Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation

Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, D. Raabe

Abstract

An ultrafine-grained 304 austenitic 18 wt.% Cr–8 wt.% Ni stainless steel with a grain size of ~270 nm was synthesized by accumulative rolling (67% total reduction) and annealing (550 °C, 150 s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 ± 50 MPa and a tensile strength of 2050 ± 30 MPa, while the elongation reaches 6 ± 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 μm indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutive law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change.

Keywords:

Ultrahigh strength, Ultrafine grain, Deformation, Twin

Article Info

Article history:
Received 18 May 2015
Accepted 24 June 2015

1. Introduction

Non-alloyed metallic materials can be equipped with ultrahigh strength by employing heavy plastic deformation and/or by creating ultrafine-grained (UFG) microstructures. Here UFG materials are defined as polycrystalline solids with property-controlling grain structures below the scale of 1 μm. Typical processing routes include severe plastic deformation (SPD) [1,2], which decomposes grains through dislocation accumulation and reorganization (polygonization). Several different SPD processes for manufacturing bulk materials typically include equal-channel angular pressing (ECAP) [3], high-pressure torsion (HPT) [4] and accumulative roll-bonding (ARB) [5]. In case of steels, UFG structures can also be obtained via thermomechanical processing, exploiting the interplay between plastic deformation, recrystallization and phase transformation [6–11]. One of the main motivations for obtaining very fine grains is motivated by the increase in mechanical strength according to the Hall–Petch relationship [12]. However, such enabled UFG structured ultra-high strength metals often lose ductility compared to their conventional coarse-grained (CG) counterparts. The drop in ductility of UFG metals is attributed to inhomogeneous deformation at microstructural level, leading to early plastic localization and the premature onset of damage [2]. For example, a nano-grained (NG) 316L austenitic stainless steel (with an average grain size of 40 nm) prepared via surface mechanical attrition treatments exhibits an extremely high yield strength of 1450 MPa, whereas the ductility is limited to a few percent [2]. Interesting strategies have been proposed for simultaneously increasing the ductility and strength of UFG pure copper and nanostructured alloys [13–17]. In pure copper, high ductility can be achieved without sacrificing strength by introducing a high density of pre-existing twins and a large fraction of high-angle grain boundaries. These encouraging results motivated the current study in an effort to obtain both, high strength and good ductility from a bulk alloy.

The 304 stainless steel (SS), a meta-stable austenite alloy, has been widely used in many industrial areas due to its excellent combination of strength and formability, high corrosion resistance and weldability. 304SS contains approximately 18 wt.% Cr and 8 wt.% Ni [18]. According to the carbon concentration, the 304SS can be divided into three groups, i.e. 304L SS with less than 0.03 wt.% carbon, 304SS with 0.03–0.06 wt.% carbon, and 304H SS with a carbon content above 0.06 wt.%. The addition of
Cr enables corrosion resistance while Ni and C stabilize the austenitic phase and tune its thermodynamic stability. During room temperature torsion testing, 304L SS can withstand severe shear deformation (~2.55 true strain), resulting in a remarkable volume fraction of transformed bcc martensite of 63.5% [19]. However, synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a 304L SS steel subjected to conventional compression testing [20] revealed phase transformation only at cryogenic temperatures (~70 °C). An in-situ X-ray micro-diffraction study in conjunction with uniaxial tensile loading conducted at ~63 °C substantiated the occurrence of a phase-transformation-enhanced strain/stress accommodation mechanism in this material [21].

Metastable variants of such austenitic SSs have attracted great interest because of their high strength and ductility when equipped with an ultrafine grain size. [22]. In wet air, even the resistance to corrosion of such UFG SS increases with decreasing grain size, which is attributed to the effect that the many abundant grain boundaries facilitate diffusion of Cr towards the surface during oxidation [23,24]. Heavy cold-rolling in conjunction with subsequent short-time annealing of 304SS is an efficient approach to refine the grain size. The basis for this processing is due to the effect that the initial heavy cold rolling of a metastable austenitic SS leads to very fine lath- and dislocation cell-type transformation martensite which then transforms into ultrafine austenite grains upon annealing [22]. In addition, it is reported that warm rolling and thermal cycling [25] can lead to significant grain refinement in a 304SS based on the mechanisms of continuous dynamic recrystallization [26–31].

