
INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING

Modelling Simul. Mater. Sci. Eng. 12 (2004) R13–R46 PII: S0965-0393(04)77661-5

TOPICAL REVIEW

Overview of the lattice Boltzmann method for
nano- and microscale fluid dynamics in materials
science and engineering

D Raabe

Max-Planck-Institut für Eisenforschung, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany

E-mail: raabe@mpie.de

Received 15 March 2004, in final form 2 August 2004
Published 16 September 2004
Online at stacks.iop.org/MSMSE/12/R13
doi:10.1088/0965-0393/12/6/R01

Abstract
The article gives an overview of the lattice Boltzmann method as a powerful
technique for the simulation of single and multi-phase flows in complex
geometries. Owing to its excellent numerical stability and constitutive
versatility it can play an essential role as a simulation tool for understanding
advanced materials and processes. Unlike conventional Navier–Stokes solvers,
lattice Boltzmann methods consider flows to be composed of a collection of
pseudo-particles that are represented by a velocity distribution function. These
fluid portions reside and interact on the nodes of a grid. System dynamics
and complexity emerge by the repeated application of local rules for the
motion, collision and redistribution of these coarse-grained droplets. The
lattice Boltzmann method, therefore, is an ideal approach for mesoscale and
scale-bridging simulations. It is capable to tackling particularly those problems
which are ubiquitous characteristics of flows in the world of materials science
and engineering, namely, flows under complicated geometrical boundary
conditions, multi-scale flow phenomena, phase transformation in flows,
complex solid–liquid interfaces, surface reactions in fluids, liquid–solid flows
of colloidal suspensions and turbulence. Since the basic structure of the method
is that of a synchronous automaton it is also an ideal platform for realizing
combinations with related simulation techniques such as cellular automata or
Potts models for crystal growth in a fluid or gas environment. This overview
consists of two parts. The first one reviews the philosophy and the formal
concepts behind the lattice Boltzmann approach and presents also related
pseudo-particle approaches. The second one gives concrete examples in the
area of computational materials science and process engineering, such as the
prediction of lubrication dynamics in metal forming, dendritic crystal growth
under the influence of fluid convection, simulation of metal foam processing,
flow percolation in confined geometries, liquid crystal hydrodynamics and
processing of polymer blends.
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1. Introduction to the lattice gas and lattice Boltzmann simulation methods

1.1. Motivation for the use of discrete methods in computational fluid mechanics

The theoretical picture of fluid dynamics in the materials engineering community largely
departs from the work of Navier and Stokes from the first half of the 19th century. Their
differential formulation of the mechanics of incompressible flows, the so-called Navier–Stokes
equation, accounts for the conservation of mass, momentum and energy, and the requirement
that these quantities be conserved locally [1–3]. Tackling hydrodynamics and related problems
with this equation amounts to solving coupled sets of nonlinear partial differential field
equations by use of finite difference or finite element methods.

Although the Navier–Stokes framework serves as a long-established basis for predicting
fluid behaviour, it has still not been possible to resolve some basic questions in the fields
of modern materials science and engineering with it. This is due to the fact that the Navier–
Stokes differential formulations theoretically do not apply and numerically also do not converge
under conditions which are characterized by large Knudsen numbers (mean free molecule path
divided by characteristic system length). Such restrictions occur when the mean free path
of the fluid molecules is similar to the geometrical system constraints, such as, for instance
the obstacle spacing or the roughness wavelength which may characterize mesoscopic system
heterogeneity.

Prominent examples where such limitations occur are the simulation of nano- and
microflows in filters, foams, micro-reactors or otherwise confined geometries; multi-
component flows in the area of polymer and metal processing; tribology and wear in the area of
lubricated contact mechanics and metal forming; liquid crystal processing; nanoscale process
technology; lubrication in miniaturized components, liquid phase separation; joint fluid–
gas flows; abrasion and sedimentation; fluid percolation in cellular structures; processing of
metallic foams; as well as corrosion and solidification in non-quiescent environments to name
but a few. These examples do not only challenge our basic understanding of fluid mechanics
but represent at the same time key issues in modern materials science and engineering of
considerable practical relevance.

Lattice gas cellular automata [4, 5] and their more mature (non-Boolean) successors, the
lattice Boltzmann automaton techniques (see details in the ensuing sections), seem to be
predestined to tackle some of these challenges in the domain of materials-related computational
fluid dynamics in a more efficient way than the conventional Navier–Stokes approach.

The lattice Boltzmann technique belongs to a broader group of pseudo-particle methods
which form a growing class of multi-scale simulation approaches to computational fluid
mechanics, table 1, figure 1. Other important particle-based approaches in this class are
(besides lattice gas cellular automata) the dissipative particle dynamics method [6–11] and
the direct simulation Monte Carlo method [11–16] together with its hybrid mesh refinement
variations [17].

These pseudo-particle approaches can be grouped into lattice-based cellular automaton
approaches (lattice gas method, lattice Boltzmann method) and off-lattice approaches
(dissipative particle dynamics method, direct simulation Monte Carlo method). While the
reminder of this overview deals exclusively with vectorial cellular automaton models of fluid
flow, the ensuing section provides a concise summary of the off-lattice methods.

1.2. Off-lattice pseudo-particle methods in computational fluid mechanics

The most important off-lattice pseudo-particle approach to computational fluid mechanics
is the dissipative particle dynamics method [6–11], table 1, figure 1. This technique uses
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Table 1. Overview of models in computational fluid mechanics. All approaches beyond the
atomic-scale (molecular dynamics) and below the conventional continuum scale (Navier–Stokes
solvers) use coarse-grained pseudo-particles which can either move on a fixed lattice (lattice-based
pseudo-particle models) or continuously in space (off-lattice pseudo-particle models).

Models in computational fluid mechanics

Molecular dynamics
Pseudo-particle models

Off-lattice models Dissipative particle dynamics
Direct simulation Monte Carlo methods

Lattice-based models Lattice gas automata
Lattice Boltzmann automata

Navier–Stokes solvers

Figure 1. Various approaches to computational fluid dynamics together with their preferred range
of applicability. Molecular dynamics methods integrate Newton’s equations of motion for a set
of molecules on the basis of an intermolecular potential. Dissipative particle dynamics and direct
simulation Monte Carlo are off-lattice pseudo-particle methods in conjunction with Newtonian
dynamics. Lattice gas and lattice Boltzmann methods treat flows in terms of coarse-grained
fictive particles which reside on a mesh and conduct translation as well as collision steps entailing
overall fluid-like behaviour. Navier–Stokes approaches solve continuum-based partial differential
equations which account for the local conservation of mass, momentum and energy. These three
methods have their respective strengths at different Knudsen numbers, where the Knudsen number
is the ratio between the mean free molecule path and a characteristic length scale representing
mesoscopic system heterogeneity (e.g. the obstacle size).
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discrete fluid portions which can freely move in continuous space at discrete time increments.
The method can be derived from molecular dynamics by means of coarse-graining, i.e. the
pseudo-particles do not represent single atoms or molecules but rather mesoscopic droplets or
clusters of atoms which carry the position and momentum of coarse-grained fluid elements.
The philosophy of using such averaged particles instead of real molecules leads to a substantial
gain in computational efficiency compared with conventional molecular dynamics methods,
however, at the expense of a loss in microscopic detail.

The pseudo-particles interact pairwise according to a set of short-range interparticle central
forces that include a repulsive conservative force a dissipative force and a random force acting
symmetrically between each pair of pseudo-particles. The dissipative force acts to slow the
particles down and to remove energy from them. The random force acts between all pairs of
particles and is uncorrelated between different pairs. It adds energy to the system on average.
Together with the dissipative force it acts as a thermostat for the system. The conservative
force is derived from a pseudo potential energy similar to that in molecular dynamics.

As in conventional molecular dynamics methods the dynamical behaviour is realized by
the integration of the Newtonian equations of motion. It differs from molecular dynamics in
two respects. First, the conservative pairwise forces between the pseudo-particles are soft-
repulsive, which makes it possible to extend the simulations to longer timescales. Second,
the system thermostat for the canonical ensemble is implemented by means of the dissipative
as well as the random pairwise forces such that the momentum is locally conserved. The
pseudo-particle method is used to simulate hydrodynamics at mesoscopic scales in which
both, hydrodynamic interactions and Brownian motion are important. At large Mach numbers
and large Knudsen numbers it is superior to the cellular automaton models.

The direct simulation Monte Carlo method is also an off-lattice pseudo-particle simulation
method [11–16]. The state of the system is given by the positions and velocities of a set of
pseudo-particles. First, these fluid or gas portions are moved as if they did not interact. This
means that their positions are updated without considering inter-particle collisions. After this
translation step a fixed number of particles are randomly selected for collisions. The collision
step is typically realized by placing the particles into spatial collision cells, by calculating
the collision frequency in each cell, by randomly selecting collision partners within each of
those cells and by the actual collisions. The probability that a pair collides only depends on
their relative velocity. The actual collisions, i.e. the calculations of the post-collision velocity
vectors are determined for each colliding pair by accounting for the conservation of momentum
as well as the conservation of energy and by random selection of the collision angle. This
splitting of the evolution between forward streaming and collisions is only accurate when the
time step elapsing during one update step is a fraction of the mean collision time for a pseudo-
particle. The particular strength of the direct simulation Monte Carlo method lies in the field
of dilute gases.

