ = ẋ0w = n
kBTm0

V
pV
kBT

exp

(

−
Qgb

kBT

)

with ẋ0 = n
kBTm0

V
,

w =
pV
kBT

exp

(

−
Qgb

kBT

)

. 4.

The probability factor w represents the product of the linearized part pV/(kBT )
and the non-linearized part exp[−Qgb/(kBT )] of the original Boltzmann terms.

According to this expression, non-vanishing switching probabilities occur for cells

that reveal neighbors with different orientation and a driving force that points

in their direction. The automaton considers the first, second (two-dimensional),

and third (three-dimensional) neighbor shell for the calculation of the total driving

force acting on a cell. The local value of the switching probability depends on the

crystallographic character of the boundary segment between such unlike cells.

Scaling and Normalization

Microstructure-based cellular automata are usually applied to starting data that

have a spatial resolution far above the atomic scale. This means that the automaton

lattice has a lateral scaling of λm ≫ b, where λm is the scaling length of the cellular

automaton lattice and b theBurgers vector. If amoving boundary segment sweeps a

cell, the grain thus grows (or shrinks) by λ3m rather than b
3. Because the net velocity

of a boundary segment must be independent of this scaling value of λm, an increase

in jump width must lead to a corresponding decrease in the grid attack frequency,

i.e., to an increase of the characteristic time step and vice versa. For obtaining

a scale-independent grain boundary velocity, the grid frequency must be chosen

in a way to ensure that the attempted switch of a cell of length λm occurs with a

frequency much below the atomic attack frequency, which attempts to switch a

cell of length b. This scaling condition, which is prescribed by an external scaling

length λm, leads to the equation

ẋ = ẋ0w = n(λmν)w with ν =
kBTm0

Vλm
, 5.

where ν is the eigenfrequency of the chosen lattice characterized by the scaling

length λm.

The eigenfrequency represents the attack frequency for one particular grain

boundarywith constantmobility. To use awhole spectrumofmobilities and driving

forces in one simulation, it is necessary to normalize the eigenfrequency by a
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common grid attack frequency ν0, yielding

ẋ = ẋ0w = nλmν0

(

ν

ν0

)

w = ˆ̇x0

(

ν

ν0

)

w = ˆ̇x0ŵ. 6.

The value of the attack frequency ν0, which is characteristic of the lattice, can be

calculated by the assumption that the maximum occurring switching probability

cannot be larger than one;

ŵmax =
mmax

0 pmax

λmνmin0

exp

(

−
Qmin
gb

kBT

)

≤
!
1, 7.

where mmax
0 is the maximum occurring pre-exponential factor of the mobility,

pmax the maximum possible driving force, νmin0 the minimum allowed grid attack

frequency, and Qmin
gb the minimum occurring activation energy. With ŵmax = 1,

one obtains the normalization frequency as a function of the upper bound input

data.

νmin0 =
mmax

0 pmax

λm
exp

(

−
Qmin
gb

kBT

)

. 8.

This frequency and the local values of the mobility and the driving force lead

to

ŵlocal =
m local

0 plocal

λmνmin0

exp

(

−
Qlocal
gb

kBT

)

=

(

m local
0

mmax
0

)(

plocal

pmax

)

exp

(

−

(

Qlocal
gb − Qmin

gb

)

kBT

)

=

(

mlocal plocal

mmax pmax

)

. 9.

This expression is the central switching equation of the algorithm. One can

interpret this equation also in terms of the local time t= λm/ẋ, which is required

by a grain boundary with velocity ẋ to sweep an automaton cell of size λm.

ŵlocal =

(

m local plocal

mmax pmax

)

=

(

ẋ local

ẋmax

)

=

(

tmax

t local

)

. 10.

Equation 9 shows that the local switching probability can be quantified by the

ratio of the local and the maximummobilitymlocal/mmax, which is a function of the

grain boundary character and by the ratio of the local and the maximum driving

pressure plocal/pmax. The probability of the fastest occurring boundary segment

(characterized by mlocal
0 =mmax

0 , plocal= pmax, Qlocal
gb =Qmin

gb ) to realize a cell switch

is equal to 1.