Several works have shown that twinning and martensitic transformation play key roles for the deformation of 304SS and that the volume fraction of martensite formed during severe deformation is strongly dependent on the pre-strain, stress and strain magnitude, strain rate, and deformation temperature [21,32–38]. In that context earlier papers reported nanoscale embryos of martensite within the microstructure of a tensile deformed austenitic steel [21,36]. These various observations and phenomena encouraged us to explore the feasibility of obtaining bulk UFG steels through severe plastic deformation, particularly via accumulative rolling. Therefore, in the present study, a series of austenitic stainless steels with different grain sizes (ranging from 270 nm to 35 μm) were prepared by means of accumulative rolling and annealing. Uniaxial tensile testing shows that the UFG steel with a grain size of 270 nm exhibits an extremely high yield strength of 1890 ± 50 MPa and a tensile strength as high as 2050 ± 30 MPa, while the elongation reaches 6 ± 1%. The conventionally synthesized reference sample with 35 μm grain size showed 220 MPa yield strength, 1640 MPa tensile strength and 59% elongation to fracture. To explore the micromechanical behavior of the UFG austenitic steels, transmission electron microscopy (TEM) observations of the deformed microstructure as well as crystal plasticity finite element (CPFE) modeling of the tensile deformation for the steels with various grain sizes are performed.

2. Experiments

2.1. Experimental method

The material used in this study is a commercial 304SS with chemical composition of (wt.%): Cr 18.37, Ni 8.51, Mn 1.68, Si 0.72, P 0.03, C 0.02, N 0.06, S <0.01, balanced by Fe. The fully annealed sheets with an initial thickness of 6 mm were held for 600 s at 400 °C in an electrical furnace under air atmosphere, and immediately rolled in a single-pass to 17% thickness reduction. The rolling was performed at a roll speed of 300 mm s⁻¹ by a twin roller. The workability can be promoted by rolling at elevated temperatures at an expense of accumulated strains. This process was repeated until a total reduction of 67% was reached. The final dimensions of the steel sheets were 300 × 100 × 1.5 mm³. The sheets were air-cooled after rolling. Subsequently, a series of heat treatments were further conducted to obtain samples with various grain sizes. The annealing temperatures varied from 550 °C to 950 °C with an increment of 100 °C. The holding time was 150 s for the sample annealed at 550 °C and the other samples were held for 180 s at the designed temperatures, respectively.

The as-prepared steel sheets were cut along the rolling direction (RD) into dog-bone shaped specimens, with a gauge length of 30 mm, width of 3 mm, and a final thickness of 1.5 mm after polishing. Uniaxial tensile tests were performed at an initial strain rate of 10⁻² s⁻¹ using a SANS micro-force testing system under room temperature. A contactless MTS LX300 laser extensometer was used to calibrate and measure the strain upon loading. Hardness measurements were performed with a MVD-401 Vickers hardness testing machine, with a load of 5 kg and a loading time of 10 s.

Cross sections were cut from the gauge of the deformed samples for evaluating the martensite volume fraction, using X-ray diffraction (XRD) analysis. Samples were chemically cleaned first using a mixture of HCl and HNO₃ in 2:1 ratio and then with C₂H₂OH to improve the precision of the analysis. The XRD measurement was performed on an X’Pert PRO diffractometer in conjunction with a Co anode operated at a kα wavelength of λ = 0.1789 nm. The penetration depth of this hard X-ray into the steel samples amounts to a few micrometers. The quantitative estimation of the α’-martensite phase content was based on the principle that the volume fraction of one constitutive phase is proportional to the integrated intensity of all diffraction peaks for that phase. Then the volume fraction of martensite can be calculated by measuring the integrated intensity of each reflecting plane of the phase from a single XRD scan. Details of the calculation method can be found in [23]. To reveal the crystallographic textures of the steels after annealing, the (1 1 1) and (2 2 0) pole figures of the annealed samples were measured by XRD using Co-Kα radiation in reflection geometry.

