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The aim of this work is to investigate the microstructure evolution, stress–strain

response and strain hardening behavior of microscale beams. For that purpose, two

single crystal cantilever beams in the size dependent regime were manufactured by ion

beam milling and beams were bent with an indenter device. A crystal plasticity material

model for large deformations was implemented in a finite element framework to further

investigate the effect of boundary constraints. Simulations were performed using bulk

material properties of single crystal copper without any special treatment for the strain

gradients. The difference between the slopes of the experimental and the simulated

force displacement curves suggested negligible amount of strain gradient hardening

compared to the statistical hardening mechanisms.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bending is an alternative small scale testing method to pillar compression and indentation. It is advantageous compared
to pillar compression in which both the surface of the tool and the top surface of the sample must be strictly parallel to
each other (Volkert and Lilleodden, 2006; Greer et al., 2005; Shade et al., 2009; Uchic et al., 2006; Nix et al., 2007) and to
indentation which has a complicated deformation geometry. In addition, bending allows the deformed region to be studied
far away from the tool contact zone, hence free of contact and friction effects.

In recent cantilever beam bending experiments, size dependent flow stresses were measured (Demir et al., 2010; Gong
and Wilkinson, 2009; Motz et al., 2005). Stolken and Evans performed uniform bending experiments on Ni polycrystal thin
films having a thickness range of 12:5250mm (Stolken and Evans, 1998) and they related the size dependence of
normalized bending moment to the strain gradients. In the Demir et al. (2010), size dependent flow stresses were
measured during bending of cantilevers of single crystals and shear localizations were found from the electron backscatter
diffraction (EBSD) measurements. The size dependence of the yield strengths in the Demir et al. (2010) was explained with
a mean field breakdown theory for beams that were thinner than 1mm. They concluded that cantilever beam bending can
be used as a reliable means to characterize strength of materials at micro scale.

Size dependence of strain hardening was related to the strain gradients in deformations that involve plastic curvature of
crystal lattice (Stolken and Evans, 1998; Fleck et al., 1994; Shi et al., 2008). In those works, strain gradients were expressed
in terms of the dislocation densities using the gradients of either the lattice shear (Ashby, 1970) or the lattice rotations
(Nye, 1953). The strain gradient hardening is included to the models using Taylor relation as in the Wang et al. (2007) and
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Nix and Gao (1998). Therefore, strain gradients were believed to be the source of size dependence of mechanical strength
for bending at microscale (Stolken and Evans, 1998).

To gain a better understanding of bending at microscale and to search for the effect of strain gradients, a critical bending
experiment was designed and finite element simulations were performed. Two single crystal cantilever beams of cube
orientation having approximate thicknesses of 5mm were manufactured by ion beam milling. Each beam was loaded in an
indenter setup with a different moment arm. Ex situ EBSD measurements were performed to investigate the
microstructural evolution after each displacement increment. The anisotropic elastic and elastic–plastic behavior of the
crystal was implemented in a commercial finite element software to simulate the force displacement behavior and to
model the strain distributions inside the beams for the same real test sample geometry with the actual boundary
constraints. A conventional crystal plasticity model was implemented to incorporate the strain localization effects (Asaro
and Rice, 1977) as observed in the experiments (Demir et al., 2010). The hardening contribution from the strain gradients
was neglected in the model and a constitutive law using bulk single crystal material properties was utilized. The beam
thickness was selected in the size effected regime (Demir et al., 2010; Motz et al., 2005; Stolken and Evans, 1998) to
investigate the effect of strain gradients. For that purpose, the simulated and experimentally measured strain hardening
responses were compared as obtained from the force displacement curves.

2. Experiments

2.1. Details of experimental procedure

Copper single crystals were produced by directional solidification in a Bridgeman furnace by the use of a cube oriented
seed crystal. Rectangular samples were cut by wire electro discharge machining. The two surfaces of the sample were first
wet ground and then polished with diamond pastes of 3 and 1mm, respectively. The top surface of the sample was electro
polished with D2 solution of Struers using default device settings for copper.

Fig. 1 shows the final dimensions of the beam after focused ion beam (FIB) milling. All dimensions were machined using
grazing incident milling in order to minimize the ion beam damage (Kiener et al., 2007). Final milling current was 100 pA
at 30 keV emission voltage.

Table 4 shows the important final dimensions of the beams after milling. text, tint, w, l and y refer to exterior thickness,
interior thickness, width, length and moment arm, respectively. The beam width was greater than three times the
thickness in order to ensure plain strain deformation. Moreover the taper along the width of the beams was minimized by
additionally tilting the beams 71:53 with respect to the FIB milling axis. However, there was 0:620:7mm thickness
variation as a manufacturing error due to the curved geometry of the ion beam over long milling distances of 15217mm.
The average thickness of the beams was nearly 5mm in order to minimize the effect of damaged layer by ion milling (50 nm
thick layer for a milling current of 1 nA at 30 keV from Kiener et al., 2007) and to remain away from the dislocation source
limitation regime (Demir et al., 2010).