1.3. Basic philosophy of lattice-based cellular automaton methods for fluid mechanics

The application of automaton models to the field of fluid dynamics represents a remarkable
shift in modelling philosophy when compared to the continuum, molecular dynamics and
pseudo-particle approaches. Lattice gas automata replace the macroscopic picture underlying
the Navier–Stokes framework by discrete sets of fictive particles which carry some properties
of real fluid portions, figure 2 [18, 19]. These fictive particles can be regarded as coarse-grained
groups of fluid (or gas) molecules the exact Newtonian dynamics of which are not explicitly
taken into account as in molecular dynamics approaches, or, to a certain extent, in the pseudo-
particle methods. The fluid portions in the lattice gas move at different speeds in different
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Figure 2. Pseudo-fluid particles in a lattice gas model with a quadratic grid (HPP lattice gas model
of Hardy, Pomeau, de Pazzis [18], see details in the next section). All particles have the same unit
mass and the same magnitude of the velocity vector (Boolean particles). Motion of the particles
consists in translating them from one lattice node to their nearest neighbour in one discrete unit of
time according to the direction of their unit momentum vector. The symmetry of the quadratic grid
turned out not to be sufficient for the reproduction of the Navier–Stokes equation.

directions on a fixed lattice and interact by simple local rules. During each time step they move
according to their current momentum vector. If two particles happen to end up on the same
lattice site, they collide and change their velocities according to a set of discrete collision rules.
The only restriction is that collisions have to conserve the particle number, the momentum and
the energy. Using this small set of rules offers the first and coarsest way of approximating
fluid dynamics in terms of lattice gas automata. An important computational advantage of
this method is that any lattice node can be marked as solid, allowing for the integration of
arbitrarily complex geometries that would be difficult to model with conventional continuum
methods owing to convergence problems.

The basic idea of lattice gas models, like generally of cellular automata, is to mimic
complex dynamical system behaviour by the repeated application of simple local translation
and reaction rules. These rules simulate, in a simplified and coarse-grained mesoscopic fashion,
some of the microscopical effects occurring in a real fluid. This means that lattice-gas automata
take a microscopic, though not truly molecular, view of fluid mechanics by conducting fictive
microdynamics on a lattice.

Solutions of the Navier–Stokes differential continuum equation can be regarded as a
top-down approach to fluid mechanics for small Knudsen number regimes, while the pseudo-
particle and lattice-based automaton methods pursue a bottom-up strategy valid also at larger
Knudsen numbers. In the macroscopic world of the Navier–Stokes equation one directly
analyses the pressure, density, viscosity and velocity of the flow. In the microscopic view
taken by the pseudo-particle and lattice gas automata, such macroscopic quantities can be
computed by averaging the interaction and density of the pseudo-particles locally. It must
be noted though that lattice-gas automata themselves are coarse-grained methods, i.e. the
fictive fluid droplets which they use as elementary constituents are averaged pseudo-particles,
which do not perform individual Newtonian dynamics as in a molecular dynamics simulation,
figures 1 and 3.
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Figure 3. Validity regimes of a gas or fluid simulation method as a function of density relative to
air and length scale. The figure shows that the continuum description becomes inaccurate when
the characteristic length scale is within an order of magnitude of the mean free path (figure adopted
from the works of Bird [20, 21] and Garcia [22].

1.4. Some important measures for flow mechanics

In the field of fluid mechanics one typically uses some elementary mesoscopic and continuum
measures for the constitutive, geometrical and dynamical quantification of flows. Some of
them are relevant in the context of this article, table 2.

1.5. Boolean lattice gas cellular automata (HPP and FHP models)

Lattice gas cellular automata with Boolean particle states residing on fixed nodes were
originally suggested by Frisch, Hasslacher and Pomeau in 1986 (FHP lattice gas model) [19]
for the reproduction of Navier–Stokes dynamics. A previous formulation for vector automata
was already in 1973 suggested by Hardy, Pomeau and de Pazzis (HPP lattice gas model)
[18]. However, this earlier version of a lattice gas method was based on a square grid and
could, therefore, not fulfill the requirement of rotational invariance. The FHP lattice gas model
published later [19] used a hexagonal two-dimensional lattice which fulfills both, conservation
of particle number and rotational invariance.

All particles in a Boolean lattice gas have the same unit mass and the same magnitude of
the velocity vector. The model imposes, as an exclusion principle, that no two particles may sit
simultaneously on the same node if their direction is identical. For the square lattice originally
suggested by the HPP model, this implies that there can be at most four particles per node. This
occupation principle, originally meant to permit simple computer codes, has the consequence
that the equilibrium distribution of the particles follows a Fermi–Dirac distribution. Motion of
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Table 2. Some important measures for flow analysis.

Parameter Relevance Definition Units

Dynamic
viscosity
(absolute or
Newtonian
viscosity)

Measure of the internal
molecular resistance of a fluid
to flow or shear under an
applied force

τ = µdyn
γ̇

�

τ : shear stress, µdyn: dynamic
viscosity, γ̇ : shear rate of
one layer relative to another,
�: spacing of the layers

[
Ns

m2

]
=

[
kg

ms

]

[Poise] =
[ g

ms

]

Kinematic
viscosity

Viscosity divided by the
density of the liquid; force
free measure of the viscosity

µkin = µdyn

ρ

ρ: mass density

[
m2

s

]

[Stoke] =
[

cm2

s

]

Knudsen
number

Ratio between the mean free
molecule path and a characteristic
length scale representing
mesoscopic system heterogeneity
(e.g. obstacle size)

K = L1

L2

L1: mean free path of molecule,
L2: characteristic system length

[1]

Mach
number

Ratio of the speed of a particle
in a medium to the speed of
sound in that medium; Mach
number 1 corresponds to the
speed of sound

M = c

cs

c: speed of particle in a medium,
cs: speed of sound in the medium

[1]

Reynolds
number

Measure of the relative
strength of advective over
dissipative forces quantifying
the degree of turbulence
in a flow

Re ≡ Finertia

Fviscous
≈ U L

µkin

U : characteristic macroscopic
flow speed, L: characteristic
length scale of flow geometry

[1]

the particles consists of moving them from one lattice node to their nearest neighbour in one
discrete unit of time according to their given unit momentum vector, figure 4.

The evolution of system dynamics of the lattice gas takes place in four successive steps.
The first one is the advection or propagation step. It consists of moving all particles from their
nodes to their nearest neighbour nodes in the directions of their respective velocity vectors.
The second one is the collision step, figure 5. It is conducted in such a way that interactions
between particles arriving at the same node coming from different directions take place in
the form of local instantaneous collisions. The elastic collision rules conserve both mass and
momentum. This implies that particles arriving at the same node may exchange momentum
if it is compatible with the imposed invariance rules. The third step is (usually) the bounce-
back step. It imposes no-slip boundary conditions for those particles which hit an obstacle.
The fourth step updates all sites. This is done by synchronously mapping the new particle
coordinates and velocity vectors obtained from the preceding steps onto their new positions.
Subsequently the time counter is increased by one unit.

Owing to the discrete treatment of the pseudo-particles and the discreteness of the
collision rules Boolean lattice gas automata reveal some intrinsic flaws such as the violation
of Galilean invariance1 and the occurrence of large fluctuations. The latter disadvantage
can to a certain extent be circumvented by introducing localized averaging procedures

1 A Galilean transformation is a change to another inertial reference frame moving with constant velocity. This
should not affect the properties of the flow.
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Figure 4. Positions of lattice gas pseudo-particles at two successive time steps (advection only)
on a hexagonal two-dimensional lattice (FHP lattice gas model) [19].

Figure 5. Collision rules of the lattice gas cellular automaton for the case of a hexagonal grid (FHP
lattice gas model) [19].

where a group of neighbouring vectors is summarized into a coarse-grained net-vector,
figure 6.

The main advantage of the lattice gas concept compared to classical Navier–Stokes
solvers consists of its excellent numerical stability under intricate geometrical boundary
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Figure 6. Schematic sketch of averaging in a lattice gas simulation. Such procedures are important
in classical Boolean lattice gas simulations for reducing statistical noise.

conditions. This property qualifies them particularly for the simulation of microflow dynamics
in porous microstructures and related problems arising in the field of modern materials science
and engineering (see examples in part 2 of this article). Since the basic structure of the lattice
gas algorithm is that of a synchronous automaton it is also an ideal platform for realizing
combinations with related materials simulation methods such as solid state cellular automata
or Potts models.

1.6. Introduction to the philosophy of the lattice Boltzmann approach

The lattice Boltzmann approach has evolved from the lattice gas models in order to overcome
the shortcomings discussed above. It corresponds to a space-, momentum- and time-discretized
version of the Boltzmann transport equation. The main rationale behind the introduction of
the lattice Boltzmann automaton is to incorporate the physical nature of fluids from a more
statistical standpoint into hydrodynamics solutions than in the classical lattice gas method
discussed in the preceding section, table 3. According to the underlying picture of the
Boltzmann transport equation the idea of the lattice Boltzmann automaton is to use sets of
particle velocity distribution functions instead of single pseudo-particles and to implement
the dynamics directly on those average values [23–32]. The particle velocities in the lattice
Boltzmann scheme are not Boolean variables as in conventional lattice gas automata [14, 19],
but real-numbered quantities as in the Boltzmann transport equation, figure 7. This means
that Fermi-like statistics no longer apply. It is also important to note that in contrast to the
conventional lattice gas method the lattice Boltzmann approach may use pseudo-particles with
zero velocity. These are required for simulating compressible hydrodynamics by using a
tunable model sound speed.

Another main difference between the original lattice gas and the lattice Boltzmann methods
is the fact that the former approach quantifies the particle interactions in terms of discrete local
Boolean redistribution rules (collision rules) while the latter approach conducts (non-Boolean)
redistributions of the particle velocity distribution (relaxation rules, collision operator).

The main advantage of the lattice Boltzmann method compared to the original lattice gas
is that small sets of neighbouring nodes in a Boltzmann lattice are capable of creating smooth
flow dynamics as opposed to the lattice gas methods which entail rather coarse dynamical
behaviour. This means that the Boltzmann method requires less averaging and provides
increased performance.

1.7. Typical mesh types for the lattice Boltzmann method

Lattice Boltzmann models are spatially discrete approaches to fluid dynamics. This means that
the underlying grids of such simulations must fulfill certain symmetry conditions in order to
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Table 3. Overview of the lattice gas and the lattice Boltzmann model family (see detailed
explanations of the lattice types DkQn in section 1.7).