The microstructure of the deformed specimens was studied by TEM. Specimens for TEM observation were cut from the deformed samples and mechanically polished to a thickness of about 60 μm. Subsequently the samples were polished with diamond paste, and then the foils were thinned using a double jet electrolytic polisher at a voltage of 32 V and a temperature between ~10 and ~5 °C. TEM observations of the samples were performed in a Tecnai G² 20 microscope operated at an accelerated voltage of 200 kV.

2.2. Microstructure characterizations

Fig. 1(a) shows the X-ray diffraction patterns of the 304SS samples at different conditions. The calculated results indicate that the martensite (α’) decreases with increasing annealing temperature (Fig. 1(b)). For example, the martensite volume fraction is as high as 73% for the as-cold-rolled sample; however, it decreases to 10% after annealing at 850 °C for 180 s. The phenomenon indicates that the martensite induced by cold-rolling has been reversed to austenite (γ) during the annealing.

Our previous work, conducted using electron backscatter diffraction (EBSD) for characterizing the microstructures of the steels [39] has shown that for the samples annealed at 650 °C, 850 °C and 950 °C for 180 s, the average grain size increases from 800 nm to 10 μm and 35 μm with increasing annealing temperature. However, for the sample annealed at 550 °C for 150 s the grain size is too small to be discerned by EBSD. Therefore, in this work TEM observations are performed to measure the grain size.
are 1170 ± 30 MPa and 1350 ± 40 MPa, respectively. The calculated volume fractions of martensite and deformation twin before and after the sample is annealed are shown in Figs. 2 (a)–(c). Many grains are equiaxed and the crystal rotation, R^*, contains shear contributions from dislocation slip systems (indexed by a) and twinning systems (indexed by b):

$$
L^p = \sum_{a=1}^{12} \gamma^a m^a \otimes n^a + \sum_{b=1}^{12} \gamma^b m^b_{\text{twin}} \otimes n^b_{\text{twin}}
$$

The vectors m and n denote the normalized directions and plane normals of the deformation systems on which shear occurs at a rate of γ. By omitting the volume fraction of the non-twinned crystal portions in the contribution of dislocation slip...
in Eq. (3) (in contrast to [40]), we (i) assume that twins can be sheared by dislocation slip in a compatible manner to the surrounding matrix, and (ii) ignore any potentially different evolution of slip resistance within them. For the austenitic phase, 12 \(\{111\}\{110\} \) dislocation slip systems and 12 \(\{111\}\{112\} \) twinning systems are considered. For the martensitic phase, two types of slip systems with a common \(\{111\} \) direction, i.e. \(\{110\}\{111\} \) and \(\{112\}\{111\} \), are considered, but no bcc twinning is included.

3.1.2. Dislocation slip

Conventional flow rules use a reference shear rate and a rate sensitivity exponent which are typically constant. Here, following Blum and Eisenlohr [41], the evolution of the dislocation densities is related to dislocation multiplication, dipole formation as well as dislocation annihilation. The flow rule describes thermally activated dislocation motion through forest dislocations. The shear rate of the slip system \(\alpha \) is:

\[
\dot{\gamma} = \dot{\gamma}_0 \left(\frac{K}{D} \right)^{\frac{n}{2}} \exp \left(\frac{Q}{RT} \right)
\]

Table 1

Volume fractions of martensite and deformation twin in the steels at different elongations. The statistics for the martensite and twin are obtained from the XRD analyses and TEM observations, respectively.

<table>
<thead>
<tr>
<th>Annealing temperature, average grain size</th>
<th>Volume fraction</th>
<th>0% elongation</th>
<th>6% elongation</th>
<th>12% elongation</th>
<th>59% elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>550 °C, 270 nm</td>
<td>Martensite (%)</td>
<td>32</td>
<td>34</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Twin (%)</td>
<td>0</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>650 °C, 800 nm</td>
<td>Martensite (%)</td>
<td>23</td>
<td>26</td>
<td>38</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Twin (%)</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>–</td>
</tr>
<tr>
<td>950 °C, 35 (\mu) m</td>
<td>Martensite (%)</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Twin (%)</td>
<td>0</td>
<td>5</td>
<td>13</td>
<td>36</td>
</tr>
</tbody>
</table>

