/* Mechanical terming
pdat_twin = 0.0_pRes)
dgdot_dtautwin = 0.0_pRes
/ = 0_pInt
/ = 0_pInt

gooe_strp()) =

DAMASK: <u>D</u>üsseldorf <u>A</u>dvanced <u>MA</u>terial <u>S</u>imulation **K**it: Multi-Physics Crystal Plasticity Simulation of DP Steels

F. Roters, M. Diehl, P. Shanthraj, D. Raabe

Max-Planck-Institut für Eisenforschung

Big thanks to P. Eisenlohr, R. Lebensohn, B. Svendsen, C. Zambaldi, C. Tasan, S. Zaefferer

1* Derivatives o Igdot_dtauslip(j (Cabs(gdot_sli constitutive_d StressRatio_pm

Plastic veloc .p = Lp + (1.0,p

!* Calculation c forall (k=1:3,1= dLp_dTstar3333 dLp_dTstar3333

D. Raabe – 18th International Conference on the Strength of Materials (ICSMA18) – July 2018 – Ohio State University, Columbus, USA

DP steels, design targets

WD 9.5mm

10*µ*m

2

DP steels for auto applications

High UTS Low yield strength High stiffness Sufficient ductility Good formability No Lüders strain Tunable properties Low cost

Increase in strength (e.g. more martensite) reduces ductility

15.0kV

X1.300

Strain rate 800/s: TWIP vs. DP800

Energy absorption depends on material & design

Collaboration with DFG SFB 761: F. Roters, M. Bambach, G. Hirt, RWTH Aachen / MPI Düsseldorf

Strain rate 800/s: TWIP vs. DP800

1600

1400

1200

1000

800

600

400

Stress, *in MP*a

DP800

High UTS Low yield strength **High stiffness** Sufficient ductility Good formability No Lüders strain **Tunable properties** Low cost

 $W_V = \int_0^T \sigma d\varepsilon \approx \sigma_f \varepsilon_f$ TWIP

Collaboration with DFG SFB 761: F. Roters, M. Bambach, G. Hirt, RWTH Aachen / MPI Düsseldorf

Digital model

https://damask.mpie.de/

Strain map & stress map

Diehl et al. Meccanica 51; JOM 69; Tasan et al. IJP 63 (2014); Tasan et al. Acta Mater. 81 (2014) 386

Constitutive parameters: FEM & indents

Full-field microstructure simulation based on experimental EBSD

Full-field microstructure simulation based on experimental EBSD

 $P_{11} @ \overline{F}_{11} = 1.01$

Full-field microstructure simulation based on experimental EBSD

1040

Experimental vs simulation

SE→

IQ+ DIC strain→

 $IQ + CP strain \rightarrow$

Roters et al. Procedia IUTAM 3 (2012) 3; Diehl et al. Meccanica 51 (2016) 429; Diehl et al. JOM 69

Issue # 1:
 The world is 3D

ICME applied to DP steels: 3D effects

3D EBSD: KAM

Roters et al. Procedia IUTAM 3 (2012) 3; Diehl et al. Meccanica 51 (2016) 429

YEARS 1917-20

FFT polycrystal plasticity solver: fast in RVE

Spectral solver, dual phase steel, 23% uni-axial deformation

Microstructure input

Suquet, Moulineque, Lebensohn, Eisenlohr, Roters, Shanthraj, Diehl,...

Spectral solver, dual phase steel, 23% uni-axial deformation

Suquet, Moulineque, Lebensohn, Eisenlohr, Roters, Shanthraj, Diehl,...

Spectral solver, dual phase steel, 23% uni-axial deformation

Stress distribution

Suquet, Moulineque, Lebensohn, Eisenlohr, Roters, Shanthraj, Diehl,...

Serial sectioning; full field 3D simulation

v M strain

v M stress

DAMASK & Dream3D: 3D coupling

Issue # 2 Real DP steels contain micro-damage

Damage in DP steels

Damage modeling in DAMASK

Shanthraj et al. JMPS 99 (2017); Comp. Appl. Mech. Engin. (2016)

DAMASK: Free multiphysics CP & PF

Roters et al. Acta Mater. 58 (2010) & Procedia IUTAM 3 (2012) 3; Raabe et al. Acta Mater. 50 (2002) 421; Diehl et al. JOM 69 23

Results and discussion

LE, Max. In-Plane Principal SNEG, (fraction = -1.0) (Avg: 75%) +6.197e-01 +5.788e-01 +5.380e-01 +4.971e-01

+4.562e-01 +4.154e-01 +3.745e-01 +3.336e-01 +2.927e-01

+2.519e-01 +2.519e-01 +2.110e-01 +1.701e-01 +1.293e-01

updating

LE. Max. In-Plane Principal
SNEC (fraction = -1.0)
SNLG, (nacion = -1.0)
(Avg: 75%)
+6.197e-01
+5.788e-01
+5.380e-01
+4.971e-01
+4.562e-01
+4.154e-01
+3 745e-01
+3 3369-01
+2.9270-01
+2 5190-01
+2.1100-01
11 7010-01
+1.7010-01
+1.2938-01

LE, Max. In-Plane Principal
SNEG (fraction = -1.0)
(1) = 750()
(AVG: 75%)
+5.990e-01
+5.604e-01
+5 217e-01
14 8200-01
+4.0308-01
+4.4438-01
+4.05/e-01
+3.670e-01
+3.283e-01
+2.896e-01
+2.509e-01
+2 1230-01
11 7260-01
+1.7360-01

Results and discussion

Texture evolution during cup drawing

From Crystal Plasticity to Deep Drawing

Düsseldorf Advanced MAterial Simulation Kit, DAMASK

DAMASK

Düsseldorf Advanced Material Simulation Kit

Freeware, GPL 3

Thank you for the attention Funding: ERC, DFG, BMBF Mercedes, Tata, M2I, INPRO

Crystal plasticity & phase field: Mechanics, damage, phase transformation, diffusion, recrystallization, hydrogen

> 20 years of development > 55 man years expertise > 50.000 lines of code Pre- and post-processing Blends with MSC.Marc and Abagus Standalone (FFT) spectral solver Large user community

We train your students

Mises stress (MPa)

Yld91

<stress>

stress 22 / 9

-0.5

-1.5∟ -1.5

-1.0

0.0

stress₁₁/ <stress>

0.5

Yld2000-2D

Yld2004-18p Yld2004-27p