Designing Nanostructured Metallic Bulk Alloys via First Principles Simulations and Atomic Scale Characterization: The Basis of Modern Manufacturing

Dawn of the iron age in the Mediterranean

Hittite empire: iron age

1274 BC:
- Iron weapons
- Large chariots

Egypt empire: bronze age

20,000 soldiers, 4 divisions
- Largest Egypt army ever

37,000 soldiers, Hittite and other kingdoms

Legend:
- Muwatalli
- Quadesh
- Ramses II.
Treaty of Kadesh (Quadesh), mankind’s first documented peace treaty. It signified the end of a conflict between Egypt and the Hittites and dates from 1269 BC.
- First principles guided design of structural alloys
 Mg-Li
 Mg-Y
 TWIP steel
 Phase transformation at lattice defects

- RAP (Rapid Alloy Prototyping)
 Combinatorial design of bulk alloys
 Density-reduced TRIPLEX steels

- Conclusions
Ab-initio design of Mg-Li alloys: a ‘treasure‘ map

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Weak under normal load
Weak under shear load

Y: Young’s modulus
ρ: mass density
B: compressive modulus
G: shear modulus
Ab-initio design of Mg-Li alloys: a ‘treasure’ map

Weak under normal load

Weak under shear load

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Mg vs. Mg-Y: > 5 times higher ductility at same stress level
Mg vs. Mg-Y: > 5 times higher ductility at same stress level
Deformation - dislocation activity

TEM images of <c+a> dislocations in Mg 3 wt-% Y (3.5 % CR)

- Red arrows: cross-slip events
- Blue arrows: dislocation dissociation on pyramidal planes
\{0001\}<1\overline{1}-20>
First principles guided design of structural alloys

- Mg-Li
- Mg-Y
- TWIP steel
- Phase transformation at lattice defects

RAP (Rapid Alloy Prototyping)

- Combinatorial design of bulk alloys
- Density-reduced TRIPLEX steels

Conclusions
Twins
Double cross slip
\[\tau_{tw} = \frac{\gamma_{sf} e}{3b_s} + \frac{3G b_s}{L_0} \]

Diagram showing the relationship between stress and strain withlegend:
- USF: Upper Slip System
- ISF: Inter-Slip Facet

Texture map with scale bar 20 \(\mu m \)

Graph showing True Stress (GPa) vs. True strain with data from different temperatures:
- 296K Experiment
- 573K Experiment
- 673K Experiment
- 296K Simulation
- 573K Simulation
- 673K Simulation
Effect of aging on ductility

Engineering Stress (MPa) vs. Engineering Strain (%)

- as-quenched
- aged 450°C/48h

Strain: 0% → 15%

Precipitation hardening
Increase of austenite fraction during aging

Precipitation hardening
Increase of austenite fraction during aging

Effect of aging on ductility

D. Raabe et al. Scripta Materialia 60 (2009) 1141

Table:

<table>
<thead>
<tr>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.15</td>
<td>12</td>
<td>bal.</td>
</tr>
</tbody>
</table>
Mn atoms
Ni atoms
Mn iso-concentration: 18 at.%

Scale: nm

70 million ions Laser mode (0.4nJ, 54K)

APT results: Atomic map (12%Mn, aged 450°C/48h)

Mn segregation at grain boundary, (450°C/65h)

9Mn-2Ni-0.15Al-1Ti-1Mo (wt.%)
Iso-concentration surfaces at 10 at.%Ni and 18 at.%Mn

9Mn-2Ni-0.15Al-1Ti-1Mo (wt.%)
Growth of retained austenite 450°C/48h. 12MnPH

Mn profile

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Thin intergranular FCC layer among two martensite crystals, APT

20 nm

martensite – martensite boundary

\(C_{Mn}^\gamma \approx 28\% \)

\(C_{Mn}^0 = 9\% \)

Mn

Distance [nm]

Mn content [at.\%]

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Mn segregation at dislocations, (450°C/48h)

12Mn-2Ni-0.15Al-1Ti-1Mo (wt.%) iso-conc surfaces at 14at.%Mn and 8at.%Ni.
650 MPa to 2 GPa

400°C aging:
Ms-relaxation + precipitation + austenite reversion

Fe-13.6Cr-0.44C (wt.%)
Prior Austenite Grain Boundary

[111]α

[110]γ

1 μm
First principles guided design of structural alloys

- Mg-Li
- Mg-Y
- TWIP steel
- Phase transformation at lattice defects

RAP (Rapid Alloy Prototyping)

- Combinatorial design of bulk alloys
- Density-reduced TRIPLEX steels

Conclusions
How can we close this loop and efficiently probe the composition – processing – microstructure – property - phase space?

RAP: Rapid alloy prototyping
combinatorial design
complex alloys
thermomechanical processing
tensile testing
35 hours instead of 6 months
Rapid alloy prototyping: combinatorial design of complex alloys

1. Multi-ingot vacuum or inert gas inductive melting and casting

2. Homogenization and hot rolling

3. Heat treatment and / or thermomechanical processing

2. Discharge sample preparation

3. Tensile testing (3 test per state)
Rapid alloy prototyping: multiple ingot casting

5 Cu-moulds, 60 kW vacuum induction furnace (vacuum, Ar, air)

10 x 50 x 150 mm³
Rapid alloy prototyping: applied to TRIPLEX Fe-Mn-Al-C steels

(a) YS / MPa vs. Alloy (wt.% Fe–30Mn–1.2C–)
(b) UTS / MPa vs. Alloy (wt.% Fe–30Mn–1.2C–)
(c) TE / % vs. Alloy (wt.% Fe–30Mn–1.2C–)
(d) Hardness / HBW vs. Alloy (wt.% Fe–30Mn–1.2C–)

Aging treatments:
- as-homogenised
- 450°C, 1h
- 500°C, 1h
- 500°C, 24h
- 550°C, 1h
- 550°C, 24h
- 600°C, 1h
- 600°C, 24h
Rapid alloy prototyping: applied to TRIPLEX Fe-Mn-Al-C steels.
Rapid alloy prototyping: applied to TRIPLEX Fe-Mn-Al-C steels

Fe-24Mn–0.5C–8.6Al (wt%)

Courtesy of Dr. Koyama (NIMS, MPI)
First principles guided design of structural alloys

- Mg-Li
- Mg-Y
- TWIP steel
- Phase transformation at lattice defects

RAP (Rapid Alloy Prototyping)

- Combinatorial design of bulk alloys
- Density-reduced TRIPLEX steels

Conclusions