Fig. 2. Typical TEM micrographs showing the morphology of grains in the cold-rolled Fe–18.37Cr–8.51Ni–1.68Mn–0.72Si–0.02C–0.06N steel after annealing at 550 °C for 150 s. An inset in (a) shows the corresponding selected-area-electron-diffraction (SAED) pattern.
\[
\dot{\gamma}^s = \rho^{s}_{qgl} b v_0 \exp \left[\left(-\frac{Q_0}{k_B T} \left(1 - \frac{\tau^s}{\tau^s_0} \right)^p \right)^q \right] \text{sign}(\tau^s)
\]

where \(\tau^s\) is the current resolved shear stress; \(\dot{\tau}^s\) is the slip resistance governed by the dislocation population; \(\rho^{s}_{qgl}\) is the unipolar dislocation density; \(b\) is the length of the Burgers vector; \(\tau_0\) is the dislocation velocity of the slip system when subjected to a stress equal to the slip resistance \(\tau^s\); \(Q_0\) is the activation energy for dislocation slip; \(k_B\) and \(T\) denote the Boltzmann constant and temperature, respectively; \(p\) and \(q\) are numerical parameters to adjust the obstacle profile [42]. The slip resistance \(\dot{\tau}^s\) depends on the local dislocation densities as:

\[
\dot{\tau}^s = \tau^s_{\text{solute}} + G b \left(\sum_{x=1}^{N_{\text{slip}}} (\rho^{s}_{\text{qgl}} + \rho^{s}_{\text{dip}}) \right)^{1/2}
\]

With \(\tau^s_{\text{solute}}\) being a constant glide resistance stemming from solid solution effects, \(G\) the shear modulus, \(\rho^{s}_{\text{dip}}\) the dipolar dislocation density, and \(\xi_{xx'}\) characterizes the interaction strength among different slip systems \(x\) and \(x'\). For fcc metals, the possible interaction types include self, coplanar, collinear, orthogonal, glissile and sessile [43]. For bcc metals, only the self-interaction and the interaction between different slip systems are considered.

3.1.3. Mechanical twinning

The model accounts for the evolution of the twinned volume fraction. Following the twin nucleation model of Mahajan et al. [44], we assume that the critical twin nucleation event is the collective bow-out of three partial dislocations between pinning points that are separated by a critical length \(L_0\). The associated critical stress for twin formation then reads:

\[
\tau_{\text{twin}} = \frac{\gamma_{sf}}{3 b_{\text{twin}}} + \frac{3 G b_{\text{twin}}}{L_0}
\]

where \(b_{\text{twin}}\) is the magnitude of the Burgers vector of the moving partials and \(\gamma_{sf}\) is the stacking fault energy. Using this critical stress formulation the mechanically driven twin nucleation rate is expressed as

Fig. 3. (111) and (220) pole figures for the cold-rolled steel after annealing at 550 °C for 150 s.
\[j^\rho = (1 - f) \gamma_{\text{twin}} V^\rho N^\rho \]

(11)

where \(\gamma_{\text{twin}} \) is the characteristic twin shear. Details of the dislocation and twinning models are described in [41,42]. For dislocation slip the rate equation of the dislocation density evolution is in the form
\[d\rho = \frac{\alpha^\rho}{\xi_s} \],
where \(\alpha^\rho \) is the effective (harmonic mean) distance between obstacles. With the presence of twins in the microstructure, the evaluation of \(\alpha^\rho \) then has to account for twin boundaries as additional obstacles against dislocation motion. The slip–twin interaction parameter \(\xi_{ab} \) is introduced for the slip system \(a \) and twin system \(b \). If planes \(a \) and \(b \) are coplanar or \(b \) is a cross slip plane for \(a \), \(\xi_{ab} \) assumes a value of 0. In all other cases \(\xi_{ab} \) is 1. The mean free path of dislocations is finally calculated as
\[\frac{1}{\alpha^\rho} = \frac{1}{d_{\text{grain}}} + \sum_{b=1}^{N_{\text{twin}}} \xi_{ab} \frac{1}{d_{\text{twin}}} \]

(12)