Equation 9 shows that an increasing cell size does not influence the switching

probability but only the time step elapsing during an attempted switch. This rela-

tionship is obvious since the volume to be swept becomes larger, which requires

more time. The characteristic time constant of the simulation 1t is 1/νmin0 .
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AlthoughEquation 9 allowsone to calculate the switching probability of a cell as

a function of its previous state and the state of the neighbor cells, the actual decision

about a cell switch is made by a Monte Carlo step. The use of random numbers

ensures that all cell switches are sampled according to their proper statistical

weight, i.e., according to the local driving force and mobility between cells. The

simulation proceeds by calculating the individual local switching probabilities

ŵlocal for each cell and evaluating them using a Monte Carlo algorithm. This

means that for each cell the calculated switching probability is compared with a

randomly generated number r, which lies between 0 and 1. The switch is accepted
if the random number is equal or smaller than the calculated switching probability.

Otherwise the switch is rejected.

Random number r between 0 and 1























accept switch if r ≤

(

mlocal plocal

mmax pmax

)

reject switch if r >

(

m local plocal

mmax pmax

) . 11.

Except for the probabilistic evaluation of the analytically calculated transfor-

mation probabilities, the approach is entirely deterministic. Thermal fluctuations

other than already included via Turnbull’s rate equation are not permitted. The use

of realistic or even experimental input data for the grain boundaries enables one to

make predictions on a real time and space scale. The switching rule is scalable to

any mesh size and to any spectrum of boundary mobility and driving force data.

The state update of all cells is made in synchrony.

Simulation of Primary Static Recrystallization
and Comparison to Avrami-Type Kinetics

Figure 2 shows the kinetics and three-dimensional microstructures of a recrystal-

lizing aluminum single crystal. The initial deformed crystal had a uniform Goss

orientation (011)[100] and a dislocation density of 1015m−2. The driving force was

from the stored elastic energy provided by the dislocations. In order to compare

the predictions with analytical Avrami kinetics, recovery and driving forces arising

from local boundary curvature were not considered. The simulation used site sat-

urated nucleation conditions, i.e., the nuclei at t= 0 s were statistically distributed

in physical space and orientation space. The grid size was 10× 10× 10 µm3.

The cell size was 0.1 µm. All grain boundaries had the same mobility using an

activation energy of the grain boundary mobility of 1.3 eV and a pre-exponential

factor of the boundary mobility ofm0= 6.2 · 10−6m3/(N·s) (37). Small angle grain

boundaries had a mobility of zero. The temperature was 800 K. The time constant

of the simulation was 0.35 s.

Figure 3 shows the kinetics for a number of three-dimensional recrystallization

simulations with site-saturated nucleation conditions and identical mobility for

all grain boundaries. The different curves correspond to different initial numbers
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Figure 2 Kinetics and microstructure of recrystallization in a plastically strained

aluminum single crystal. The deformed crystal had a uniform (011)[100] orientation

and a uniform dislocation density of 1015 m−2. Simulation parameter: site-saturated

nucleation; lattice size, 10× 10× 10µm3; cell size, 0.1µm; activation energy of large-

angle grain boundary mobility, 1.3 eV; pre-exponential factor of large-angle boundary

mobility, m0= 6.2 · 10−6 m3/(N · s); temperature, 800 K; time constant 0.35 s.

of nuclei. The initial number of nuclei varied between 9624 (pseudo-nucleation

energy of 3.2 eV) and 165 (pseudo-nucleation energy of 6.0 eV). The curves

(Figure 3a) all show a typical Avrami shape, and the logarithmic plots (Figure 3b)
reveal Avrami exponents between 2.86 and 3.13, which is in good accord with

the analytical value of 3.0 for site-saturated conditions. The simulations with a

very high initial density of nuclei reveal a more pronounced deviation of the

Avrami exponent with values around 2.7 during the beginning of recrystallization.

This deviation from the analytical behavior is due to lattice effects: While the

analytical derivation assumes a vanishing volume for newly formed nuclei, the

cellular automaton has to assign one lattice point to each new nucleus.

Figure 4 shows the effect of grain boundary mobility on growth selection.