Average Euler angles of j1 ¼ 1:43, F¼ 3:13 and j2 ¼ 8:03 (Bunge notation) were measured before loading the beams,
Fig. 2, with an average noise of approximately 0.21.

Beams were bent with two different moment arms in an indenter as in Table 1. Beams a and b refer to the beams with
moment arms of 12:170:1 and 5:270:1mm, respectively. A cono-spherical indenter tip of diamond with 5mm radius
(Hys Ti-45) was used in the experiments. The indenter was located using the piezo-scanning tool with the indenter tip.
An approximate offset, z, from the center of the beams of 1:5mm was measured as a positioning inaccuracy. The indenter
tip radius was selected as large as possible to minimize the indentation of the surface of the beams while it allowed the use
of piezo-scanning for accurate positioning. The beams were loaded interruptly with a displacement increment of 1mm
while a constant displacement rate of 0:1mm=s was maintained (displacement controlled). Ex situ SEM and EBSD
measurements were performed after each displacement increment.
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Fig. 1. Dimensions measured from the top and the side views of the beams before loading. w, l, tint, text refer to the width, length, thickness at the exterior

and the interior surfaces, respectively.
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Fig. 2. Inverse pole figure maps of the undeformed beams along the normal direction (ND). The step sizes of 100 and 50 nm were used in the large and

the small maps, respectively. Confidence index of the EBSD maps were greater than 0.1. Average Euler angles of both beams were (1.41, 3.11 and 8.01)

in Bunge convention.

Table 1
Beam dimensions; text, tint, w, l, y, z are the thickness at the exterior and the interior surfaces, width, length, moment arm and the offset of the contact

point from the center line of the beam, respectively.

text ðmmÞ tint ðmmÞ w ðmmÞ l ðmmÞ y ðmmÞ z ðmmÞ

Beam a 4.670.1 5.770.1 15.070.4 18.470.3 12.170.1 1.570.1

Beam b 4.570.2 5.970.1 15.070.4 15.970.3 5.270.1 1.670.1

Dimensions are measured using scanning electron microscope. Beams a and b refer to the beams with moment arms of 12.170.1 and 5:270:1mm,

respectively.
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Fig. 3. SEM images and Kernel average misorientation (KAM) maps of beams a and b after deformation. Beams a and b refer to the beams with moment

arms of 12.170.1 and 5:270:1mm, respectively. The EBSD measurement of beam a after 3mm displacement is not shown in this figure because of the

significant amount of drift in that measurement. All the scale bars have 10mm length. The confidence index is 0.1 for all the KAM maps.
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2.2. Experimental results

Fig. 3 shows the SEM pictures of the beams after five steps of loading. The indentation of the beam surfaces are observed
(maximum contact radius of the indent was 1:6mm on beam b). However, the indentation signs allow repeatable
positioning of the indenter before each loading step. Moreover, the indentation signs reveal sliding of the indenter tip over
the beam surface as the beams rotate after 4 and 3 mm displacements of beams a and b, respectively. Furthermore, grid-like
regular patterns on the top surface of the both beams are observed (SEM images in Fig. 4). The dislocations leaving the
crystal during bending from the top surface of the beams produce the grid-like patterns since the patterns are not parallel
to the FIB milling direction.
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Fig. 4. EBSD image quality maps and SEM images at 701 tilt position of beams a and b at approximately the same magnitude of strain. Beams a and b refer

to the beams with moment arms of 12.170.1 and 5:270:1mm, respectively.

Table 2

Amount of the total displacement, total angular rotation of the beams ðyÞ, vector components of the rotation axes along the rolling (RD), transverse (TD)

and normal (ND) directions and flow stress s at the end of loading are shown.

Beam Tot. disp. ðmmÞ y (deg) RD comp. TD comp. ND comp. s (MPa)