3.2. Model set-up and simulation runs

Based on the constitutive laws outlined above, the CPFE simulations of the steels with their specific grain sizes and phase compositions (as listed in Table 1) under tensile loading were carried out using the finite element solver MSC.Marc2013 in conjunction with the open source user defined material subroutine coded in the DAMASK package [42,45]. The FE meshes include 8000 eight-noded, isoparametric, three-dimensional brick elements. For the steels consisting of two phases, the elements that are given specific mechanical properties of austenite and martensite are mixed homogeneously. By assigning one grain orientation to the eight integration points pertaining to each finite element, the total number of the initial orientations representing the random starting texture of the steel, as observed after the heat treatment, amounts to 64,000 (8000 \(\times \) 8). For modeling uniaxial tensile testing, periodic boundary conditions are adopted and a strain rate of \(10^{-3} \text{s}^{-1} \) is imposed [46]. The constitutive parameters characterizing the austenite are determined by fitting the macroscopic stress vs. strain curve as well as the twin volume fraction vs. strain curves obtained from the tensile test on the reference sample with an average initial grain size of 35 \(\mu \)m. It should be mentioned that as the slip resistance is related to the strength in a solid solution, the critical resolved shear stress for activating dislocation slip varies among the steels with different grain sizes. Then, based on the Hall–Petch law that is attributed to dislocation pile-ups against grain boundaries, for the austenitic phase the \(\tau_{\text{solute}} \) values of 0.03, 0.37 and 0.65 GPa are used for steels with a grain size of 35 \(\mu \)m, 800 \(\mu \)m and 270 \(\mu \)m, respectively. For the UFG steels, as the austenitic and the martensitic grains collectively contribute to the overall yield strength, the initial slip resistance of the martensite is determined by fitting the corresponding macroscopic stress vs. strain curves. The \(\tau_{\text{solute}} \) values of 1.59 and 2.50 GPa are used for the martensite in steels with a grain size of 800 \(\mu \)m and 270 \(\mu \)m, respectively. For both phases, all other constitutive parameters are identical for the differently grain-sized steels, as listed in Table 2.

3.3. Simulation results

Fig. 4(a) shows the measured and the predicted true stress–strain curves for the steels with different grain sizes, respectively. One could note that some discrepancies exist between experiments and predictions for the studied steels. For the steel with a grain size of 35 \(\mu \)m, as the current simulation does not incorporate the martensitic phase transformation at large strains, at a true strain above \(\sim 0.38 \) the predicted strength is lower than that obtained by the measurements. For the UFG steels, the overestima-
tion of both the strength after yielding and the maximum elongation is attributed to the fact that the microstructure of the short-time-annealed steels (150 s for the 270 nm grained steel, 180 s for the 800 nm grained steel) may not be homogeneous. Some dark grains indicate the accumulation of defects whereas the other grains appear less distorted indicating a low defect content (Fig. 2). Therefore, during the tensile tests conducted on the UFG materials the deformation may be inhomogeneous, deteriorating ductility.

Fig. 4(b) shows the strain-hardening responses (strain-hardening rates \(\dot{\varepsilon}_p / \dot{\varepsilon}_d \)) of the steels. For the steel with a grain size of 35 μm, below ~0.1 true strain the decrease of both, the measured and simulated strain-hardening rates indicates that dislocation slip is the main deformation mechanism. At a strain level above ~0.1, the increasing strain-hardening related to mechanical twinning is clearly identified, which is typical of metals and alloys with low stacking fault energy (SFE) such as silver [47], Cu–Zn alloys [48,49] and TWIP steels [50–52] where twin interfaces play a large role in the hardening of the materials. After ~0.33 true strain the experiment shows that the strain-hardening rate increases with further deformation, whereas the simulation show a significant drop which corresponds to the saturation of the twin volume fraction. Therefore, the deformation stage (~0.33 true strain) corresponding to the deviation of the modeling from the experiments is attributed to the deformation-induced onset of the martensitic phase transformation.