The lattice gas and lattice Boltzmann automaton family

Lattice gas
automata

HPP-model (according to Hardy, Pomeau, and Pazzis). The original form of the lattice gas
automaton with Boolean pseudo-fluid particles residing on a discrete two-dimensional
quadratic grid (Hardy et al [18])

FHP-model (according to Frisch, Hasslacher and Pomeau). Two-dimensional lattice gas,
hexagonal grid. FHP-I: 6 neighbour nodes; FHP-II: 6 neighbour nodes and one rest particle
FHP-III: 6 neighbour nodes, one rest particle and complete collision rules (Frisch et al [19],
d’Humières and co-workers [35–37])

FCHC-model (face-centred-hypercubic). FHP-type three-dimensional lattice gas model,
four-dimensional Bravais lattice with 24 neighbour nodes projected on a three-dimensional
spatial lattice (d’Humières and co-workers [35–37])

Two-colour FCHC-model (multi-phase model on the basis of FHP-III). FHP model with
a two-dimensional hexagonal lattice, two types of (coloured) fluid phases (red, blue), phase
separation occurs by the introduction of a local flux and a colour gradient vector (Rothman
and Keller [33])

Lattice
Boltzmann
automata

LB-model (single-phase lattice Boltzmann model). Real-numbered particle velocity
distribution functions, typical lattice types: D2Q9, D3Q15 and D3Q19, collision matrix
(Frisch et al [19], McNamara and Zanetti [26])

LBGK-model (lattice Boltzmann with Bhatnagar–Gross–Krook relaxation). The lattice
Boltzmann model, assumption of an equilibrium velocity distribution, collision matrix
replaced by a single-step collision relaxation towards equilibrium (Bhatnagar et al [34],
Higuera and Jimenez [27], Qian et al [38])

Multi-phase LBGK-model (multi-phase model on the basis of LBGK). LBGK models
for multi-phase applications using single-step relaxation and gradient terms,
pseudo-potentials, or free-energy functionals for phase separation (Gunstensen et al
[39, 40], Grunau et al [41], Shan and Chen [42, 43], Shan and Doolen [44, 45])

Figure 7. Schematic example demonstrating the idea of a coarse-graining procedure which renders
a Boolean lattice gas into a lattice Boltzmann gas. The arrows residing at the nodes on the two
grids represent discrete lattice particles (lattice gas, left-hand side) and portions of a local vector
distribution function, respectively (lattice Boltzmann method, right-hand side). The figure shows
that the lattice gas method works with discrete velocity vectors and discrete fluid portions. The
lattice Boltzmann gas works also with discrete velocity vector directions but it uses real-numbered
fluid portions.
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Table 4. Overview of the weight factors wi for the most important lattice types.

Lattice Zero Simple cubic Diagonal Cubic
model position vectors [100] vectors [110] vectors [111]

D2Q9 4/9 1/9 1/36 do not exist
D3Q15 2/9 1/9 do not exist 1/72
D3Q19 1/3 1/18 1/36 do not exist

Figure 8. Velocity vectors for a D2Q9- (left) and a D3Q19-lattice geometry (right).

recover hydrodynamic behaviour with full rotational symmetry of space. This requires that the
invariance measures which form from the respective sets of underlying lattice vectors up to
fourth order are isotropic, i.e.

n∑
i=0

wi = 1,

n∑
i=0

wieiα = 0,

n∑
i=0

wieiαeiβ = �(2)δαβ,

n∑
i=0

wieiαeiβeiγ = 0,

n∑
i=0

wieiαeiβeiγ eiθ = �(4)(δαβδγ θ + δαγ δβθ + δαθ δβγ ),

(1)

where wi represent weight factors which must be properly chosen for each grid type in order
to correct the lattice with respect to isotropy, �ei are the lattice vectors with the Greek indices
α, β, γ, θ for the spatial directions and hyper-directions, and �(2) and �(4) are lattice constants
which are related to the lattice sound speed cs. The index i is the counter for the lattice vectors.

The most frequent mesh types for lattice Boltzmann simulations are the D1Q3-, the
D2Q9-, the D3Q15- and the D3Q19-lattice, table 4, figure 8. The terminology DkQn refers
to the number k of dimensional sublattices (equivalent to the number of independent speeds)
and to the discrete number n of spatial translation vectors �ei constituting the vector basis of the
distribution function. In three dimensions, isotropy generally requires a multi-speed lattice.
Like for all lattice gas automata the units of the corresponding set of velocity vectors, �ci , are
calculated by the corresponding lattice vectors, �ei , divided by the time step (time proceeds
synchronously for all nodes in discrete steps, 
t , as in all automata). The number of occurring
speeds, therefore, corresponds to the number of sublattice vector types. It is important to note
that �c0 is a zero vector.

The D1Q3-lattice has 1 sublattice and 3 discrete velocity vectors (identity, left and right).
The D2Q9-lattice has 2 sublattices and 9 discrete velocity vectors (identity, north, west, south,
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Figure 9. Schematic figure showing some non-zero vectors of the particle velocity distribution
function at a node. The two-dimensional lattice has 9 velocity vectors (8 neighbours and a zero
velocity). Zero velocity vectors are required for simulating compressible flows.

east, northwest, southwest, southeast and northeast). The basis vectors of the D2Q9-lattice are

�ei = �ci
t = (�e1, �e2, �e3, �e4, �e5, �e6, �e7, �e8, �e9) =
(

0 1 0 −1 0 1 −1 1 −1
0 0 1 0 −1 1 1 −1 −1

)
.

(2)

The D3Q15-lattice has 3 sublattices and 15 discrete velocity vectors (identity, 6 towards face
centres and 8 towards vertices of a cube). The basis vectors of the D3Q15-lattice are

�ei = �ci
t = (�e1, �e2, �e3, �e4, �e5, �e6, �e7, �e8, �e9, �e10, �e11, �e12, �e13, �e14, �e15)

=

0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1


 . (3)

The D3Q19-lattice has 3 sublattices and 19 discrete velocity vectors (identity, 6 velocities to
the face centres and 12 towards edge centres of a cube).

�ei = �ci
t = (�e1, �e2, �e3, �e4, �e5, �e6, �e7, �e8, �e9, �e10, �e11, �e12, �e13, �e14, �e15, �e16, �e17, �e18, �e19)

=

 0 1 0 0 −1 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 1 0 0 −1 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 1 0 0 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1


 . (4)

While the D3Q15-lattice model requires less computation and less memory than the D3Q19-
lattice model, it suffers more from finite size effects and is less accurate.

1.8. Formal description of the lattice Boltzmann method for single-phase flow

The lattice Boltzmann gas uses as a central quantity a particle velocity distribution function,
fi(�x, t) [24, 26], which quantifies the (real-numbered) probability to observe a pseudo-fluid
particle with discrete velocity �ci at lattice node �x at time t . The particle velocity distribution
function is defined for particles moving synchronously along the nodes of a discrete regular
spatial lattice. The subscripts i = 0, . . . , m of the velocity vectors indicate their discrete lattice
direction on the chosen grid, figure 9. The occurring velocity vectors depend on the number
of sublattices and on the coordination sphere as outlined in the preceding section. The fluid
particles can collide with each other as they move under applied forces.
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In the lattice Boltzmann approach the temporal evolution of the particle velocity
distribution function satisfies a lattice Boltzmann equation of the type

f new
i (�x + �ci
t, t + 
t) − f old

i (�x, t) = 
t�i (i = 0, . . . , n), (5)

where 
t is the lattice time step. The index i stands for the n base vectors of the underlying
lattice type. The left hand term, f new

i (�x + �ci
t, t + 
t) − f old
i (�x, t), is the advection term

which represents free propagation of the particle packets along the lattice links. The term
f new

i (�x+ �ci
t, t +
t) is the new distribution function after advection and redistribution. When
considering an additional external source of momentum (e.g. body forces such as occurring in
pressure gradients or gravitational fields), Fi , one obtains

f new
i (�x + �ci
t, t + 
t) − f old

i (�x, t) = 
t�i + 
tFi (i = 0, . . . , n). (6)

Normalization provides

fi ∈ [0, 1]. (7)

The symbol �i represents the collision operator. In the first variant of the lattice Boltzmann
model suggested by McNamara and Zanetti [26], collisions where formulated as direct
transcriptions of the lattice gas approach, i.e. complete fluid particles were exchanged between
the different lattice vectors without altering their mass content. By using this method the
particles’ mean free path and thus the fluid viscosity were still fixed. Releasing that constraint
and allowing the exchange of matter between the fluid packets leads to variable viscosity. In
this case the collision operator is a vector. The collision term may be linearized by assuming
that there is always a local equilibrium particle distribution, f

eq
i (�x, t), which depends only

on the locally conserved mass and momentum density. A first-order approximation for the
collision operator yields

�∗
i (f

old
i (�x, t)) = �∗

i (f
eq
i (�x, t)) + �i(f

old
i (�x, t) − f

eq
i (�x, t)). (8)

In order to ensure the local conservation of mass and momentum the equilibrium distributions
must at each node satisfy

n∑
i=0

f
eq
i (�x, t) =

n∑
i=0

f old
i (�x, t) (9)

and
n∑

i=0

f
eq
i (�x, t)�ci =

n∑
i=0

f old
i (�x, t)�ci, (10)

where i stands for the lattice vectors. Since �i now only acts on the departure from equilibrium,
the first term in the first-order approximation for the collision operator, namely �∗

i (f
eq
i (�x, t)),

vanishes. A convenient formulation for the remainder, used by most current versions of the
lattice Boltzmann automaton, has the form of a single-step relaxation as suggested by the
Bhatnagher–Gross–Krook approximation [32], namely,

�i = − 1

τ
(f old

i (�x, t) − f
eq
i (�x, t)). (11)

In this expression the relaxation time, τ , is a parameter which quantifies the rate of change
towards local equilibrium for incompressible isothermal materials. The Bhatnagher–Gross–
Krook relaxation yields maximal local randomization. All particle distributions relax at the
same rate, ω = 1/τ , towards their corresponding equilibrium value. As was first pointed
out by Qian et al [38] the relaxation rate must obey 0 < ω < 2 for the method to be stable
and for the particle density and viscosity to be positive. The condition where 0 < ω < 1 is
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called sub-relaxation regime while 1 < ω < 2 is referred to as over-relaxation regime. The
use of a Bhatnagher–Gross–Krook single-step relaxation scheme has replaced the use of a
discrete collision matrix which had to be formulated for collisions in earlier lattice gas models.
The lattice Boltzmann equation in the single-step relaxation approximation corresponds to the
discrete form of the classical Chapman–Enskog first-order Taylor expansion of the Boltzmann
equation.