Whereas in Figure 4a all boundaries have the same mobility, in Figure 4b one

grain boundary has a larger mobility than the others (activation energy of the

mobility of 1.35 eV instead of 1.40 eV) and consequently grew much faster than

the neighboring grains that finally ceased to grow. The grains in this simulation all

grew into a heavily deformed single crystal.
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Figure 3 Kinetics for various three-dimensional recrystallization simulations with

site-saturated nucleation conditions and identical mobility for all grain boundaries. The

different curves correspond to different initial numbers of nuclei. The initial number

of nuclei varied between 9624 (pseudo-nucleation energy of 3.2 eV) and 165 (pseudo-

nucleation energy of 6.0 eV). (a) Avrami diagrams, (b) logarithmic diagrams showing
Avrami exponents between 2.86 and 3.13.
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Figure 4 Effect of grain boundary mobility on growth selection. All grains grow into

a deformed single crystal. (a) All grain boundaries have the same mobility. (b) One
grain boundary has a larger mobility than the others (activation energy of the mobility

of 1.35 eV instead of 1.40 eV) and grows faster than the neighboring grains.

Examples of Coupling Cellular Automata with
Crystal Plasticity Finite Element Models for
Predicting Recrystallization

Simulation approaches such as the crystal plasticity finite element method or cellu-

lar automata are increasingly gaining momentum as tools for spatial and temporal

discrete prediction methods for microstructures and textures. The major advan-

tage of such approaches is that they consider material heterogeneity as opposed

to classical statistical approaches, which are based on the assumption of material

homogeneity.

Although the average behavior of materials during deformation and heat treat-

ment can sometimes be sufficiently well described without considering local ef-

fects, prominent examples exist where substantial progress in understanding and

tailoring material response can only be attained by taking material heterogeneity

into account. For instance, in the field of plasticity, the quantitative investigation

of ridging and roping or related surface defects observed in sheet metals requires
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knowledge about local effects such as the grain topology or the form and location

of second phases. In the field of heat treatment, the origin of the Goss texture in

transformer steels, the incipient stages of cube texture formation during primary

recrystallization of aluminum, the reduction of the grain size in microalloyed low

carbon steel sheets, and the development of strong {111}〈uvw〉 textures in steels

can hardly be predicted without incorporating local effects such as the orientation

and location of recrystallization nuclei and the character and properties of the grain

boundaries surrounding them.

Although spatially discrete microstructure simulations have already profoundly

enhanced our understanding of microstructure and texture evolution over the past

decade, their potential is sometimes simply limited by an insufficient knowledge

about the external boundary conditions that characterize the process and an in-

sufficient knowledge about the internal starting conditions, which are, to a large

extent, inherited from the preceding process steps. It is thus an important goal

to improve the incorporation of both types of information into such simulations.

External boundary conditions prescribed by real industrial processes are often spa-

tially non-homogeneous. They can be investigated using experiments or process

simulations that consider spatial resolution. Spatial heterogeneities in the internal

starting conditions, i.e., in the microstructure and texture, can be obtained from

experiments or microstructure simulations that include spatial resolution.

Coupling, Scaling, and Boundary Conditions

In the present example, the results obtained from a crystal plasticity finite element

simulation were used to map a starting microstructure for a subsequent discrete

recrystallization simulation carried outwith a probabilistic cellular automaton. The

finite elementmodelwas used to simulate a plane strain compression test conducted

on aluminum with columnar grain structure to a total logarithmic strain of ε =

−0.434.Details about the finite elementmodel are given elsewhere (17, 18, 38, 39).

The values of the state variables (dislocation density, crystal orientation) given at

the integration points of the finite element mesh were mapped on the regular lattice

of a two-dimensional cellular automaton.Whereas the original finite element mesh

consisted of 36977 quadrilateral elements, the cellular automaton lattice consisted

of 217600 discrete points. The values of the state variables at each of the integration

points were assigned to the new cellular automaton lattice points, which fell within

the Wigner-Seitz cell corresponding to that integration point. The Wigner-Seitz

cells of the finite element mesh were constructed from cell walls that were the

perpendicular and bisected planes of all lines connecting neighboring integration

points, i.e., the integration points were in the centers of the Wigner-Seitz cells.

In the present example, the original size of the specimen providing the input

microstructure to the crystal plasticity finite element simulations gave a lattice

point spacing of λm= 61.9 µm. The maximum driving force in the region arising

from the stored dislocation density amounted to about 1 MPa. The temperature

dependence of the shear modulus and of the Burgers vector was considered in the

calculation of the driving force. The grain boundarymobility in the regionwas char-

acterized by an activation energy of the grain boundary mobility of 1.46 eV and a
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pre-exponential factor of the grain boundarymobility of m0= 8.3× 10−3m3/(N s).