The simulated twin volume fraction for the same steel as a function of the true strain is presented in Fig. 5(a), showing that approximately 16 vol.% and 27 vol.% of the steel is twinned at true strains of 0.22 and 0.36, respectively. This agrees well with the previously published experimental observations on the same CG steel [36]. For the steels with a grain size of either 800 nm or 270 nm, the strain hardening dominated by twinning is not predicted by the modeling, even though experiments show that the strain-hardening rates of the steels decrease mildly at a true strain above ~0.03 (Fig. 4(b)). To see this more clearly, the shear contributions of the competing deformation systems (dislocation slip and twinning) obtained from the different simulations are plotted as a function of the true strain in Fig. 5(b). The individual contributions are given as summations over the absolute values of the shear rates on the different systems for each type of mechanism, normalized by the overall shear in each time step. The simulation for the 35 μm grain-sized steel shows that an increase in the twinning shear rate occurs at the initial stage of deformation, and the maximum occurs at a strain of 0.25. With further deformation, the shear rate carried by dislocations increases, indicating that the material is deformed both by slip and by twinning. The difference in strain-hardening response between the experiment and the prediction at this deformation stage is attributed to the absence of the martensitic transformation in the model. For the 800 nm and 270 nm grain-sized steels, the shear rate on the twin systems that remains on a constant low level during the whole period of plastic straining is predicted. This explains the very minor strain hardening as well as the negligible twin volume fraction as revealed by measurements. Moreover, the experimental results show that only very limited martensite transformation occurs in these steels during tensile testing, which leads to a better prediction of the stress–strain behavior for the UFG steels compared to the CG material.
4. Discussion

4.1. Origin of the ultrahigh strength—Hall–Petch effect

The ultrahigh strength in these UFG 304L SS samples originates mainly from the strengthening due to the Hall–Petch effect [53]:

\[\sigma_y = \sigma_0 + k d^{-1/2} \]

(13)

here \(\sigma_0 \) is the friction stress, \(k \) is a constant, referred to as grain boundary resistance, and \(d \) is the mean grain size. According to Mayers et al. [54], \(\sigma_0 \) is 167 MPa, and \(k = 19.05 \text{ MN mm}^{1/2} \) for a 304 SS. Hence, the tensile yield strength as a function of \(d^{-1/2} \) for the austenitic phase of the investigated UFG samples can be extrapolated from the Hall–Petch line using the literature data for 304 SS [54] to a mean grain size of 800 nm, yielding a strength of about 840 MPa. This value is lower than but close to the measured yield strength of 1170 MPa for the sample cold-rolled to 67% and annealed at 650 °C. For the steel with an average grain size of 270 nm, we find that multiple dislocations are blocked by grain boundaries, while some micro-twins are also seen in grain interiors (Fig. 6(e)). To study this more closely, high resolution observations are made on the areas indicated by the rectangles, as shown in Figs. 6(f) and (g), respectively. We find that the lamella thicknesses of the twins are below 10 nm. One partial dislocation is emitted from a twin boundary and stopped at the other twin boundary, leaving a stacking fault behind (Fig. 6(f)). In Fig. 6(g), many stacking faults are identified, though some of them are recognized as \(\varepsilon \)-martensite plates [55]. This nanostructure is very different from the one observed in the CG steels [36], in which most of the plastic deformation occurs in the form of dislocation slip, twinning, and martensitic phase transformation. The statistical analysis of the TEM observations on several areas for each of the deformed steel samples incorporating more than 200 individual grains reveals that the twinned area fraction for the 270 nm, 800 nm and 35 \(\mu \text{m} \) grain-sized samples is 3%, 8%, and 36%, respectively. According to the finite element simulation results, twinning is mostly activated in the steel with an average grain size of 35 \(\mu \text{m} \) but suppressed in steels with grain sizes of 800 nm and 270 nm, due to the reduced distance between the obstacles acting against twin growth with decreasing grain size. This picture generally agrees with the above-mentioned TEM observations.

Fig. 6. TEM micrographs showing morphologies of the deformed CG and UFG steels with the average grain size of (a)/(b) 35 \(\mu \text{m} \); (c)/(d) 800 nm and (e)−(g) 270 nm. (f) and (g) are close observations of the areas indicated by the rectangles in (e). SF: stacking fault.
Recently, Misra et al. [56,57] investigated the deformation behavior of a nano-grained/ultrafine-grained austenitic stainless steel with high strength and high ductility. Their results demonstrated that mechanical twinning was an active deformation mechanism in the steel, while in a CG steel the nucleation of strain-induced martensite occurred at the shear bands. In order to elucidate the transition from dislocation slip to twinning in a NG aluminum, Chen et al. [58] proposed a simple model based on the shear stresses required to initiate a full dislocation and a Shockley partial emitted from grain boundaries, in which the relationship between shear stresses for a full dislocation activation (τ_f) and the grain size (d) is expressed as:

$$\tau_f = \frac{2\pi G b}{d}$$

(14)