For non-isothermal flows or fluids with variable density the relaxation time may deviate
from a constant according to

τ ∗ = 1

2
+

1

ξ(�x, t, T )

(
τ − 1

2

)
, (12)

where T is the temperature and ξ(�x, t, T ) is the local particle density which can be calculated
as the local sum over the particle velocity distribution according to

ξ(�x, t, T ) =
n∑

i=0

fi(�x, t, T ). (13)

The relaxation time is a parameter which characterizes the constitutive behaviour of the fluent
material at a microscopic level. It is connected with the macroscopic kinematic viscosity of
the simulated fluid according to

ν = c2
s 
t

(
τ ∗ − 1

2

)
, (14)

which reduces to

ν = 2τ − 1

6
(15)

for incompressible isothermal flows where cs = 1/
√

3 is the lattice sound speed.
In the lattice Boltzmann Bhatnagher–Gross–Krook method (LBGK) the particle

distribution after propagation is relaxed towards the local equilibrium particle distribution
function. The equilibrium distribution, f

eq
i (�x, t), depends, in the Bhatnagher–Gross–Krook

approximation, only on locally conserved quantities such as mass density and momentum
density. It is carefully chosen so that Galilean invariance and the isothermal Navier–Stokes
equation in the incompressible fluid limit are recovered.

Macroscopic parameters are determined by the integration of the distribution functions.
These integrands are referred to as moments. Important in that context are those parameters
which are relevant with respect to local conservation laws, namely, the local particle density,
ξ(�x, t), the local mass density, ρ(�x, t), and the local velocity vector, �u(�x, t), which relates
to the momentum density vector, ρ(�x, t)�u(�x, t), and the local kinetic energy density, ϑ(�x, t).
They can be calculated as moments of the particle distribution according to

ξ(�x, t) =
n∑

i=0

fi(�x, t),

ρ(�x, t) = m

n∑
i=0

fi(�x, t) = mξ(�x, t),

�u(�x, t) = 1

ξ(�x, t)

n∑
i=0

fi(�x, t)�ci =
∑n

i=0 fi(�x, t)�ci∑n
i=0 fi(�x, t)

,

ρ(�x, t)�u(�x, t) = m

n∑
i=0

fi(�x, t)�ci,

ϑ(�x, t) = 1

2

n∑
i=0

fi(�x, t)|�ci − �u(�x, t)|2 = ξ(�x, t)
D

2
RT = ρ(�x, t)

m

D

2
RT,

(16)
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where m is the mass of a lattice particle, D is the dimension of the momentum space of
the discrete lattice velocities and R is the gas constant. The last equation defines the local
temperature.

The moments must be conserved during the collision phase, i.e. the velocity moments of
the collision term must vanish at each node according to

n∑
i=0

�i = 0 and
n∑

i=0

�i �ci = 0. (17)

The momentum density tensor, Meq
αβ , can be calculated as the second moment of the distribution

function according to the equation

M
eq
αβ = m

n∑
i=0

ciαciβf
eq
i (�x, t), (18)

where α and β are lateral cartesians of the i different velocity vectors �ci . The strain rate tensor
can be approximated as the first-order symmetric part of the velocity gradient tensor according
to the equation

ε̇αβ(�x, t) = 1

2

(
∂uα(�x, t)

∂xβ(�x, t)
+

∂uβ(�x, t)

∂xα(�x, t)

)
. (19)

Rotation rates can be approximated as the first-order skew-symmetric part of the velocity
gradient tensor

�̇αβ(�x, t) = 1

2

(
∂uα(�x, t)

∂xβ(�x, t)
− ∂uβ(�x, t)

∂xα(�x, t)

)
. (20)

The equilibrium distribution for an incompressible isothermal fluid, f
eq
i (�x, t), which

approximates the Maxwell–Boltzmann equilibrium distribution up to a second-order Taylor
series, can be written as

f
eq
i (�x, t) = wiξ(�x, t)[c1 + c2(�ci �u) + c3(�ci �u)2 + c4 (�u�u)], (21)

where c1, c2, c3, c4 are lattice constants which depend on the lattice type and the lattice sound
speed, cs, as c1 = 1, c2 = 1/c2

s , c3 = 1/(2c4
s ), and c4 = −1/c2

s . The symbols wi represent the
weight factors.

The strength of the lattice Boltzmann method is its computational simplicity and its
locality. The latter aspect is an advantage which predestines the method for parallelization. The
algorithm requires information about the distribution function only at nearby points in space.
It allows one to treat flows under complex boundary conditions in simple terms by accounting
for reflections and bounces at appropriate spatial locations flagged as solid obstacles. The
use of an averaged quantity, fi(�x, t), as a central state variable avoids statistical noise so that
finite size effects practically do not occur. As in all automata, the set of allowed velocities
in the lattice Boltzmann models is constrained by conservation of mass and momentum, and
by the requirement of rotational symmetry (isotropy). However, these restrictions turn out
to be much less severe than in the lattice gas cellular automaton models. This means that
lattice effects practically do not occur in lattice Boltzmann models. By using a small velocity
Chapman–Enskog expansion one can show that the lattice Boltzmann formulation as outlined
in this chapter reproduces the Navier–Stokes equation for incompressible flows in the limit of
small Knudsen and low Mach numbers (below 0.15), figures 1 and 3.
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1.9. The lattice Boltzmann method for multi-phase flows

1.9.1. Introduction. Multi-phase flow phenomena are characterized by movable and
deformable phase boundaries at which the properties of the flow may discontinuously
change. One assumes further that the flows do not evaporate. An essential feature of
immiscible multi-phase flows (as for multi-phase solids) is the occurrence of a Laplacian
surface tension for each of the phases which guides the system towards the reduction of
interface energy.

Three types of lattice Boltzmann approaches have been suggested for the simulation of
complex reaction-free multi-phase flows, namely, the chromodynamic (colour), the pseudo-
potential and the free-energy models. The following sections will give a brief introduction to
these different approaches. An excellent discussion of the different approaches to lattice-based
multi-phase flows is given in [24].

1.9.2. Chromodynamic or colour models of multi-phase lattice Boltzmann flows. The first
lattice-based model for immiscible two-phase flow was proposed by Rothman and Keller [33].
It was formulated as a lattice gas approach. The authors used as a starting point the single-
phase FHP model with hexagonal lattice and introduced two types of (coloured) fluid phases,
termed red and blue (hence the term chromodynamic or colour models). Phase separation
was, in their approach, introduced by a local flux and colour gradient term. The work of the
colour flux against the field minimum was chosen to encourage the preferential grouping of
identical phases. Owing to its descend from the Boolean lattice gas method, the original form
of the Rothman–Keller model suffered from the deficiencies associated with lattice artefacts
and noise, discussed above.

A later version of a lattice-based two-phase chromodynamic flow model was the two-phase
lattice Boltzmann model of Gunstensen and co-workers [39, 40]. This method was inspired
by the original Rothman–Keller lattice gas scheme, but it was based on the lattice Boltzmann
method of McNamara and Zanetti [26] in conjunction with the linearized collision operator
proposed by Higuera and Jimenez [27]. Although the unphysical properties like the lack of
Galilean invariance and statistical noise inherent to the lattice gas were overcome, the pressure
was still velocity dependent in this approach. In addition, the linearized collision operator
was not computationally efficient and the model could not handle two fluids with different
densities and viscosities. Grunau et al [41] developed the model further by introducing
a single-time relaxation approximation with a proper particle equilibrium distribution
function. These modifications eliminated the problems of the formulation of Gunstensen and
co-workers [39, 40]. The following presentation follows, therefore, essentially the approach of
Grunau et al [41].

Multi-phase lattice models use at least two separate phases. Each phase is characterized
in terms of an individual particle distribution function and individual equilibrium particle
distribution function. This means that the overall particle occupation state at each node is
described by a set of particle velocity distribution functions, each of which follows in its
dynamic evolution a lattice Boltzmann equation, with an individual collision operator for each
phase. It is important to note that these individual collision operators do not describe the
interactions between dissimilar pseudo-particles. In the simplest case of a two-component
flow, the phases and the associated particle populations are traditionally labelled by colours
[33, 39–41]. The two separate particle velocity distribution functions are f red

i (�x, t) and
f blue

i (�x, t). Generalization to multi-phase flows leads to f
φ

i (�x, t), where the index φ refers to
the k different fluid phases (running from φ = 1 to k). The index i refers to the ith velocity
vector, �x to the lattice node position, and t to time.
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Assuming only a red and a blue phase these particle distributions are evolved by a set of
modified lattice Boltzmann equations of the following form

f
new,red
i (�x + �ci
t, t + 
t) − f

old,red
i (�x, t) = 
t�red

i + Sred
i ,

f
new,blue
i (�x + �ci
t, t + 
t) − f

old,blue
i (�x, t) = 
t�blue

i + Sblue
i ,

(22)

where �red
i and �blue

i are the individual single-phase collision operators for the two phases.
They have the conventional form of the single-step Bhatnagher–Gross–Krook relaxation [32]
according to

�red
i = − 1

τ red
[f red

i (�x, t) − f
red,eq
i (�x, t)],

�blue
i = − 1

τ blue
[f blue

i (�x, t) − f
blue,eq
i (�x, t)]