Together with the scaling length λm= 61.9 µm, these data were used for the cal-

culation of the timestep1t= 1/νmin0 and of the local switching probabilities ŵlocal.

The annealing temperature was 800 K. Large-angle grain boundaries were char-

acterized by an activation energy for the mobility of 1.3 eV. Small-angle grain

boundaries were assumed to be immobile.

Nucleation Criterion

The nucleation process during primary static recrystallization has been explained

for pure aluminum in terms of discontinuous subgrain growth (40). According to

this model, nucleation takes place in areas that reveal high misorientations among

neighboring subgrains and a high local driving force for curvature driven discon-

tinuous subgrain coarsening. The present simulation approach works above the

subgrain scale, i.e., it does not explicitly describe cell walls and subgrain coarsen-

ing phenomena. Instead, it incorporates nucleation on a more phenomenological

basis using the kinetic and thermodynamic instability criteria known from classical

recrystallization theory (see, e.g., 40).

The kinetic instability criterionmeans that a successful nucleation process leads

to the formation of a mobile large-angle grain boundary that can sweep the sur-

rounding deformedmatrix. The thermodynamic instability criterionmeans that the

stored energy changes across the newly formed large-angle grain boundary provid-

ing a net driving force that pushes it forward into the deformedmatter.Nucleation in

this simulation is performed in accord with these two aspects: Potential nucleation

sites must fulfill both the kinetic and the thermodynamic instability criteria.

This nucleation model does not create any new orientations: At the beginning

of the simulation, the thermodynamic criterion (the local value of the dislocation

density) was first checked for all lattice points. If the dislocation density was larger

than some critical value of its maximum value in the sample, the cell was spon-

taneously recrystallized without any orientation change, i.e., a dislocation density

of zero was assigned to it, and the original crystal orientation was preserved. In

the next step, the ordinary growth algorithmwas employed according to Equations

1–11, i.e., the kinetic conditions for nucleation were checked by calculating the

misorientations among all spontaneously recrystallized cells (preserving their orig-

inal crystal orientation) and their immediate neighborhood considering the first,

second, and third neighbor shell. If any such pair of cells revealed a misorientation

above 15◦, the cell flip of the unrecrystallized cell was calculated according to its

actual transformation probability, Equation 9. In case of a successful cell flip, the

orientation of the first recrystallized neighbor cell was assigned to the flipped cell.

Predictions and Interpretation

Figures 5–7 show simulated microstructures for site-saturated spontaneous nu-

cleation in all cells with a dislocation density larger than 50% of the maxi-

mum value (in Figure 5), larger than 60% of the maximum value (in Figure 6),
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and larger than 70% of the maximum value (in Figure 7). Each figure shows a set

of four subsequent microstructures during recrystallization.

The upper graphs in Figures 5–7 show the evolution of the stored dislocation

densities. The gray areas are recrystallized, i.e., the stored dislocation content of

the affected cells was dropped to zero. The lower graphs represent themicrotexture

images where each color represents a specific crystal orientation. The color level

is determined as the magnitude of the Rodriguez orientation vector using the cube

component as reference. The fat white lines in both types of figures indicate grain

boundaries with misorientations above 15◦ irrespective of the rotation axis. The

thin green lines indicate misorientations between 5◦ and 15◦ irrespective of the

rotation axis.

The incipient stages of recrystallization in Figure 5 (cells with 50% of the max-

imum occurring dislocation density undergoing spontaneous nucleation without

orientation change) reveal that nucleation is concentrated in areas with large ac-

cumulated local dislocation densities. As a consequence, the nuclei form clusters

of similarly oriented new grains (e.g., Figure 5a). Less deformed areas between
the bands reveal a very small density of nuclei. Logically, the subsequent stages of

recrystallization (Figure 5b–d ) reveal that the nuclei do not sweep the surround-
ing deformation structure freely as described by Avrami-Johnson-Mehl theory but

impinge upon each other and thus compete at an early stage of recrystallization.

Figure 6 (using 60% of themaximum occurring dislocation density as threshold

for spontaneous nucleation) also reveals strong nucleation clusters in areas with

high dislocation densities. Owing to the higher threshold value for a spontaneous

cell flip, nucleation outside of the deformation bands occurs vary rarely. Similar

observations hold for Figure 7 (70% threshold value). It also shows an increasing

grain size as a consequence of the reduced nucleation density.