In the case of the localized stress concentration, partial dislocation glide on successive planes can form a large dislocation pile-up at the twin front. Thus, stress multiplication at the first dislocation by pile-up (i.e. $\pi \cdot \tau$, where n is the number of partial dislocations in the pile-up and τ is the applied shear stress) is an effective way to penetrate or remove obstacles in front of the twin tip [59]. Consequently, the shear stress required to initiate a Shockley partial (τ_p) is:

$$n \cdot \tau_p = \frac{2\pi G b}{d} + \frac{\gamma}{b_p}$$

(15)

Here x is a parameter with a value of 0.5 for edge dislocations and 1.5 for screw dislocations. It contains the scaling factor between the length of the dislocation source and the grain size [60]. G is the shear modulus, d is the grain size, γ is the stacking fault energy, b and b_p are the Burgers vectors of the full dislocation and of the Shockley partial dislocation, respectively.

Evidently, the number of partial dislocations increases with the decrease of the grain size, since τ_p becomes lower than τ_f when the grain size is reduced to a certain scale due to the enhanced stress concentration under tension. Then it is possible that the deformation mode will switch from slip to slip plus twinning for the material with UFG structures, depending on the emission of partial dislocations from grain boundaries. In this study, because of the low SFE of the austenitic stainless steel, partial dislocations acting as glide dislocation are more widely separated than in high SFE materials. Before a dislocation can leave its primary slip plane and move onto a cross slip plane, the stacking fault between the partials must firstly be compressed, which requires a high stress to overcome the repulsive forces between the partial dislocations. Therefore, cross slip is suppressed and deformation tends to be much more planar in the austenitic steel than in materials with higher SFE. These faults are precursors of deformation twins found in the microstructures. Since the faults and twins are formed progressively with straining, twins in the steel increase gradually via partial dislocation slip. The activated stacking faults and the subsequently formed twin boundaries can effectively refine the microstructure to a scale similar to UFG or NG. The importance of partial dislocations, stacking faults and twins in the plastic deformation of fcc metals has recently been addressed by several authors [22,61,62].

The shear stress for dislocation emission in UFG austenitic steels can be determined with the values in a 304SS: $b = 2.58 \times 10^{-10}$ m, $b_p = 1.45 \times 10^{-10}$ m, $G = 76$ GPa, $x = 1$, and $\gamma = 0.021$ J/m2 [63,64]. Then, the shear stress for partial dislocation emission ($n = 3$, based on the twin nucleation scheme proposed by Mahajan et al. [44]) is 96 MPa, while the emission of a perfect or full dislocation (τ_f) reaches 145 MPa, according to Eqs. (14) and (15). This means that it is easier to activate a partial dislocation than a full dislocation in the ultrafine-grained microstructure with an average size of 270 nm. However, it is worth noting that in UFG steels the length of partial dislocations required for forming a twin nucleus becomes quite limited compared with the CG samples. Then, the required correlated bow-out of three partial dislocations may not be significant enough to trigger the formation of a twin nucleus, which explains the prevalence of dislocation slip in the 800 nm and 270 nm grained steels as predicted by the simulation.

On the other hand, during plastic deformation the activation of partials is not required due to the pile-up and dissociation of dislocations. Under this condition, Zhu et al. [64] gave an analytical description on nucleation of deformation twins in nanocrystalline fcc metals in terms of critical grain size, d_c:

$$\frac{2.089 - \nu}{54.985(1 - \nu)} \frac{a^2 G}{\gamma} \leq \frac{d_c}{\ln(\sqrt{2}d_c/a)} \leq \frac{3.727 + \nu}{97.053(1 - \nu)} \frac{a^2 G}{\gamma}$$

(16)

Here, ν is Poisson’s ratio, 0.27, a is the lattice parameter ($a \approx 0.361$ for fcc metals) [65]. The corresponding d_c for the UFG 304SS is in the range of 210–300 nm. The stress data obtained from Eqs. (14) and (16) appears to be low, when we consider the yield strength of 1890 MPa for the UFG 304SS (i.e. shear stress \sim500 MPa, Taylor factor $M = 3.61$). Consequently, it is conceivable that for the ultrafine-grained steel with an average grain size of 270 nm plastic deformation takes place prior to the onset of twinning.