(23)

with the characteristic relaxation times τ red and τ blue, and the equilibrium distributions
f

red,eq
i (�x, t) and f

blue,eq
i (�x, t). One should note that the viscosity of each fluid phase can

be individually selected by choosing the desired relaxation times for that phase, since the
corresponding operators account for collisions with particles of the same type only. The
particle velocity equilibrium distribution for each individual phase, f red,eq

i (�x, t), f blue,eq
i (�x, t),

depends (in all multi-phase flow lattice models) on the local macroscopic variables pertaining
to that phase, i.e. ξφ(�x, t), ρφ(�x, t) and �uφ(�x, t). The equilibrium distributions can, hence, be
written as

f
φ,eq
i (�x, t) = wiξ

φ(�x, t)[c1 +c2(�ci �uφ) + c3(�ci �uφ)2 + c4 (�uφ �uφ)], (24)

where the index φ = 1, . . . , k refers to the k different fluid components and c1, c2, c3, c4 are
the Taylor expansion coefficients c1 = 1, c2 = 1/c2

s , c3 = 1/2c4
s and c4 = −1/c2

s . The
relevant moments of the individual flows and of the total flow are

ξφ(�x, t) =
n∑

i=0

f
φ

i (�x, t) =
n∑

i=0

f
φ,eq
i (�x, t),

ρφ(�x, t) = mφ

n∑
i=0

f
φ

i (�x, t) = mφ

n∑
i=0

f
φ,eq
i (�x, t) = mφξφ(�x, t),

ρ(�x, t) =
k∑

φ=1

ρφ(�x, t),

�uφ(�x, t) = 1

ξφ(�x, t)

n∑
i=0

f
φ

i (�x, t)�ci =
∑n

i=0 f
φ

i (�x, t)�ci∑n
i=0 f

φ

i (�x, t)
,

ρ(�x, t)�u(�x, t) =
k∑

φ=1

mφ

n∑
i=0

f
φ

i (�x, t)�ci =
k∑

φ=1

mφ

n∑
i=0

f
φ,eq
i (�x, t)�ci,

(25)

where mφ is the mass of the constituent particles pertaining to the φth flow and ρ(�x, t)�u(�x, t)

is the total local momentum vector of the multi-phase flow.
The source terms Sred

i and Sblue
i in the lattice Boltzmann equation represent the interaction

between the two phases, i.e. they must be designed to capture the phase separation and
coarsening dynamics of the flow. In the chromodynamic model the source terms are defined
in such a way that they influence the configuration of neighbouring sites enabling the pressure
tensor to become anisotropic near the fluid interface.
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The main ingredients to the formulation of these inter-phase interaction operators are, in
the colour approach [33, 39–41], the chromodynamic or colour current vector �K

�K(�x, t) =
n∑

i=0

[f blue
i (�x, t) − f red

i (�x, t)]�ei = �Kblue(�x, t) − �K red(�x, t) (26)

and the chromodynamic or colour gradient vector �G

�G(�x, t) =
n∑

i=0

[ρblue(�x + �ei, t) − ρred(�x + �ei, t)]�ei . (27)

According to the lattice Boltzmann models of Gunstensen and co-workers [39, 40] and Grunau
et al [41] the two source terms, Sred

i and Sblue
i , can be written as

Sred
i = Ared

�G2
i (�x, t) − ζ �G2

i

| �G| , Sblue
i = Ablue

�G2
i (�x, t) − ζ �G2

i

| �G| . (28)

In this heuristic quadratic approach | �G| is the magnitude of the chromodynamic gradient
vector, �Gi = �G ⇀ei is the projection of the gradient vector along the lattice node direction ⇀ei ,
ζ is a constant proportional to the square of the lattice speed of sound, and Ared and Ablue

are two adjustable parameters which control the surface tension for the two (or more) phases.
This formulation shows that the interaction rules redirect the momentum of the components
according to the gradient of a colour field which is defined by the spatial distribution of the
phases. One should also note that the colour gradient vanishes in each single-phase region of
the incompressible flow. Therefore, the source terms only contribute to interfaces and mixing
regions.

The moments for the two flow phases amount to

ξ red(�x, t) =
n∑

i=0

f red
i (�x, t), ξ blue(�x, t) =

n∑
i=0

f blue
i (�x, t),

ξ(�x, t) = ξ red(�x, t) + ξ blue(�x, t),

ρred(�x, t) = mredξ red(�x, t), ρblue(�x, t) = mblueξ blue(�x, t),

ρ(�x, t) = ρred(�x, t) + ρblue(�x, t),

(29)

where ξ red(�x, t) and ξ blue(�x, t) are the particle densities of the two flows, and ξ(�x, t) is the
total particle density at lattice point �x and time t . The quantities ρred(�x, t), ρblue(�x, t), and
ρ(�x, t) are the corresponding mass densities. The local velocities are

�ured(�x, t) = 1

ρred(�x, t)

n∑
i=0

f red
i (�x, t)�ci, �ublue(�x, t) = 1

ρblue(�x, t)

n∑
i=0

f blue
i (�x, t)�ci,

�u(�x, t) = 1

ρ(�x, t)

n∑
i=0

(f red
i (�x, t) + f blue

i (�x, t))�ci,

(30)

where �ured(�x, t), �ublue(�x, t) and �u(�x, t) are the corresponding local velocities at lattice point �x
and time t .

1.9.3. Pseudo-potential models of multi-phase lattice Boltzmann flows. An alternative to the
chromodynamic approach of Rothman and Keller [33], Gunstensen and co-workers [39, 40]
and Grunau et al [41] for the lattice-based simulation of multi-phase flows was suggested
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by Shan and Chen [42, 43] and Shan and Doolen [44, 45]. Their formulation uses a pseudo-
potential model and introduces a non-local interaction force between dissimilar flow particles.
This potential is essential for the description of non-ideal fluids since it controls the form of the
resulting equation of state of the fluid as well as the kinetics of phase separation. The model
of Shan and Chen can be readily formulated for an arbitrary number of phases consisting of
particles with different molecular masses.

The evolution of the particle populations follow, for the k different fluid components at each
lattice node, a form of the lattice Boltzmann equation with different relaxation and interparticle
interaction properties, as outlined above for the chromodynamic model, according to

f
φ=1,new
i (�x + �ci
t, t + 
t) − f

φ=1,old
i (�x, t) = − 
t

τφ=1
(f

φ=1,old
i (�x, t) − f

φ=1,eq
i (�x, t))

+S
φ=1
i , . . . f

φ=k,new
i (�x + �ci
t, t + 
t) − f

φ=k,old
i (�x, t)

= − 
t

τφ=k
(f

φ=k,old
i (�x, t) − f

φ=k,eq
i (�x, t)) + S

φ=k

i , (31)

where τ 1, τ 2, . . . , τ k are the relaxation parameters for the 1, 2, . . . , k individual flows (i.e. they
do not account for interactions among dissimilar particle types). The index i stands for the
n base vectors of the respective lattice type. The index φ refers to the different fluid phases
(running from φ = 1 to φ = k). The equilibrium distributions for the individual phases are in
the model of Shan and co-workers [42–45] formulated in the same way as outlined above for
the chromodynamic model, equation (24).

The source terms S
φ=1
i · · · Sφ=k

i describe the interaction between the phases using a
pseudo-potential formulation. They are in the model of Shan and co-workers [42–45] usually
formulated in the following way

S
φ

i = �Fφ�ei, (32)

where S
φ

i is the interaction source term for phase φ in the direction of the lattice vector �ei and
�Fφ is the total effective interparticle force vector acting on the φth component associated with

the pseudo-potential of the pairwise interaction between different particle types. Interactions
between identical particle types are considered by the single-phase one-step relaxation terms,
as in all Bhatnagher–Gross–Krook versions of the lattice Boltzmann model.

The interaction force between particles of component φ at site �x and of component φ′

at site �x ′ is assumed to be proportional to their respective effective mass. The interaction is
approximated in the form of an effective free-energy potential, ψφ(ρφ(�x)), which is in the
Shan–Chen model written for phase φ at position �x as a function of the local particle mass
density. It takes the following switch-like empirical form

ψφ(�x) = ψφ(ρφ(�x)) = ρ
φ

0

(
1 − exp

(
−ρφ(�x)

ρ
φ

0

))
, (33)

which marks a sharp transition between the light and the dense phase. In this expression ρ
φ

0 is
a tunable constant in the form of a reference density which defines the transition between the
light and the dense phase.

One should remark that the spacing between particles of component φ at site �x and
of component φ′ at site �x ′ takes in the Shan–Chen model only pairwise nearest-neighbour
interactions into account, i.e. |�x − �x ′| = |�ei |. The total interaction force on component φ at
site �x can be written as

�Fφ(�x) = −
k∑

φ′=1

∑
�x ′

Vφφ′(�x, �x ′)(�x ′ − �x) = −
k∑

φ′=1

n∑
i=0

Vφφ′(�x, �x + �ei)�ei,

Vφφ′(�x, �x ′) = Gφφ′(�x, �x ′)ψφ(�x)ψφ′
(�x ′),

(34)
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where Vφφ′(�x, �x ′) is an interaction pseudo-potential between different phases. The summation
symbol over �x ′ accounts for nearest neighbour nodes. The symbol Gφφ′(�x, �x ′) is the strength of
the interaction. It assumes the form of a Green’s function matrix which satisfies the symmetry
relationship Gφφ′(�x, �x ′) = Gφφ′(�x ′, �x). The expression for the pairwise phase interaction
shows that the pseudo-potential force acting on the component phase φ at site �x is simply a
neighbour sum of the forces between the fluid particles belonging to phase φ at site �x and the
fluid particles belonging to phase φ′ at the neighbouring sites �x ′. If only homogeneous isotropic
interactions between the nearest neighbours are considered, the Green’s function Gφφ′(�x, �x ′)
assumes the form of a simple symmetric lattice matrix with constant elements, i.e.

Gφφ′(�x, �x ′) =
{

0 if |�x − �x ′| > |�ei |,
gφφ′ if |�x − �x ′| = |�ei |,

(35)

where |�ei | is the magnitude of the lattice parameter and gφφ′ is the amplitude factor of the
strength of the interaction potential between components φ and φ′.

It is an important feature of the Green’s function method that phase separation starts
spontaneously once the interaction strength exceeds a critical threshold value. This means
that, inversely, this critical interaction value acts like a phase transformation temperature
[24, 30–32, 42–45]. Therefore, it can be used to calibrate the system with respect to the
thermodynamic properties of the interacting flows under consideration of lattice type and
initial density. The value of the amplitude factor gφφ′ can be related to the surface tension.
The moments of these k flows can be calculated, as outlined in the preceding subsection.

Alternative formulations of the pseudo-potential method for multi-phase lattice flows use
a related approach, where the lattice Boltzmann equation is not equipped with a separate
source term. In these approaches the actual pair interaction between the immiscible phases
enters through a modified form of the equilibrium distribution functions rather than explicitly
through a separate source term. One can show, though, that these lattice formulations are
equivalent.