Beam a 1 3.670.2 0.0370.02 0.1670.02 0.9870.02 258

Beam a 2 6.170.1 0.0470.05 0.1870.03 0.9870.01 251

Beam a 3 9.170.1 0.0570.05 0.1370.02 0.9870.01 242

Beam a 4 13.570.2 0.0770.01 0.1170.02 0.9970.01 229

Beam a 5 16.1870.2 0.0570.04 0.1170.01 0.9970.01 217

Beam b 1 6.970.2 0.0570.05 0.1270.01 0.9970.01 261

Beam b 2 11.170.2 0.0270.02 0.0670.04 1.0070.01 246

Beam b 3 16.470.4 0.0370.01 0.0870.01 1.0070.01 209

Beam b 4 19.770.1 0.0570.05 0.0870.08 1.0070.01 173

Beam b 5 20.870.3 0.0370.01 0.0970.01 1.0070.01 –

Beams a and b refer to the beams with moment arms of 12.170.1 and 5.270.1, respectively.
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The kernel average misorientation (KAM) maps in Fig. 3 reveal the following important observations: (i)
Misorientations in the beams are inhomogeneously distributed. (ii) Orientation changes occur nearly at the same
locations after each displacement increment. (iii) Strong shear localizations can be noticed from the orientation changes
along the slip plane traces. Local single slip (or coplanar double slip) is observed rather than an expected combined
multiple slip for the cube orientation. (iv) Shear localizations initiate at the radius of the rounded inside corner and they
progress through the thickness of the beams. (v) Shear localizations have a greater magnitude and a greater volume
fraction in beam b with a shorter moment arm than in beam a. (vi) Misorientation axes between the points at undeformed
regions inside the beams are calculated. The major components of the misorientation axes are along the normal direction
(Table 2) hence, the other moments are negligibly small compared to the bending moment.

Fig. 4 shows the image quality maps at approximately the same magnitude of strains for both beams. The EBSD image
quality maps may also be used as a qualitative indicator of strain (Wilkinson and Hirsch, 1997). However, the contrast and
the brightness of image quality maps does not only depend on strain hence, maps provide only qualitative information
about the strains. The distribution of strains in the image quality map of beam a resembles an ideal bending geometry
more than beam b in which significant shear strains along the slip plane traces are observed. Further, a relatively weak
bending strain distribution in beam b can also be noticed from careful inspection of the image quality maps (indicated with
arrows in Fig. 4).

Figs. 5 and 6 show the force displacement and the bending stress vs. displacement curves. Bending stress is calculated
using Eqs. (1) and (2) in which f, y, ycorr, R, y, w and t refer to force, moment arm, geometrically corrected moment arm,
radius of the indenter tool, measured angular rotation of the beams after each test (Table 2), width and thickness of the
beams (Table 1), respectively. The factor 4 in Eq. (1) results in an average bending stress over the half of the thickness of the
beam assuming an ideal bending stress distribution:

s¼ 4fycorr

wt2
ð1Þ

ycorr ¼ y�Rtany ð2Þ

Force displacement curves reveal the following: (i) The stiffness of the beams remain the same until the displacements of 5
and 4mm of beams a and b, respectively. Later, there is significant change in the elastic stiffness of beams a and b due to
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rotation of the beam (Table 2), respectively. Beams a and b refer to the beams with moment arms of 12.170.1 and 5:270:1mm, respectively.
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sliding of the indenter tip over the beam surface. (ii) The constant drifts in the forces between the end of loading and the
beginning of reloading of the same beam are due to a repeatable decrease in the moment arm between each unloading and
reloading cycle. (iii) The slopes of the first force displacement curves in the elastic-plastic regime (indicated in red color in
Fig. 5) are greater than the following displacement increments. (iv) The drops/rises (small bumps) in the loading
curves may be linked to the dislocations leaving the crystal since these force transients are not present in the linear
elastic regime.

Average flow stresses (stresses at the end of loading) are 245713 and 239727 MPa for beams a and b, respectively,
excluding the curves that have drastic changes in the elastic stiffness (between 4–5 and 324mm displacement increments
for beams a and b, respectively). The stresses at the end of loading are considered as the flow stress in this work. There is
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nearly 19% maximum difference in the elastic stiffness of the remaining beams which is due to the change in the contact
point after unloading and reloading.

3. Single crystal finite element model

The implicit finite element procedure seeks for the displacement field iteratively until the discretized principle of
virtual work is satisfied weakly within a prescribed tolerance. Eq. (3) shows the virtual work principle applied to a body at
the deformed reference that is discretized with a shape function, Ni. Internal stress, Pij, is in equilibrium with body forces pi

on body O and surface tractions ti over surface dO:Z
O
rxNT

ijPij dV ¼

Z
dO

NT
i ti dAþ

Z
O

NT
i rpi dV ð3Þ

Finite element software provides the deformation gradient at the material points after the displacement field
iteration.