Actually, both the twinning process and the formed deformation twins can improve the work-hardening ability of UFG materials. First, a stacking fault, precursor of twinning, renders cross-slip more difficult because the stacking fault has to be constricted before the dislocation can cross slip. Therefore, gliding dislocations are confined to a thin slip band that forms a large pile-up against an obstacle, forming the region that is analogous to a grain boundary [9]. Large pile-ups can also generate a large long range back stress and result in a high strain-hardening rate. Second, it was well established that strengthening associated with twin boundaries is similar to that caused by less coherent grain boundaries [66]. Molecular dynamics simulations have also demonstrated that once nanoscale twins are formed they can repel certain types of gliding dislocations and give rise to pile-ups, leading to the strain hardening of materials [67].

4.3. Origin of the ultrahigh strength—martensitic transformation effect

The high work-hardening rate observed for the austenitic steels is also associated with the deformation-induced martensitic transformation in these materials [35,64]. As documented in Table 1, for the 800 nm grain-sized sample, after tensile deformation to 12% strain the volume fraction of martensite shows a significant increase from 23% to 38%. For the 270 nm grain-sized sample at 6% strain, the volume increment of martensite is only ~2%. However, for the 35 µm grain-sized steel, a large amount of martensite (~0.35 vol.%) induced by 59% tensile deformation is formed and this leads to the significant hardening of the material. Our experimental results hence show that the sample with a grain size of 270 nm is surprisingly stable against the transformation from austenite to martensite, thus the strain-hardening contributed by phase transformation is negligible during the tensile testing. Assuming that the austenite transforms to the martensite via a single variant mode, the increase in the elastic–strain energy can be estimated according to [57,68]:

$$\Delta E_o = 0.5E_Ic_1^2/(L/d)^2 + (0.5E_2c_2^2 + 0.5E_3c_3^2)/(L/d)$$

(17)

where E and c are the Young’s modulus and elastic strain in each lattice plane, respectively. L is the thickness of martensite lath and d is the grain size of austenite. This means that the value of
Δt_e, increases with decreasing grain size of the initial austenite. Consequently, the nucleation ability of the martensite is reduced with the refinement of grains, and the lattice displacement must be accommodated by dislocation slip and twinning in the UFG steels.

5. Conclusions

(1) An UFG austenitic stainless steel with an average grain size of 270 nm has been synthesized by accumulative rolling and annealing. The material shows a yield strength of 1890 MPa, an ultimate-tenile stress of 2050 MPa, and an elongation of 6 ± 1%. The high strength originates mainly from the strengthening effect associated with grain boundaries, according to the Hall–Petch effect.

(2) For the austenitic steels with different grain sizes, when subjected to a uniaxial tensile load, the twinned volume fraction amounts to 3% for the 270 nm grain-sized steel after 6% elongation, 8% for the 800 nm grain-sized steel after 12% elongation, and 36% for the 35 µm grain-sized steel after 59% elongation, respectively. The volume fraction of the martensite is 34%, 38% and 53% for the 270 nm, 800 nm and 35 µm grain-sized steels, respectively. By TEM analysis we find that both, deformation twinning and martensitic phase transformation have been significantly suppressed with the refinement of the initial austenitic grain size.

(3) A crystal plasticity finite element model incorporating the grain size-controlled activation of dislocation slip and deformation twinning captures some of the micromechanical trends observed for the steels with different grain sizes. In combination with the theoretical analysis, we suggest that deformation of instable austenitic UFG steels is dominated by the slip of partial dislocations, whereas for CG steels dislocation slip, twinning and martensitic phase transformation jointly contribute to the plastic straining.

Acknowledgements

The present research is supported by NSAF (Grant No. U1430132), the National Natural Science Foundation of China (Grant No. 51231002), the Fundamental Research Funds for the Central Universities (Nos. N130402005, N130510001), and the Program for New Century Excellent Talents in University (NCET-13-0104).

References

[52] I. Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449–6462.