1.9.4. Free-energy models of multi-phase lattice Boltzmann flows. The multi-phase lattice
Boltzmann models outlined in the preceding two subsections are based on phenomenological
sharp-interface approaches to interface energy and dynamics. Although, particularly, the model
formulations suggested by Shan and Chen [42, 43] and Shan and Doolen [44, 45] are well
suited for describing spontaneous phase separation including Laplace-type capillary effects
in isothermal multi-component flows, an important improvement was suggested by Swift and
co-workers [46–48] in terms of the free-energy approach.

The basic approach of the free-energy model is that the equilibrium distribution can be
defined consistently, based on thermodynamics, using, for instance, a classical form of a diffuse
interface approach. Consequently, the conservation of the total energy, including surface,
kinetic and internal energy terms, can be properly satisfied. The van der Waals or, respectively,
the Cahn–Hilliard formulation of quasilocal thermodynamics for a two-component fluid in
equilibrium at a fixed temperature has a free-energy functional form which is assumed to
depend on density and density gradients according to

ψ(ρ) =
∫

[ϕ(T , ρ) + W(∇ρ)] dV, (36)

where the term ϕ(T , ρ) in the integral is the bulk free-energy density and the second term,
W(∇ρ), is the free-energy contribution from density gradients and is related to the surface
tension. An important aspect of this approach is that the free-energy functional can be written in
the form of a Landau potential which includes high-order gradient terms that act as a penalty
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contribution with respect to interface curvature. When using a quadratic interface penalty
approximation the non-local system pressure P is related to the free-energy density functional
according to

P = ρ
dψ(T , ρ)

dρ
− ψ(T , ρ) = P0 − kρ∇2ρ2 − 1

2
k|∇ρ|2. (37)

The full Ginzburg–Landau-type pressure expression, which includes also off-diagonal terms
(see derivations in [24, 46]), enters finally a modified form of the equilibrium particle velocity
distribution function which accounts also for some weak non-local terms [46–48].

1.10. Thermal fluctuations and movable interfaces—lattice Boltzmann simulations of
colloidal particle-fluid suspensions

Lattice Boltzmann automata are well-suited for the simulation of colloidal suspensions owing to
their conceptual potential to tackle intricate boundary conditions and to incorporate fluctuation
forces [24, 25]. In order to simulate particles suspended in fluids the lattice Boltzmann method
must incorporate discretized solid particles that can move across the nodes of the stationery
lattice as well as an approximate treatment of the interaction of those particles with the fluid.

The latter aspect can be treated in the framework of the fluctuation–dissipation approach.
Thermal fluctuations on a mesoscopic scale can be introduced into the lattice Boltzmann
framework by means of stochastic Brownian hits. These thermal hits can be included in
the form of small random pulses each exerting an additional force term which may shift the
positions of the suspended particles to any of the neighbouring nodes in a probabilistic fashion.
While each individual force pulse may push the particle in a arbitrary direction, the overall
directional and amplitude distribution of the pulses must reproduce a Gaussian form. The
variance of the distribution is adjusted in such a way as to define the temperature of the system
by means of the fluctuation–dissipation theorem [24, 25, 49, 51]. Similar approaches are well
known from solutions of Langevin-type continuum-field differential equations which require
the incorporation of stochastic terms that mimic small thermal hits on continuum objects.

The second open question in this context is the treatment of the solid obstacles suspended
in the fluid. According to the work of Ladd and co-worker [25, 49] a solid boundary can be
mapped onto the lattice and a corresponding set of boundary nodes, �rb, can be defined in the
middle of links, whose interior points represent a suspended particle. A no-slip boundary
condition on the moving particle requires the fluid velocity to have the same speed at the
boundary nodes as the particle velocity �ub which has a translational portion �U and a rotational
portion �L. Assuming that the centre position of the particle is �R, then

�ub = �U + �L × (�rb − �R). (38)

The distribution function fi is then defined for grid points inside and outside the suspended
particle. To account for the momentum change when �ub is not zero, Ladd proposed to add a
term to the distribution function for both sides of the boundary nodes:

f ∗
i (�x) = fi(�x) ± B(�ei · �ub), (39)

whereB is a coefficient which depends on the detailed lattice structure and which is proportional
to the mass density of the fluid. The + sign applies to boundary nodes at which the particle is
moving toward the fluid and the − sign for moving away from the fluid.

1.11. The lattice Boltzmann method for reactive flows

Reactive flows are ubiquitous in materials science and engineering. Prominent examples
occur in the fields of corrosion and tribology. For describing such reactive flows consisting
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Table 5. Overview of some groups which make simple trial versions of lattice Boltzmann source
codes or executables available.

University of Braunschweig, Germany (http://www.cab.bau.tu-bs.de/institut/mitarbeiter/
drittmittel/freudiger/freudiger.htm)

University of Erlangen, Germany (http://www.lstm.uni-erlangen.de/lbm2001)
Alfred-Wegener-Institut, Germany (http://www.awi-bremerhaven.de/Modelling)
University of Tokyo, Japan (http://www.gaea.k.u-tokyo.ac.jp/∼niimura/niimura-QF)
University of Geneva, Switzerland (http://cui.unige.ch/spc/Cosmase)

of a number of miscible species in the framework of the lattice Boltzmann approach requires
to introduce a set of distribution functions, f

φ

i , matching the various components φ. The
corresponding lattice Boltzmann equations amount to

f
φ,new
i (�x + �ci
t, t + 
t) − f

φ,old
i (�x, t) = −
t

τφ
(f

φ,old
i (�x, t) − f

φ,eq
i (�x, t)) + R

φ

i , (40)

where R
φ

i is the reactive term which must have the property to reproduce the correct rates of
the density changes, ρ̇φ , and of the energy changes, q̇φ , for each of the reaction partners, i.e.

mφ

n∑
i=0

R
φ

i = ρ̇φ, mφ

n∑
i=0

R
φ

i �ei = 0, mφ

n∑
i=0

R
φ

i

�ei

2
= q̇φ, (41)

where mφ is the mass of a fluid particle belonging to species φ. Additional boundary conditions
are due to the conservation of mass, i.e.

k∑
φ=1

mφ

n∑
i=0

R
φ

i = 0,

k∑
φ=1

mφ

n∑
i=0

R
φ

i

�ei

2
= q̇, (42)

where q̇ amounts to the total heat exchange in the reactive flow. The rates ρ̇φ and q̇φ are usually
sensitive (exponential) functions of the temperature. While the basic constraints for R

φ

i are
given above in terms of the conservation equations, the detailed coefficients of the reaction
term approximation depend on the specific problem addressed [24].

1.12. Implementation, boundary conditions and initial value conditions for lattice Boltzmann
simulations

1.12.1. Numerical aspects, implementation and parallelization. The main steps in a lattice
Boltzmann algorithm are the definition of the boundary conditions, the initialization of start
values for density and momentum, the calculation of the local equilibrium distribution with
these given values, the propagation of the particle portions to the next neighbour (except for
the distribution of the rest particles), collision and the calculation of the new density and
momentum distribution. After this step the time increment is increased by one unit and the
algorithm starts again with the calculation of the equilibrium distribution, table 5.

The lattice Boltzmann method is basically resource intensive when it comes to larger three-
dimensional arrays. This means that running simulations on systems in excess of 1003 nodes
is not practical because of the lack of memory resources and long processing times. However,
one should underline that the method has very low memory use and high processing speed
when counted per lattice site, particularly when it comes to complicated boundary conditions.
This makes it an ideal and efficient method for materials-related applications which are often
characterized by rough interfaces and flow percolation problems.

Because of these limitations set by conventional single processor architectures and owing
to the fact that the lattice Boltzmann method generally requires only near-field neighbour
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information (like most cellular automata), the algorithm is a good candidate for parallel
implementations. Parallelization is typically realized by multiple instruction multiple data
(MIMD) systems which run in single program multiple data (SPMD) mode. This means
that the data set is divided into spatially contiguous blocks along one axis. Multiple copies
of the same program are then executed simultaneously on different processors belonging to
the parallel computer, each operating on its own block of data (SPMD concept). Each copy
of the program runs as an independent process, and typically each process runs on its own
processor. At the end of each iteration, data for the lines (two-dimensional) or planes (three-
dimensional) that lie on the boundaries between blocks are passed between the appropriate
processes. This means that almost all parts of an algorithm must be carried out fully parallel
in order to obtain maximum acceleration upon parallelization. The exchange of data between
the processors must be provided within the code by using communication library routines
such as the message passing interface (MPI) library or the parallel virtual machine (PVM)
library.

1.12.2. Boundary conditions. The first step in the set-up of the boundary conditions for a
lattice Boltzmann simulation consists in the definition of the character of each lattice node.
Fluid nodes are those grid points on which the flow collision operator is fully applied. All other
grid points are referred to as solid nodes. The relevant ones among them are the boundary
nodes. These are the ones where flows impinge on at least one solid node which may belong
to a movable particle or to the system wall. The node type can be identified by a Boolean
marker.

Collisions of fluid particles with solid objects at the boundary nodes can be grouped into
three types of obstacle situations [4, 24, 32]. These are collisions with static solid objects, e.g.
static wall elements, collisions with moving walls, e.g. to shear the system, and collisions with
moving particles, e.g. such as occurring for freely suspended colloids (see separate section).
In each of these cases the additional possibility of wall reactivity can be taken into account by
separate rules.

Such contact situations are in lattice Boltzmann simulations usually implemented by
applying so-called no-slip, or stick, boundary conditions in the case when a solid obstacle
imposes friction, figure 10. This is achieved by implementing a bounce-back algorithm on
the links [4, 24, 32]: during propagation, the component of the distribution function that would
propagate into the solid node is bounced back and ends up back at the fluid node, but pointing
in the opposite direction. This means that incoming particle portions are reflected back towards
the nodes they came from. This rule produces stick boundary conditions at roughly one-half
the distance along the link vector joining the solid and fluid nodes, ensuring that the velocity
of the fluid in contact with the solid equals the velocity of the latter. In the case when the zero-
velocity plane must be located exactly inside the boundary layer, i.e. on the corresponding
boundary layer nodes rather than being shifted from the location of the boundary nodes half-
way into the fluid, one can use suited interpolation algorithms [24, 30–32]. An alternative
to the introduction of a nodal bounce-back interpolation rule is to place the boundary nodes
midway between solid and fluid nodes. Frictional slip or the limiting case of free-slip boundary
conditions may be appropriate for smooth boundaries with small or negligible friction exerted
on the flow.