3.1. Deformation kinematics

The total deformation gradient1 Fij is decomposed multiplicatively into its elastic, Fe
ij, and plastic, Fp

ij, parts (Lee, 1969).
The plastic part of the deformation gradient maps the undeformed vectors to an imaginary configuration referred as
intermediate or relaxed configuration. Crystal orientation retains the same after plastic deformation that enforces isochoric
(zero volume change) plastic deformation:

Fij ¼ Fe
imFp

mj, detðFp
ij Þ ¼ 1 ð4Þ

The elastic part of the deformation accounts for the stretch, Uij, and the rotation, Oij, of the lattice:

Fe
ij ¼OimUmj ð5Þ

The right elastic Cauchy tensor, Ce
ij, is given by

Ce
ij ¼ Fe

miF
e
mj ð6Þ

The plastic velocity gradient, ~L
p

ij, refers to the tensorial sum of the shear rates, _ga , over the slip systems a in
the intermediate configuration. The dyadic product of slip direction, ~sai , and slip plane normal, ~na

i , is known as Schmid
tensor, ~S

a
ij:

~L
p

ij ¼
_Fp

imFp�1

mj ð7Þ

~L
p

ij ¼
X12

a ¼ 1

_ga ~sai ~n
a
j ð8Þ

~sai ~n
a
j ¼

~S
a
ij ð9Þ

The work conjugate resolved shear stress, ta, to the slip rate, _ga , is given by

ta ¼ Fe
miF

e
mn
~Pnj
~S
a
ij ð10Þ

The 2nd Piola–Kirchoff stress, ~Pij, the driving stress for the dislocation slip in the crystal frame, results from elastic
stretching of the crystal lattice. ~Pij is estimated using the elasticity tensor, ~z ijkl, with the Green–Lagrange definition of strain
for large deformations, ~E

e

ij, in

~Pij ¼
~z ijkl

~E
e

kl ð11Þ

~E
e

ij ¼
Fe

miF
e
mj�dij

2
ð12Þ

2nd Piola–Kirchoff stress, ~Pmn, is pushed forward to the deformed reference to obtain the stress state at the deformed
configuration, Cauchy stress, Pij:

Pij ¼ Fe
im
~PmnFe

jn=detðFe
ijÞ ð13Þ
1 Index notation is used throughout the text; rank of the tensors can be deduced from the indices. Summation is performed over the repeated indices;

ai ¼ Bimcm ¼
P3

m ¼ 1 Bimcm . Kronecker delta is represented by the symbol dij . Dyadic product is represented with Cij ¼ a� b¼ aibj.



Table 3
Slip systems in the undeformed crystal reference for fcc metals.

Slip planes, nc
i ð1 1 1Þ ð1 1 1Þ ð1 1 1Þ ð1 1 1Þ

Slip directions, sc
i ½0 1 1� ½1 0 1� ½1 1 0� ½0 1 1� ½1 0 1� ½1 1 0� ½0 1 1� ½1 0 1� ½1 1 0� ½0 1 1� ½1 0 1� ½1 1 0�
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3.2. Constitutive laws

Elastic anisotropy for cubic materials is included using the three stiffness parameters, C11, C12, C44, to construct
elasticity tensor, zc

ijkl, in the crystal frame:

zc
ijkl ¼ C12dijdklþC44ðdikdjlþdildjkÞ ð14Þ

þðC11�C12�2C44Þdirdjrdkrdlr ð15Þ

Table 3 shows 12 distinct slip systems for single phase fcc metal in the crystal frame.2 The slip direction, sca
j , slip plane

normal, nca
j , and the elasticity tensor, zc

ijkl, are transformed from the crystal frame to the reference (and intermediate)
configuration only once at the beginning of the calculations.

The shear rate on slip system a is calculated using a classical power law relation in which _ga0 ,m,tac and ta are referred as
the reference shear rate, slip rate sensitivity parameter, slip resistance (may be referred as slip system hardness, critical
resolved shear strength or threshold shear strength) and the resolved shear stress, respectively.

_ga ¼ _g0

ta

tac

����
����1=m

signðtaÞ ð16Þ

The hardening rate at the slip system a is linearly proportional to the absolute amount of the shear rate on any slip system,
b. The hardening matrix, hab, includes the latent hardening effect through the latent hardening matrix, Hab. Latent
hardening refers to dislocation slip on slip system b causing hardening of slip system a. In Eq. (19), q is the latent hardening
coefficient (Asaro and Rice, 1977) and A is a 3 by 3 matrix of ones (Kalidindi et al., 1992):

_tac ¼
X12

b ¼ 1

habj
_gb j ð17Þ

hab ¼Habhb ð18Þ

Hab ¼

A qA qA qA

qA A qA qA

qA qA A qA

qA qA qA A

0
BBBB@

1
CCCCA ð19Þ

The single slip hardening rate is estimated using three different slip hardening parameters; h0, a and tsat
c , that refer to the

reference hardening rate, the hardening exponent and the saturation value for the slip resistance:

hb ¼ h0 1�
tbc
tsat

c

 !a

ð20Þ

The two level implicit integration method to solve the above constitutive equations, developed by Maniatty et al. (1992), is
revisited in the Appendix part. The method is implemented in Hypela2, a material user subroutine of MSC-Marc finite
element software. The material tangent is calculated by the perturbation method as proposed by Kalidindi et al. (1992).