The deviation from Avrami-Johnson-Mehl type growth, i.e., the early impinge-

ment of neighboring crystals, is also reflected by the overall kinetics that differ

from the classical sigmoidal curve that is found for homogeneous nucleation con-

ditions. Figure 8 shows the kinetics of recrystallization (for the simulations with

different threshold dislocation densities for spontaneous nucleation) (Figures 5–7).

All curves reveal a flattened shape compared with the analytical model. The high

offset value for the curve with 50% critical dislocation density is due to the small

threshold value for a spontaneous initial cell flip. This means that 10% of all cells

undergo initial site saturated nucleation. Figure 9 shows the corresponding Cahn-

Hagel diagrams. It is found that the curves increasingly flatten and drop with an

increasing threshold dislocation density for spontaneous recrystallization.

Interestingly, in all three simulation series where spontaneous nucleation took

place in areas with large local dislocation densities, the kinetic instability cri-

terion was usually also well enough fulfilled to enable further growth of these

freshly recrystallized cells. In this context, it is notable that both instability criteria

were treated entirely independently in this simulation. In other words, only those

spontaneously recrystallized cells that subsequently found a misorientation above

15◦ to at least one non-recrystallized neighbor cell were able to expand further.
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Figure 8 Kinetics of the recrystallization simulations shown in Figures 5–7.

Annealing temperature, 800 K; scaling length λm= 61.9 µm.

This makes the essential difference between a potential nucleus and a successful

nucleus. Translating this observation into the initial deformation microstructure

means that in the present example high dislocation densities and large local lattice

curvatures typically occur in close neighborhood or even at the same sites.

Another essential observation is that the nucleation clusters are particularly

concentrated in macroscopical deformation bands formed as diagonal instabilities

through the sample thickness. Generic intrinsic nucleation inside heavily deformed

grains, however, occurs rarely. Only the simulation with a very small threshold

value of 50% of the maximum dislocation density as a precondition for a spon-

taneous energy drop shows some successful nucleation events outside the large

bands. But even then, nucleation is successful only at former grain boundaries

where orientation changes occur naturally. Summarizing this argument means that

there might be a transition from extrinsic nucleation such as inside bands or re-

lated large-scale instabilities to intrinsic nucleation inside grains or close to ex-

isting grain boundaries. It is likely that both types of nucleation deserve separate

attention. As far as the strong nucleation inmacroscopic bands is concerned, future

consideration should be placed on issues such as the influence of external friction

conditions and sample geometry on nucleation. Both aspects strongly influence

through thickness shear localization effects.
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Figure 9 Simulated interface fractions between recrystallized and non-

recrystallized material for the recrystallization simulations shown in Figures 5–7.

Annealing temperature, 800 K; scaling length λm= 61.9 µm.

Another result of relevance is the partial recovery of deformed material.

Figures 5d, 6d, and 7d reveal small areas where moving large-angle grain bound-
aries did not entirely sweep the deformedmaterial. An analysis of the state variable

values at these coordinates and of the grain boundaries involved substantiates that

insufficient misorientations, not insufficient driving forces, between the deformed

and the recrystallized areas—entailing a drop in grain boundary mobility—were

responsible for this effect. This mechanism is referred to as orientation pinning.

Simulation of Nucleation Topology Within a Single Grain

Recent efforts in simulating recrystallization phenomena on the basis of crystal

plasticity finite element or electronmicroscopy input data are increasingly devoted

to tackling the question of nucleation. Here it must be stated clearly that mesoscale

cellular automata can neither directly map the physics of a nucleation event nor

develop any novel theory for nucleation at the subgrain level. However, cellular

automata can predict the topological evolution and competition among growing

nuclei during the incipient stages of recrystallization. The initial nucleation crite-

rion itself must be incorporated in a phenomenological form.

This section deals with such as an approach for investigating nucleation topol-

ogy. The simulation was again started using a crystal plasticity finite element



72 RAABE

approach. The crystal plasticity model set-up consisted in a single aluminum grain

with face centered cubic crystal structure and 12 {111}〈110〉 slip systems embed-
ded in a plastic continuum, which had the elastic-plastic properties of an aluminum

polycrystal with random texture. The crystallographic orientation of the aluminum

grain in the center was ϕ1= 32◦, φ = 85◦, ϕ2= 85◦. The entire aggregate was plane

strain deformed to 50% thickness reduction (given as1d/d0, where d is the actual

sample thickness and d0 its initial thickness). The resulting data (dislocation den-

sity, orientation distribution) were then used as input data for the ensuing cellular

automaton recrystallization simulation. The distribution of the dislocation den-

sity taken from all integration points of the finite element simulation is given in

Figure 10.