The surface forces resulting from particle bounce-back are calculated from the momentum
transfer at each boundary node and summed to give the force and torque on each obstacle object.
In contrast to finite-difference and finite-element methods, where local surface normals are
required to integrate the stresses over the obstacle surface, the bounce-back rule eliminates
these complications by directly summing the surface forces.
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Figure 10. Schematic figure showing the implementation of the bounce-back algorithm both, for
no-slip (rigid wall) as well as for slip boundary conditions (movable or deformable wall).

1.12.3. Initial conditions. Initial conditions can be defined by starting from an equilibrium
distribution. This means that the flow density is equal to a constant everywhere on the
grid, since ρ(�x, t) = m

∑n
i=0 f

eq
i (�x, t), and the speed is equal to 0 at each node in the

system before the first translation and collision operations. The initiation of flows can than
be induced by imposing constant velocity boundary conditions at the fluid inlet for instance
in conjunction with periodic boundary conditions. Such settings can typically approximate
the experimental practice of constant flow rates. Periodic boundary conditions are particularly
useful for modelling bulk systems because they tend to minimize finite-size edge effects.
Another important initial standard condition is the assumption of constant pressure.

1.13. Conventional cellular automata and the lattice Boltzmann method

The basic structure of the lattice Boltzmann method resembles that of a conventional cellular
automaton algorithm, which has been successfully used particularly for the simulation of
growth, recrystallization and coarsening phenomena in metals [50, 51]. The classical cellular
automata typically used in materials science and engineering differ from both lattice gas and
lattice Boltzmann methods, since they do not use fluid flow vectors or momentum vector
distribution functions but scalar (e.g. energy) or tensorial (e.g. orientation) parameters as
internal state variables.

Otherwise they follow a scheme common to all automata [52–55], that is, they are discrete
in time and space and use Boolean or real-valued state variables to describe the constitutive
behaviour of the materials at a microscopic level. They may be defined on different regular
or non-regular two-dimensional or three-dimensional lattices considering the first, second or
third neighbour shells for the calculation of the state change of a node. The system complexity
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emerges from the repeated and synchronous application of certain cellular automaton rules
equally to all nodes of the lattice. These local rules can for many cellular automaton and
lattice Boltzmann models in materials science be derived through finite-difference formulations
of the underlying differential equations that govern the system dynamics at a microscopic
level. Important fields where materials-oriented cellular automata have been successfully
used for microstructure predictions are primary static recrystallization and recovery [56–65]
and solidification [66–70]. The automaton properties of the lattice Boltzmann method makes it
an ideal platform for combinations with related materials simulation methods such as cellular
automata for instance for the case of crystal growth [50, 51]. An overview on the relationship
between the lattice Boltzmann method and conventional cellular automaton is given in [71].

2. Some applications of the lattice Boltzmann method in materials science and
engineering

2.1. Introduction

The second part of the article provides an introduction to applications of the lattice
Boltzmann method in the fields of materials science and engineering. Although the lattice
Boltzmann method is considerably gaining momentum in the fields of general computational
fluid mechanics, kinetic theory, chemical process engineering and soil mechanics, the materials
engineering community has not yet fully exploited this approach.

Important topics which are of interest in the context of materials science and engineering
are flow dynamic issues associated with tribology and friction during metal forming, fluid
dynamics during melting, casting, semi-solid processing of metals and polymers including
multi-component flows, hydrodynamic effects during liquid–liquid and liquid–solid phase
transformations, flows in microporous microstructures such as those occurring during
processing and infiltration of metallic foams or related composite pre-forms, colloidal flows,
liquid crystal flows, lubricated contact mechanics, microdevice engineering, abrasion and
crystal growth kinetics in conjunction with fluid flow.

All these examples have three points in common. First, they mark challenging topics in
current materials science, engineering, and processing. Second, it is difficult to yield numerical
convergence when simulating such situations with the aid of classical Navier–Stokes solvers,
owing to the intricate boundary conditions and constitutive behaviour inherent to such flows.
Third, these problems are typically too large in terms of their respective spatial dimensions and
characteristic timescales, so that off-lattice pseudo-particle or molecular dynamics approaches
cannot be used. This means that most of the materials-related problems mentioned above are
excellent candidates for the application of the lattice Boltzmann method.

An important aspect that must be considered, though, before the use of a lattice-based fluid
dynamics simulation method to an engineering problem is its validity regime with respect to
the situation encountered, as already discussed in greater detail in the first part of this article.
The two important criteria in this context are the ratio of the mean free particle path relative to
the characteristic system length (e.g. obstacle spacing) as expressed by the Knudsen number
and the occurring characteristic macroscopic flow speed regimes as quantified by the Mach
number. As a rule of thumb the lattice Boltzmann scheme is particularly well suited for small
Mach numbers (below 0.15) and small Knudsen numbers (below 0.2), figures 1 and 3.

Some of the engineering topics mentioned above will be discussed in the following. It must
be noted, though, that the intention of this part of the work does not to present in-depth treatment
of the various topics, but rather, to present some representative examples which document the
huge potential of the lattice Boltzmann simulation technique in the field of advanced materials
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Figure 11. Application of the lattice Boltzmann method for the prediction of turbulence as a
function of surface roughness at deformable metallic surfaces [50, 71]. The white area indicates the
rough sheet surface. The greyscale pattern marks the fluid pressure where light tones corresponds
to high and dark tones to low pressure. The arrows in the upper figures track some fluid portions
visualizing turbulence.

science and engineering. The intention, therefore, is to stimulate the reader’s interest in this
method with respect to current and new problems in materials research. Further details which
are beyond the limits of this article must, therefore, be obtained from the original references
provided in each subsection.

2.2. Lubrication dynamics in metal forming

The precision which is nowadays required in the area of metal forming and tool design requires
detailed knowledge of the underlying contact mechanics between workpiece, lubricant and
tool. An essential example is the domain of large-scale automotive sheet forming where the
overall shape accuracy after forming, including elastic springback, must be of the order of
some hundred microns. Another example is the field of microdeformation processing such
as used when forming metallic parts in the millimetre and centimetre range. Predicting the
processing of such products is even more intricate when it comes to the treatment of contact
micromechanics at a quantitative level. Related issues occur in the fields of sheet and foil
rolling or for flows and corrosion in narrow tubes with rough surfaces.

A main aspect in the context of sheet forming—at least as far as fluid mechanics
is concerned—is the importance of the surface roughness and the resulting (Prandtl-type)
boundary layer flow dynamics in the vicinity of such a rough interface. Of particular interest
are scaling effects in boundary layers which arise from changes in the surface topography of
metals such as occurring during plastic forming. Scaling is important because metallic surfaces
become rougher during deformation while the fluid properties may remain unchanged at least
within certain bounds (temperature changes due to dissipated heat as well as abrasion are
neglected at this point). An important observation is the transition from laminar to turbulent
flow as a function of the roughness of the deformed metal surface.

Fluid dynamics for such a situation can be simulated by the use of a lattice Boltzmann
automaton. For the example given in figure 11 the simulation strategy was designed to study
the transition from laminar to turbulent flow as a function of the increasing roughness of a
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Figure 12. Simulation of Miller and Succi [74] of dendritic growth in a fluid environment.
Figures (a), (b) and (c) show the evolution of crystal shapes for different seeds and tilting angles in
the case of diffusive transport only. Figures (d), (e) and ( f ) show the evolution of the same crystal
shapes for different seeds and tilting angles if buoyancy convection is present.

surface and of the viscosity of the fluid. The transition is characterized by the formation of
turbulences in the vicinity of the tips of the roughness peaks. The rough metallic surface
is modelled as a sinusoidal wall. One important parameter in the study is the variation of
the period and amplitude of the sinusoidal surface. The flow is modelled by using a standard
lattice Boltzmann automaton with single-step relaxation, figure 11.

2.3. Dendritic crystal growth under the influence of fluid convection

The group of Miller and co-workers [72–75] has recently designed a three-dimensional parallel
lattice Boltzmann code for the simulation of liquid–solid phase transformations, in particular,
for predicting dendritic growth in a flow environment, figure 12. The basic challenge of such an
approach consists of providing a numerical tool for calculating growth kinetics together with
fluid flow on a mesoscopic scale in one integrated simulation approach. Related pioneering
work about the conjunction of forced flows with crystal growth was published by Tönhardt
and Amberg [76] as well as by Beckermann et al [77]. The aim of such simulation studies is
to study the influence of fluid convection on the crystal growth kinetics and on the resulting
microstructures of the crystals.

The engineering perspective of such approaches is at hand. For instance, the growth of
large single crystals with high quality for electronic and optical purposes is of huge industrial
importance. Single crystals with certain lattice defects such as twins, small angle boundaries
or related dislocation arrays resulting from growth do no longer have the same functional
properties as a perfect single crystal. It is likely that a strong relationship exists between the
flow dynamics on the one hand and the elementary atomic-scale and mesoscale solidification
mechanisms on the other. It is, hence, of substantial importance to combine these two aspects
in one theoretical framework, i.e. the development of joint simulation approaches may help to
predict the optimal conditions for crystal growth experiments with respect to achieving crystals
with good properties.

The approach of Miller and co-workers [72–75] is based on a joint phase-field lattice
Boltzmann automaton concept. The two phases, liquid and solid, are, in this approach,
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distinguished by a phase-field structure variable, similar as in the Ginzburg–Landau or Allen–
Cahn models. In contrast to conventional continuum solid-state phase field models, where the
time evolution of the phase field is computed by the integration of a Ginzburg–Landau-type
differential equation, Miller et al describe the phase transition by a reaction model as originally
suggested by de Fabritiis et al [78]. This model describes the phase transformation in terms of
transition rates across the interface from one phase into the other and vice versa. The transition
rates are calculated by using frequency factors from the inverse timescale for solidification and
melting, respectively, together with switch functions which control the onset of melting and
solidification around the critical temperature.