Table 4 shows the values of the numerical parameters used in the simulations from Kalidindi et al. (1992) and elastic
constants from Reid (1973). Bulk single crystal properties in Table 4 are frequently used in literature for well annealed copper.

3.3. Effects of beam geometry and friction

The effect of the taper along beam width, the radius of the rounded inside corner and the friction coefficient on the force
displacement behavior of beam a are investigated with eight (23) parameter combinations using a two level factorial
analysis (DeVor et al., 2007). The relative effects of taper, friction and radius on the force displacement response are
estimated using the area under the force displacement curves as the output parameter. The values of radius, friction
coefficient and the taper angle used in the simulations are shown in Table 5. A dry friction coefficient of 0.4 that is greater
than the common friction coefficient for metal to diamond contact (0.15) and a slip resistance of 16 MPa are used.
2 sca
j and nca

j : the superscript c indicate the crystal frame, a represents the slip system and subscript j refer to the jth component of vector.



Table 5
The values for taper along the beam width, friction coefficient between the tool and the sample surface and radius of the rounded inside corner used in

the 23 factorial analysis are shown.

Beam Id Radius ðmmÞ Fric. coeff. Taper (deg) f :d ðmNmmÞ f :d

Beam a p1 0 0 0 49 684 0.56

Beam a p2 0.6 0 0 89 681 0.99

Beam a p3 0 0.4 0 49 684 0.55

Beam a p4 0.6 0.4 0 89 681 0.99

Beam a p5 0 0 2 74 369 0.83

Beam a p6 0.6 0 2 89 808 1.00

Beam a p7 0 0.4 2 74 369 0.83

Beam a p8 0.6 0.4 2 89 809 1.00

Standard order of variables is used in the analysis DeVor et al. (2007). The area of the resulting force displacement curves and the normalized magnitudes

are indicated with f.d and f :d , respectively.

beam a

Z

X

Y

X

Y

fixed faces

Fig. 7. The mesh used for beam a with solid brick type of elements and boundary conditions.

Table 4
Numerical parameters that are used in the simulations.

_g0 (1/s) m t0
c (MPa) C11 (MPa) C12 (MPa) C44 (MPa) h0 (MPa) tsat

c (MPa) a q

0.001 0.012 16/44 168 400 121 400 75 400 180 148 2.25 1.4

Two different slip resistances were used in Section 3.4.
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The normalized magnitudes of main effects (DeVor et al., 2007) for the radius of the rounded inside corner, the friction
coefficient and the taper angle are 0.15, 0.00 and 0.07, respectively. The friction between the indenter and the beam surface
has negligible influence on the force displacement curves. The radius has 45% greater effect on the force displacement
curves than the taper. In addition, interaction (DeVor et al., 2007) exists only between the parameters; radius of the
rounded inside corner and the taper angle. Therefore, the effect of taper on the force displacement curve strongly depends
on the magnitude of the radius.

3.4. Simulation results

The actual dimensions of beams and the moment arms (Table 1) are used in the simulations. The models for beam a and
beam b consist of 2528 and 2208 eight node solid brick elements, respectively. The mesh and the boundary conditions for
beam a are shown in Fig. 7. Euler angles before loading (271.41, 3.11, 981) and (88.61, 3.11, 2621) for beam a and beam b,
respectively. The coordinate frames (X,Y,Z) of the finite element models of beams a and b are different than that of the EBSD
maps (RD, TD, ND), Fig. 2 hence, crystal orientations of the beams are transformed to their corresponding finite element
references. The indenter is modeled as a rigid sphere with 5mm radius. The friction and the taper are ignored in the beam
models.

Fig. 8 shows the force displacement curves during the first displacement increments. The simulated elastic stiffness of
the beams are approximately 20% greater than the experimentally measured ones. That difference is not due to the angular
misalignment of the indenter axis from ideal (which is not considered in the model) since, 20% change in the elastic
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stiffness corresponds to an unreasonable amount of (36.81) angular misalignment. The top surfaces of the beams have a
curved shape due to the fish-eye geomerty of FIB over long milling distances (manufacturing artifact). Therefore, the use of
the average of external and internal thicknesses (as indicated in Fig. 1) in the model causes overestimation of the thickness
and results in a stiffer than actual model. However, any artificial scaling to correct that difference is avoided.

The experimental magnitude of force at the onset of plasticity is approximately 100–120% greater than the simulated
forces for a slip resistance of 16 MPa. The difference in the flow strength may be related with the initial microstructure
(i.e. initial dislocation density). For reliable comparison of simulated and experimental force displacement curves,
simulations were repeated for 44 MPa slip resistance since a greater slip system hardness would lead to a more saturated
hardening response.