Nucleation was initiated as outlined in detail above, i.e., each lattice point that

had a dislocation density above some critical value (500× 1013m−2 in the present

Figure 10 Distribution of the simulated dislocation density in a deformed aluminum

grain embedded in a plastic aluminum continuum. The simulation was performed by

using a crystal plasticity finite element approach. The set-up consisted of a single

aluminum grain (orientation: ϕ1= 32◦, φ = 85◦, ϕ2= 85◦ in Euler angles), with face

centered cubic crystal structure and 12 {111}〈110〉 slip systems, thatwas embedded in a

plastic continuum, which had the elastic-plastic properties of an aluminum polycrystal

with random texture. The samplewas plane strain deformed to 50% thickness reduction.

The resulting data (dislocation density, orientation distribution) were used as input data

for a cellular automaton recrystallization simulation.
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case; see Figure 10) of the maximum value in the sample was spontaneously

recrystallizedwithout orientation change. In the ensuing step, the growth algorithm

was started according to Equations 1–11, i.e., a nucleus could only expand further

if it was surrounded by lattice points of sufficient misorientation (above 15◦). In

order to concentrate on recrystallization in the center grain, the nuclei could not

expand into the surrounding continuum material.

Figures 11a–c show the change in dislocation density during recrystallization

(Figure 11a: 9% of the entire sample recrystallized, 32.1 s; Figure 11b: 19% of

the entire sample recrystallized, 45.0 s; Figure 11c: 29.4% of the entire sam-

ple recrystallized, 56.3 s). The color scale marks the dislocation density of each

lattice point in units of 1013 m−2. The white areas are recrystallized. The sur-

rounding blue area indicates the continuum material in which the grain is embed-

ded (and into which recrystallization was not allowed to proceed). Figures 12a–c
show the topology of the evolving nuclei without coloring the as-deformed vol-

ume. All recrystallized grains are colored to indicate their crystal orientation. The

non-recrystallized material and the continuum surrounding the grain are colored

white.

Figure 13 shows the volume fractions of the growing nuclei during recrystal-

lization as a function of annealing time (800 K). The data reveal that two groups of

nuclei occur: The first class of nuclei shows some growth in the beginning but no

further expansion during the later stages of the anneal. The second class of nuclei

Figure 13 Volume fractions of the growing nuclei in Figure 11 during recrys-

tallization as a function of annealing time (800 K).
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shows strong and steady growth during the entire recrystallization time. The first

group could be considered non-relevant nuclei, the second group could be termed

relevant nuclei. The spread in the evolution of nucleation topology after their initial

formation can be attributed to nucleation clustering, orientation pinning, growth

selection, or driving force selection phenomena. Nucleation clustering means that

areas with localization of strain and misorientation produce high local nucleation

rates. This entails clusters of newly formed nuclei where competing crystals im-

pinge on each other at an early stage of recrystallization so that only some of the

newly formed grains of each cluster can expand further, which is another example

of orientation pinning, as described above. In other words, some nuclei expand

during growth into areas where the local misorientation drops below 15◦. Growth

selection is a phenomenon where some grains grow significantly faster than others

due to a local advantage originating from higher grain boundary mobility such as

shown in Figure 4b. Typical examples are the 40◦ 〈111〉 rotation relationship in

aluminum or the 27◦ 〈110〉 rotation relationship in iron-silicon, both of which are

known to have a growth advantage [e.g., (40)]. Driving force selection is a phe-

nomenon where some grains grow significantly faster than others due to a local

advantage in driving force (shear bands, microbands, heavily deformed grain).

CONCLUSIONS AND OUTLOOK

We have reviewed the fundamentals and some applications of cellular automata in

thefieldofmicrostructure research,with special attentiongiven to the fundamentals

of mapping rate formulations for interfaces and driving forces on cellular grids.

Some applications were discussed from the field of recrystallization theory.