2.4. Simulation of metal foam processing

Metal foams are a novel class of energy absorbing structural materials with a considerable
perspective for applications in the field of light-weight materials engineering. Their widespread
commercial use, though, is still impeded by the unsatisfactory reproduction of material
homogeneity. The microstructure and pore distribution of foams are to a large extent
determined by the process parameters and by the details of the production strategy. Therefore,
it is sensible to accompany further initiatives for microstructure and property optimization
of metallic foams with systematic process simulations. These should be designed to
identify process windows for optimum foam homogeneity and reproducibility of the cellular
microstructure.

The simulation of the evolution and decay of metallic foams produced by powder
metallurgical routes is a very demanding target for applications of the lattice Boltzmann
method, since such processes are characterized by intricate boundary conditions, phase
transformation, melt dynamics, gas dynamics and gas–melt interaction. Also, gravity occurs
in such processes as a relevant body force.

The group of Singer [79] has recently published such an investigation on the formation
of metal foams by using a lattice Boltzmann method. They had chosen a formulation
with free surface boundary conditions which allowed them to incorporate the gas–liquid
interface that is typical of the cellular foam microstructure evolving during processing. The
study aimed in particular at the clarification of the relationship between the processing
parameters and the resulting microstructures placing attention on pore nucleation, pore
growth, pore coalescence and solidification. The simulations were used to better understand
corresponding experiments which were conducted with an aluminium alloy which was mixed
and subsequently processed with the TiH2 as an agent providing the gas by a powder
metallurgical processing route. The study provided basic insight into the influence of viscosity,
surface tension, body forces and mould form on the kinetic and structural evolution of the foam
microstructure.

Related fields where the lattice Boltzmann method has reached the necessary maturity as
a simulation tool for optimizing production processes is the modelling of flows in complex
and time-dependent geometries, as they are encountered in the context of composite materials
that are manufactured by infiltrating fibre or powder pre-forms, figure 13.

2.5. Hydrodynamics of liquid crystalline polymers

Liquid crystalline polymers are in a state of matter in which liquid-like order exists at least in
one direction of space and in which some degree of structural anisotropy is present. Typically
such materials consist of rod- or plate-like molecular constituents which can align to a certain
extent. One differentiates between two types of liquid crystalline polymers. Nematic ones
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Figure 13. Simulation of flow infiltration through highly idealized porous microstructures. The
upper figure shows the pressure distribution and the two lower figures show details of the flow
vectors.

are composed of molecules with their long axes aligned along a specific direction while their
centres of mass are distributed randomly in space. The smectic liquid crystal state has a higher
degree of order than the nematic one due to existence of quasi-long range order in the positions
of the centres of gravity of the molecules in one or two dimensions. This means that the nematic
state is characterized by orientational order while the smectic one reveals both translational
and orientational order. Since the state of structural order in these liquid crystals is between the
traditional solid and liquid phases they are sometimes synonymously referred to as mesogenic
materials. To quantify just how much order is present in a material, an order parameter can
be defined which quantifies the angular deviation between the director and the long axis of
each molecule. For a perfect crystal, the order parameter is one. Typical values for the order
parameter of a liquid crystal range between 0.3 and 0.9, with the exact value a function of
temperature, as a result of kinetic molecular motion. The alignment of the liquid crystal
molecules entails tensorial anisotropy of the properties.

Studying the relationship between the structure of liquid crystalline materials and the
underlying hydrodynamics is essential for understanding the properties of these materials.
Other than conventional Newtonian flows, liquid crystals reveal a strong coupling between
their microscopic structure and the velocity fields imposed by the flow. For instance, shear
flow can induce non-equilibrium phase transition from the isotropic (fluid) to the nematic state
or lead to phenomena such as shear-thinning and thickening.
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Figure 14. Lattice Boltzmann simulations of liquid crystal hydrodynamics. The coupling between
the tensor order parameter and the flow is treated consistently, allowing investigation of a wide
range of non-Newtonian flow behaviour [82]. The figure shows two different states in Poiseuille
flow, where the lines represent the director orientation of the nematic phase projected down onto the
x–y plane, and the shading represents the amplitude of the order parameter. Flow is from top to
bottom, and the walls are at the left and right. At the walls, the director is aligned perpendicular to the
boundary. (a) A stable configuration at low flow. (b) Snapshots of an oscillating configuration where
the central region is in the ‘log-rolling state’ (director perpendicular to the plane) and the boundary
region consists of a transition from a configuration in the shear plane to a ‘tumbling’ and ‘kayaking’
region (director rotating in and out of the plane) interfacing to the central log-rolling state.

In order to better understand the mechanics of such flows it is pertinent to use simulation
methods which can take into account the different length and timescales that are relevant for
the constitutive behaviour of such materials.

Edwards and co-workers [80, 81] and the group of Denniston and Yeomans [82–84] have
suggested to use a multi-phase lattice Boltzmann free-energy method in conjunction with the
Bhatnagher–Gross–Krook single-step approximation for solving the hydrodynamic equations
of motion for nematic liquid crystals, figure 14. The main modification of their formalism
when compared to conventional multi-phase lattice Boltzmann schemes is the introduction of
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an additional symmetric traceless tensor-valued structural distribution function S.

f new
i (�x + �ci
t, t + 
t) − f old

i (�x, t) = −
t

τf
(f old

i (�x, t) − f
eq
i (�x, t)),

Snew
i (�x + �ci
t, t + 
t) − Sold

i (�x, t) = −
t

τS
(Sold

i (�x, t) − Seq
i (�x, t)),

(43)

where Seq
i is the corresponding equilibrium distribution. The values of this tensor density vari-

able are related to a tensorial order parameter which can describe the crystalline anisotropy of
those volume portions that assume the nematic or smectic state. Backflow, the hydrodynamics
of topological defects, and the possibility of transitions between the liquid crystalline and
isotropic phases appear naturally within the formalism. The method can also be used to study
the velocity dependence of the critical temperature in the nematic-isotropic transition.

2.6. Flow percolation in confined geometries

Figure 15 shows a two-dimensional example (taking a perspective into the plane in which the
fluid flows) where a Boltzmann-based lattice simulation has been applied to the situation of a
confined lubrication flow. The roughness data were experimentally obtained from a plastically
deformed steel surface. The experimental roughness analysis conducted on the surface of
the sample allowed us to separate the free volume portions from the regions where the sample
was in closed contact with the tool. The percolative flow in the remaining confined interface
represents a typical example of flow in a porous environment. The joint experiments and
fluid dynamics simulations aim at a better understanding of tribology and contact mechanics
during steel sheet rolling. Parameters to be varied in the experiments and simulations are
the viscosity of the lubricants, the surface roughness of the tool and sheet materials, and the
deformation rate.

The upper left-hand side of figure 15 shows the pressure distribution in the lubricant when
compressed and redistributed in the experimentally determined obstacle (contact) field. The
data show an in-plane view into the contact layer. The other two figures show magnifications
of flow details.

2.7. Processing of polymer blends—breakup and coalescence of fluid droplets

Another important area for applying the lattice Boltzmann method to materials engineering
is the field of polymer processing, particularly the mixing of immiscible polymers. Because
most chemically different polymers are relatively immiscible, fluid blending of such materials
is an ubiquitous challenge in the field of industrial polymer processing.

The two most important classes of engineering polymers produced by blending are rubber-
toughened plastics and stiffened elastomers. Such composites are characterized by synergetic
mechanical properties which arise from the two immiscible polymer compounds in them.
Blending processes for polymers are typically designed to produce fine spherical inclusions for
an increase in impact resistance or fibre-type dispersoids for enhanced unidirectional strength.
Typical products made of such materials are structural macroscopic parts. Examples are
blends of nylon and rubber and rubber-toughening of brittle glassy polymers where the rubber
inclusions can stop propagating cracks through the brittle material and dissipate energy.

For these reasons associated with mechanical properties and microstructure homogeneity
the aim of the blending process is to produce very fine dispersions of the order of submicron-
size droplets. Optimization of the process window for achieving these goals requires an
improved understanding of the dynamics and mechanisms associated with polymer droplet
breakup during mixing of such immiscible polymers. Important subtasks in this context are
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Figure 15. A two-dimensional example of the application of a Boltzmann lattice gas simulation to
measured the roughness data of plastically deformed steel. The upper left figure shows the pressure
distribution in the lubricant when compressed and redistributed in the experimentally determined
obstacle (contact) field. The data show an in-plane view into the contact layer. The other two
figures show magnifications of flow details [71].

the simulation of the microscopic breakup processes of droplets in shear flow and added
block copolymers, the prediction of the droplet size distribution in heavily sheared multi-
phase flows, the coalescence of polymer droplets in blends during processing, as well as the
detailed analysis of such microscopic processes under realistic industrial boundary conditions
in terms of geometry, processing rates, pressure and shear rates. The lattice Boltzmann
method represents an excellent approach to the numerical analysis of such multi-phase polymer
processing operations, particularly when aiming at the simulation of the breakup of droplets
under shear. The approach is very effective in systems which involve low Reynolds numbers,
different phases and complex geometrical boundary conditions [85, 86].

3. Conclusions

The study gave an overview of the lattice Boltzmann simulation method as an advanced tool for
predictions in the field of materials science and engineering. The first part presented the basic
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structure of the lattice Boltzmann simulation method while the second part gave examples
from materials science and engineering. The main conclusions are:

• The lattice Boltzmann simulation method is superior to conventional Navier–Stokes
solvers in the fields of materials science and engineering owing to its excellent numerical
stability and constitutive versatility.

• The lattice Boltzmann approach is an ideal platform for scale-bridging simulations since
the constitutive data, which finally characterize the flow at a macroscopic level, are
incorporated at a microscopic scale. This allows one to describe the behaviour of flows
(relaxation, collisions with another fluid or solid phase) at an elementary and physically
based level.

• The basic structure of the lattice Boltzmann method resembles that of a cellular automaton
where the main constitutive internal state variable is a real-valued momentum vector
distribution function. This makes it an ideal platform for combinations with related
simulation methods such as cellular automata or Potts-type models for crystal growth.
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