The simulated slopes of force displacement curves in the plastic flow regime (not exactly equal but proportional to the
strain hardening rates) are approximately 1.6 and 3.3 times higher than the experimentally measured values, respectively,
for beams a and b. The simulations overestimate the hardening inside the beams.

Simulations show that beam b undergoes greater strain hardening than beam a. The additional shearing of beam b due
to short moment arm causes greater number of active slip systems in beam b compared to beam a. This leads to greater
interactions between the slip systems hence, the greater strain hardening of beam b.

Fig. 9 shows the equivalent strain distributions on the side surface of the beams. Both the moment arm and the radius of
the rounded inside corner effect the resulting strain distributions as in the experiments, Fig. 4. In addition, the deformed
region underneath the indenter interferes with the bent region in beam b.
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4. Discussion

Plane strain bending is accomplished for the dimensions of the cube oriented cantilever beams. Regular dislocation
patterns that are observed along the width of the beams (Fig. 4) indicate the presence of plane strain inside the beams.
Indentation of the top surface of the beams is observed for the selected beam dimensions. The maximum contact radius of
the indent (� 1:6mm on beam b) corresponds to a plastically deformed volume of nearly 8:3mm3 and the corresponding
bent volume is approximately 191mm3 (�wt2=2, from Fig. 4). The maximum plastically deformed region underneath the
indent constitutes approximately 4.3% of the bent volume. Therefore, the effect of indentation on the force displacement is
expected to be very low and reliable mechanical strength can be measured by cantilever beam bending tests.

Bending is achieved by shearing along the slip directions. The shear stress is the driving force for the dislocation glide
and it is maximum at 451 plane with respect to the horizontal axis (TD in Fig. 3). Therefore, slip systems nearest to that
plane are the primary slip systems, Fig. 3.

Shear localizations along the maximum shear stress direction occur as a combined effect of the moment arm and the
radius of the rounded inside corner. Shearing along slip plane traces through the thickness of the beams (as observed from
the misorientation maps) is only possible with the aid of the radius of the rounded inside corner acting as a stress raiser.
Moreover, misorientation maps revealed greater fraction of shear localizations for beam b which has a shorter moment
arm. Therefore, the radius of the rounded inside corner and the moment arm significantly influence the distribution of
misorientations (Fig. 3) and strains (Fig. 4). In addition, the repulsive forces between the moving dislocations and the
attractive forces from the surfaces (image dislocations) on the mobile dislocations are believed to enhance the formation of
shear localizations.

Cube orientation is stable during microscale bending in contrast to macroscopic tests (Raabe et al., 2004). Orientation
changes occur nearly at the same locations after each displacement increment (Fig. 3) hence, same nucleation sites for the
generation of dislocations are expected.

The symmetric nature of cube orientation allows in-plane bending with negligible amount of twist. The twist
components of the misorientation axis are negligible compared to bending (Table 2). Imperfections regarding the
experiments (i.e. tool alignment) leads to slight twisting of the beams. However, for cube orientation provides sufficient
number of active slip systems to compensate the changes in the external boundary constraints and internal local
differences in the slip resistance.

The change in the moment arm, as an external boundary constraint, causes a 2.7% and 6.7% drops in the measured flow
stresses in between displacement intervals of beams a and b, respectively. The constant drops might be linked with a
repeatable change in the contact point which shows the strong effect of the moment arm on the measured forces.

Average flow stresses (245713 and 239727 MPa, respectively, for beams a and b) are significantly higher than the
tensile test results of cube oriented copper (less than 50 MPa at 5% elongation from Takeuchi, 1975). The measured flow
stresses are within the range of the literature findings for copper cantilever beams (for 5mm thickness from Motz et al.,
2005: 260–281 MPa, and for 4:23mm thickness from Demir et al., 2010: 180–200 MPa). The disagreement between the
measured flow stresses and the literature results may be related to the difference in the sample geometry (i.e. magnitude
of radius) and/or the initial crystal orientation.

The first stress displacement curves of both beams have greater slopes in the elastic–plastic regime compared to the
latter curves, Fig. 6. This may be due to the indentation of the surface during first tests. At later displacement increments,
the deformed region underneath the indent gets enough hard and the contact radius of the indents do not change until the
sliding of the indenter tip.

The crystal plasticity model captures the essential features of microscale bending. The simulated, (Fig. 9), and measured,
(Fig. 4), strain distributions are in qualitative agreement.

The simulated force displacement match well the experiments when the initial slip resistance of 44 MPa is used. This is
greater than the slip resistance of well annealed copper (16 MPa) which may be linked with the initial microstructure.
Strain gradients are not measured before bending (Fig. 2) hence, the initial increase in the flow strength might not be
associated with the strain gradients. Moreover, force displacement curves are linear in the elastic regime which indicates
no early transition to plastic flow. Therefore, the initial strengthening may not be associated with the geometrically
necessary dislocations that may possibly stem from early plasticity.