The future of the cellular automaton method in the field of mesoscale ma-

terials science lies most likely in the discrete simulation of equilibrium and non-

equilibrium phase transformation phenomena. The particular advantage of

automata in this context is their versatility with respect to the constitutive in-

gredients, to the consideration of local effects, and to the modification of the

grid structure and the interaction rules. In the field of phase transformation sim-

ulations, the constitutive ingredients are the thermodynamic input data and the

kinetic coefficients. Both sets of input data are increasingly available from theory

and experiment, rendering cellular automaton simulations more and more realis-

tic. The second advantage, i.e., the incorporation of local effects will improve our

understanding of cluster effects, such as those arising from the spatial competition

of expanding neighboring spheres already in the incipient stages of transforma-

tions. The third advantage, i.e., the flexibility of automata with respect to the grid

structure and the interaction rules, is probably the most important aspect for novel

future applications. By introducing more global interaction rules (in addition to

the local rules) and long-range or even statistical elements, in addition to the lo-

cal rules for the state update, cellular automata could be established as a means

for solving some of the intricate scale problems that are often encountered in the

materials sciences. It is conceivable that for certain mesoscale problems, such as
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the simulation of transformation phenomena in heterogeneneous materials in di-

mensions far beyond the grain scale, cellular automata can occupy a role between

the discrete atomistic approaches and statistical Avrami-type approaches.

Themajor drawback of the cellular automatonmethod in the field of transforma-

tion simulations is the absence of solid approaches for the treatment of nucleation

phenomena. Although basic assumptions about nucleation sites, rates, and textures

can often be included on an empirical basis as a function of the local values of

the state variables, intrinsic physically based phenomenological concepts such as

those found, to a certain extent, in the Ginzburg-Landau framework (in case of the

spinodal mechanism) are not available for automata. Hence, it might be advanta-

geous in future work to combine Ginzburg-Landau-type phase field approaches

with the cellular automaton method. For instance the (spinodal) nucleation phase

could then be treated with a phase field method and the resulting microstructure

could be further treated with a cellular automaton simulation.

The Annual Review of Materials Research is online at
http://matsci.annualreviews.org
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Figure 5 Consecutive stages of a two-dimensional simulation of primary static re-

crystallization in a deformed aluminum polycrystal on the basis of crystal plasticity

finite element starting data. The figure shows the change in dislocation density (top)
andmicrotexture (bottom) as a function of the annealing time during isothermal recrys-
tallization. The texture is given in terms of the magnitude of the Rodriguez orientation

vector using the cube component as reference. The gray areas in the upper figures

indicate a stored dislocation density of zero, i.e., these areas are recrystallized. The

heavy white lines indicate grain boundaries withmisorientations above 15◦ irrespective

of the rotation axis. The thin green lines indicate misorientations between 5◦ and 15◦

irrespective of the rotation axis. The simulation parameters: 800 K; thermodynamic

instability criterion, site-saturated spontaneous nucleation in cells with at least 50%

of the maximum occurring dislocation density (threshold value); kinetic instability

criterion for further growth of such spontaneous nuclei, misorientation above 15◦; ac-

tivation energy of the grain boundary mobility, 1.46 eV; pre-exponential factor of the

grain boundary mobility, m0= 8.3× 10−3m3/(N s; mesh size of the cellular automaton

grid (scaling length), λm= 61.9 µm.



Figure 6 Parameters such as in Figure 5, but site-saturated spontaneous nucleation

occurred in all cells with at least 60% of the maximum occurring dislocation density.



Figure 7 Parameters such as in Figure 5, but site-saturated spontaneous nucleation

occurred in all cells with at least 70% of the maximum occurring dislocation density.



Figure 11 Change in dislocation density during recrystallization (800 K). The color scale indicates the dislocation density of each lattice

point in units of 1013 m−2. The white areas are recrystallized. The surrounding blue area indicates the continuum material in which the

grain is embedded. (a) 9% of the entire sample recrystallized, 32.1 s; (b) 19% of the entire sample recrystallized, 45.0 s; (c) 29.4% of the

entire sample recrystallized, 56.3 s.



Figure 12 Topology of the evolving nuclei of the microstructure given in Figure 11 without coloring the as-deformed volume. All newly

recrystallized grains are colored indicating their crystal orientation. The non-recrystallized material and the continuum surrounding the

grain are white. Sample recrystallization percents same as in Figure 11.


