Multiscale Modeling in Materials Science

F. Roters, M. Friak, T. Hickel, J. Neugebauer, D. Raabe

WWW.MPIE.DE
d.raabe@mpie.de

Max-Planck-Institut für Eisenforschung GmbH
Düsseldorf, Germany
MPIE research focus: multiscale modeling in the CPTS

M. Jansen (Festkörperforschung), K. Kremer (Polymerforschung), S. Müller (Mathematik i. d. Naturwissenschaften), J. Neugebauer (Eisenforschung), D. Raabe (Eisenforschung), K. Reuter (Fritz-Haber), M. Scheffler (Fritz-Haber), W. Thiel (Kohlenforschung)
Zeitalter tragen die Namen von Materialien
70% of all **industrial innovations** are associated with progress in **materials science**

Complex Materials occupy key roles (energy, transportation, health, safety, infrastructure)

Materials-related industries account for 46% of all EU manufacturing value and 11% of the EU’s total domestic product

3.5 billion € per day in the EU

World Trade Organisation

Mission: Understanding and designing complex materials from first principles
Scientific mission: complex materials in real environments

Multiple phenomena
Interactions
multiple scales
Multiscale Modeling and Experimentation

- Length [m]
 - 10^0
 - 10^{-3}
 - 10^{-6}
 - 10^{-9}
 - 10^{-12}

- Time [s]
 - 10^{-15}
 - 10^{-9}
 - 10^{-3}
 - 10^3

- Phases, crystals
- Kinetics of defects
- Structure of defects
- Structure of matter
- Boundary conditions
Multiscale Modeling and Experimentation

Length [m]

- 10^0
- 10^{-3}
- 10^{-6}
- 10^{-9}
- 10^{-12}

Structure of defects

Structure of matter

Kinetics of defects

Phases, crystals

Boundary conditions

Time [s]

10^{-15} 10^{-9} 10^{-3} 10^3
Multiscale crystal plasticity FEM

PDE solver:

FEM
MC
FFT
CA
LBM
Multiscale crystal plasticity FEM

- External boundary conditions
- Mesh
- Elastic tensor
- Phase fractions
- Defect dynamics
- Crystal kinematics
- Orientation
- Homogenization

FEM
FFT
CA
LBM

\[\dot{\gamma} = \frac{d\gamma}{dt} = \rho_m b v \]

\[L_p = \sum_{\alpha=1}^{12} \dot{\gamma}_\alpha \vec{b}_\alpha \otimes \vec{n}_\alpha \]
Towards the limits of strength: cold-drawn pearlitic steel

- Ferrite (~50 ppm C)
- Cementite (25 at.% C)
Towards the limits of strength: cold-drawn pearlitic steel

Ferrite (~50 ppm C) Cementite (25 at.% C)

C iso-concentration (7 at.%) (ε = 2)

Deformation-driven cementite dissolution - oversaturated ferrite
Towards the limits of strength: cold-drawn pearlitic steel

C iso-concentration (7 at.%)
New materials for key technologies: Aero-space
New materials for key technologies: Aero-space
Complex Ni-based superalloy (ERBO, CMSX-4) 56 at.% Al, Re, W, Ni iso
Complex Ni-based superalloy (ERBO, CMSX-4)
Complex Ni-based superalloy (ERBO, CMSX-4)

Al Re W Ni-iso (56 at.%)
Change of microstructure
Exoskeleton component of more than 90% of all species ... adaptive material ➔ candidate for bio-inspired material
Hierarchical stiffness modeling

<table>
<thead>
<tr>
<th>Scale</th>
<th>0.1 nm – 10 nm</th>
<th>10 nm – 100 nm</th>
<th>100 nm – 10 μm</th>
<th>10 μm – 1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical structure unit</td>
<td>α-chitin (H-bonded anti-parallel N-acetyl-glucosamine molecular chains)</td>
<td>Mineralized chitin-protein nanofibrils in a planar array</td>
<td>Twisted plywood stack of mineralized chitin-protein planes without pore canals</td>
<td>Twisted plywood stack of mineralized chitin-protein planes with pore canals</td>
</tr>
<tr>
<td>Experimental method</td>
<td>Transmission electron microscope</td>
<td>Field emission scanning electron microscope</td>
<td>Field emission scanning electron microscope</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>Microstructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schematic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation method</td>
<td>Ab initio; density functional theory</td>
<td>Mori-Tanaka scheme (chitin-protein fiber); Torquato 3-point scheme (mineral-protein matrix)</td>
<td>Voigt estimate, tensor rotation</td>
<td>Torquato 3-point homogenization</td>
</tr>
<tr>
<td>Elastic behavior, 3D map of Young’s modulus [GPa]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,b-axis: basal directions of chitin cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-axis: longitudinal axis of molecule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BCC Ti alloys as biomaterials (implants)

- Strategy for lower elastic stiffness:
 - β-Ti (BCC: Ti-Nb, Ti-Mo, Ti-V,...)
 - Bio-compatible alloy elements

20-25 GPa

20-25 GPa

Ti-Nb

5 GPa
Elastic properties: Ti-Nb system

Young’s modulus surface plots

Ti-18.75at.%Nb

$A_z = 3.210$

Ti-25at.%Nb

$A_z = 2.418$

Ti-31.25at.%Nb

$A_z = 1.058$

Pure Nb

$A_z = 0.5027$

$A_z = 2 \frac{C_{44}}{(C_{11} - C_{12})}$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
Elastic properties: Ti-Nb system

Young's modulus surface plots

- Ti: 115 GPa
- Ti-35wt.%Nb: 59.9 GPa

\[A_z = \frac{2 C_{44}}{C_{11} - C_{12}} \]
Successfully dealing with:
Complexity, multiple scales, interaction with experiments

Grand challenges / quo vadis:
Massive parallelization of PDE models
Exchange-correlation functions in DFT
Inverse models
Time scale bridging
Scale hoping
More physics into continuum theory
Systematics of coarse graining: Renormalization group theory
The Düsseldorf Max-Planck Team

Thank you for the attention