The magnitudes of the slopes of the force displacement curves in the plastic flow regime (will be referred as hardening
rates) in the experiments are significantly lower compared to the simulated slopes. In the simulations common bulk single
crystal material properties are used and the hardening contribution of the strain gradients is not incorporated to the
model. However, the simulated slope of the force displacement curves are 1.6 and 3.3 times greater, respectively, for beams
a and b, compared to the experiments. This suggests negligible amount of experimentally measured strain gradient
hardening for single crystal beams with 5mm thickness. These results contradict with the literature findings (Stolken and
Evans, 1998; Motz et al., 2005) since, strain gradient hardening is expected for beams with 5mm thickness. Lattice rotations
are confined to a smaller region in cantilever beam bending than in a uniform bending situation. Moreover, greater strain
gradients exist in the shear localizations than in a bent lattice. Although a greater strain gradient hardening is expected in
cantilever beam bending compared to uniform bending, the experimentally measured hardening rates are lower than the
simulated bulk material behavior. Therefore, strain hardening is believed to be controlled by the statistical dislocation
reactions in the microscale beams instead of the strain gradients.
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The dislocations leaving the crystal (strain softening) may cause softening of the beams. The size of the beams are even
smaller than the substructure sizes that are observed in bulk crystal copper after straining (i.e. dislocation cells have
approximately 10mm size Kocks and Mecking, 2003). The surfaces in such small dimensions may alter hardening behavior in
comparison to bulk material behavior. Active slip systems are always inclined with respect to the horizontal (beam axis) since
the primary slip systems are the ones that are closest to the maximum shear stress direction. Therefore, dislocations during
microscale bending may leave the crystal before they get stored that might cause the lower strain hardening compared to bulk
hardening behavior of single crystals. This effect is believed to have a minor role on the hardening behavior of the beams since
the beams are already bent which gives rise to a demand for the geometrically necessary dislocations.

5. Conclusions

Bending can be used as a reliable testing method to find the mechanical strength of materials at micrometer scale.
Several important findings are outlined as follows:
�

the
Bending without twist can be achieved for cube oriented microcantilever beams.

�
 Bending takes the form of localized shearing as the moment arm gets shorter. The moment arm must be greater than

two times the size of the thickness to obtain a pure bending state.

�
 Local stress concentrations, in particular the radius of the rounded inside corner, may alter bending to localized

shearing. The deviation from bending increases as the moment arm gets smaller.

�
 Indentation signs may be used to set or determine the moment arm with a negligible influence on the mechanics of

wide beams.

�
 Simulations revealed the negligible influence of the friction between the indenter and the beam surface on the

simulated force displacement curves. In addition, the thickness variation along the width of the beams has 45% less
effect than the radius of the rounded inside corner.

�
 Slip resistance of 44 MPa rather than 16 MPa is estimated for single crystal copper by the simulations. The difference is

linked with the initial microstructure of the beams.

�
 The finite element model using conventional crystal plasticity with bulk single crystal properties, resulted in greater

strain hardening in the simulations than the experiments. The simulations validate the importance of statistical
hardening mechanisms in comparison to the strain gradient based hardening.

�
 The experimentally observed low strain hardening behavior compared to the simulated bulk material response may

also be partly related to the leaving of dislocations through the surfaces of the beams (annihilation/strain softening).

Appendix A. Crystal plasticity solution method

Given: Fij; Fijt
; Fp

ijt
; tc

a
t .

Find: Fp
ij ; t

a
c .

Following Maniatty et al. (1992), Fp
ij and tac are determined using a two-level implicit iterative procedure. At the inner

level of iterations, the solution for Fp
ij is seeked by Newton Raphson method for a fixed value of slip resistance, tac . Once, the

correct value of Fp
ij is determined, kinematically coupled quantities can be calculated: e.g. Fe

ij, Eij, ~Pij, ta, _ga and ~L
p

ij using the

Eqs. (4), (12), (11), (10), (16) and (8), respectively. The outer level of iterations is to find the correct value for tac .
~L

p

ij can also be estimated by Euler backward difference approximation from the differential equation in Eq. (7).

Fp
jtt
¼ Fp

ij�
_Fp
ijDt ð21Þ

Fp
imt

Fp�1
mj ¼ dij�

_Fp
in Fp�1

nj Dt ð22Þ

¼ dij�
~L

p

ijDt

~L
p

ij ¼
dij�Fp

imt
Fp�1

mj

Dt
ð23Þ

In Eq. (21) Fp
ijt

belongs to the previous time increment3 and Dt is the corresponding time step between the
deformation increments. The residual, cij, is calculated from the difference between the Euler backward difference
approximation, Eq. (23) and the ~L

p

ij that is estimated from the constitutive relations, Eq. (8). The penalty term with
the penalty factor lp in Eq. (24) enforces zero volume change during plastic deformation. The magnitude of the penalty
3 The variables that belong to the previous time step are indicated with the subscript ’t’ and the remaining variables without any indicator belong to

current time step (t þDt) for simplicity.
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factor, lp, is 1000.

cij ¼
X12

a¼1

_ga ~sai ~n
a
j|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

c1
ij

�
dij�Fp

imt
Fp�1

mj

Dt|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
c2

ij

þ lp½detðFp
ij Þ�1�dij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
c3

ij

ð24Þ

At the inner level of iterations, the correct value of kFp
ij is calculated using Newton–Raphson (NR) iterative scheme. In

Eqs. (25), (26) and (28) the superscripts k and kþ 1 indicate the estimates at the end of the k and kþ 1 inner level iterations
Eq. (25). The increment in the plastic deformation gradient, kDFp

ij , is obtained, Eq. (27) considering only the first term in
Taylor expansion of the residual around kFp

ij and setting kþ1cij to zero as Eq. (26).

kþ1cij ¼
kcij þ

d½kcij �

d½kFp
mn �

kDFp
mn ð25Þ

kþ1cij ¼ 0 ð26Þ

kDFp
ij ¼ �J�1

ijmn
kcmn; Jijmn ¼

d½kcij�

d½kFp
mn �

ð27Þ

kþ1Fp
ij ¼

kFp
ij þ

kDFp
ij ð28Þ

The differential of the residual, cij, with respect to Fp
kl refers to the Jacobian, Jijkl, the tangent used in the NR scheme. A fully

plastic initial guess is used to start iterations, Eq. (29):

0Fp
ij ¼ Fe�1

imt
Fmj ð29Þ

d½c1
ij�

d½Fp
kl�

in Eq. (24) is calculated in order to estimate the Jacobian. Therefore,
d½ _ga �
d½ta�

is estimated from Eq. (16), as in Eq. (31).
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In addition, the derivative of the resolved shear stress with respect to Fp
ij ,

d½ta�
d½Fp

kl�
has to be calculated. Hence, ta in Eq. (32) is

expressed in terms of Fp
ij using Eq. (10) together with the Eqs. (6), (11) and (12)
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The partial derivative of the resolved shear stress in Eq. (32) with respect to Fp
ij becomes4
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Jacobian, Jijkl, for the NR scheme5 is calculated using Eq. (38).
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ij�

d½Fp
kl�
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mk Fp�1
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�1 + Fin dFnj
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�1 = �Fim
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5

The derivative of the determinant is the adjugate matrix
d½detðFij Þ�

d½Fkl �
¼ detðFijÞF

�T
kl .



E. Demir et al. / J. Mech. Phys. Solids 58 (2010) 1599–1612 1611
The inner loop converges when kFp
kl gives a solution which has a L2-norm of the residual, cij

��� ���, is lower than the tolerance.

Next in the outer loop, the increment of the slip resistance is estimated using the converged values of the shear rates
according to Eq. (17). In Eqs. (39) and (40) the superscripts r and r+1 indicate the estimates for the slip resistance at the end
of r and r+1 outer level iterations. The outer level iteration continues until the relative change in the slip resistance

ðr _tac Dt=rtac Þ becomes less than the prescribed tolerance. 10�6 is used as the relative tolerance value for both the inner and

the outer loops. The slip resistance at the previous time step, 0tac , is used to start the iterations, Eq. (40).

rþ1tac ¼
rtac þ

r _tac Dt ð39Þ

0tac ¼ tact ð40Þ

The numerical algorithm used is as follows:
1.
 Calculate the initial guess, 0Fp
ij , using Eq. (29).
2.
 Calculate Fe
ij; Eij; ~Pij; ta and _ga by Eqs. (4), (12), (11), (10) and (16), respectively.

k k
3.
 Compute residual, cij, from Eq. (24) and its norm J cijJ.
(i) if JkcijJotolerance: converged (go to step 6).

(ii) elseif ka1 and J
kcijJ4 tolerance and J

kcijJ4J
k�1cijJ: scale back kFp

ij using the scaling factor x. A magnitude of
0.75 for x is used in the simulations.

kFp
ij ¼ xk�1Fp

ij þ ð1�xÞ
kFp

ij ð41Þ

(iii) else start/continue iterations using the Jacobian in Eq. (27), (go back to step 2).

4.
 Calculate kþ1Fp

ij , using Eq. (28).

5.
 Go back to step 2 (inner loop).

6.
 Update slip resistivity, rþ1tac with Eq. (39).

7.
 Go back to step 2 (outer loop).

8.
 Calculate and store the output variables: misorientations, sum of shear rates, etc.
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