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Abstract

We suggest a theory of in-grain orientation gradients in plastically strained metals. It is an approach to explain why
initially uniformly oriented crystals can—under gradient-free external loadings—build up in-grain orientation gradients
during plastic deformation and how this phenomenon depends on intrinsic factors (crystal orientation) and extrinsic
factors (neighbor grains).

The intrinsic origin (orientation dependence) of in-grain orientation gradients is investigated by quantifying the
change in crystal reorientation upon small changes in initial orientation. This part of the approach is formulated by
applying a divergence operator to reorientation rate vector fields (in the present paper calculated by using strain-rate
homogenization Taylor–Bishop–Hill theory). The obtained scalar divergence function (but not the reorientation vector
field itself) quantifies the kinematic stability of grains under homogeneous boundary conditions as a function of their
orientation. Positive divergence (source in the reorientation rate vector field) characterizes orientations with diverging
non-zero reorientation rates which are kinematically unstable and prone to build up orientation gradients. Zero diver-
gence indicates orientations with reorientation rate identity with the surrounding orientations which are not prone to
build up orientation gradients. Negative divergence (sink in the reorientation rate vector field) characterizes orientations
with converging non-zero reorientation rates which are kinematically stable and not prone to build up orientation
gradients. Corresponding results obtained by use of a crystal plasticity finite element formulation are in good agreement
with the reorientation field divergence function derived by homogenization theory.

The extrinsic origin of in-grain orientation gradients (influence of grain–neighbor interaction) is addressed using a
crystal plasticity finite element bicrystal model. The simulations show that a significant dependence of orientation
gradients on the neighbor crystals occurs for grains with high positive divergence. The build-up of orientation gradients
in grains with close to zero or negative divergence is in body centered cubic crystals less sensitive to the presence of
neighbor orientations than in face centered cubic crystals (Goss and cube orientation). 2002 Published by Elsevier
Science Ltd on behalf of Acta Materialia Inc.
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1. Introduction

1.1. Phenomenology and terminology of
orientation gradients

Plastic deformation of poly- and single crys-
tals can lead to individual orientation changes
of the grains and, as a consequence, to the devel-
opment of deformation textures. However,
initially uniformly orientated crystals do often
not rotate as units but subdivide into portions
with a range of different orientations. We refer
to this phenomenon, which was already in 1940
observed and discussed by Barrett and Levenson
[1], to the formation of orientation gradients,
meaning spatial continuous or discontinuous
variations of crystal orientation within the orig-
inal grain borders.

Orientation gradients do not only form in the
trivial case of externally imposed strain gradients
(e.g. bulk torsion or rolling operations with non-
zero friction) but also under gradient-free external
loadings. They are in the literature also referred to
as localized orientation gradients [2], grain frag-
mentation [3], deformation banding [4–6] orien-
tation splitting [7], grain subdivision [4,8], or lat-
tice curvature [8–11].

Beaudoin et al. [2], Raabe [3], Leffers [4], and
Lee et al. [5,6] provided theoretical approaches to
explain the formation of a non-uniform orientation
spread within a grain. Using many elements per
grain Beaudoin et al. [2] observed in their 3D crys-
tal plasticity simulations heterogeneous defor-
mations within individual grains which lead to the
development of domains which were separated by
boundaries of high misorientation. Similar investi-
gations using crystal plasticity finite element
methods were also conducted by other authors (e.g.
[1,12–21]). Raabe [3], Leffers [4], and Lee et al.
[5,6] gave arguments for the formation of orien-
tation gradients on the basis of modified homogen-
ization models.

The term lattice curvature was typically used by
authors who underlined the mechanical aspects of
continuous in-grain orientation gradients [8–10],
mainly referring to the formation of geometrically
necessary dislocations.

Quantitative experimental work on this subject

was essentially conducted using orientation imag-
ing techniques via analysis of Kikuchi diffraction
patterns in the scanning electron microscope
(SEM) (e.g. [22–38]) and in the transmission elec-
tron microscope (TEM) (e.g. [37–41] [42–48]).
Earlier experimental work about orientation gradi-
ents was based on analysis of X-ray Bragg diffrac-
tion pole figures, Kossel diffraction patterns, elec-
tron channeling patterns, etch pits, and orientation
sensitive etching methods.1

The above described phenomena can occur in
single crystals as well as in grains of polycrystals.
From the quoted literature some common features
of in-grain orientation gradient phenomena can be
identified: Orientation gradients were found

1. to occur under homogeneous boundary con-
ditions, i.e. they take place even if no gradients
are exerted by external loading (the internal load
is usually less well known) (e.g. [2,6,11,23]);

2. to depend on the strain path (e.g. [11]);
3. in many cases to depend on the initial orien-

tation and on the orientation path of the strained
crystal (e.g. [3,11,19,24,30,31,33]);

4. in many cases to depend on the neighbor grains
(e.g. [1,2,12–19]);

5. to be closely connected with a change in glide
system activity in the different in-grain portions
with different orientations (e.g.
[11,24,41,47,48]) (such in-grain domains of dif-
ferent orientation have in these works been
referred to as differently deforming regions);

6. in many cases to occur already at low strains
and build up further throughout deformation
(e.g. [1,3,7,24]);

7. to undergo continued refinement in the spatial
scale of subdivision with increasing total strain
and to occur at different spatial scales within the
same crystal (e.g. [12,24,30–32]).

In order to avoid confusion we will use the
expression orientation gradient (here always
meaning in-grain orientation gradient) as a rep-

1 Since this is no overview paper on experimental methods,
we quote only a selected set of papers and refer the interested
reader to the RISØ-overview of Hughes [47].
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resentative term for the various phenomena listed
above in the ensuing sections of the paper.

1.2. Aims of an orientation gradient theory

Besides the basic scientific challenge to eluci-
date the origin of orientation gradients, five main
practical reasons can be given for the formulation
of an orientation gradient theory. First, due to the
complexity of existing results and details observed
so far theory is required to better understand and
structure the underlying principles of orientation
gradients. Second, the key idea of our approach,
namely the use of the reorientation rate vector field
divergence as an intrinsic measure of orientation
gradients can be formulated as a concise scalar
function in orientation space using for instance
spherical harmonics. Third, our formulation is trac-
table for subsequent integration into other frame-
works dealing with the orientation dependence of
recrystallization or strain hardening phenomena.
Fourth, theoretical concepts help to separate
important from less important microstructural
information in the context of orientation gradients.
Fifth, complete experimental instead of theoretical
characterization of in-grain orientation gradient
phenomena throughout orientation space is not
possible due to the huge number of crystal orien-
tations and boundary conditions to be considered.

1.3. Basic theoretical approach

The present work aims at explaining why uni-
form crystals can build up orientation gradients
during plastic deformation and how this phenom-
enon depends on crystal orientation (intrinsic
dependence) and on the interaction with neighbor
grains (extrinsic dependence). The intrinsic origin
of orientation gradients is investigated on the basis
of the geometrical stability of grains with respect
to small changes in starting orientation. The orien-
tation dependence of orientation gradients is in the
intrinsic approach, i.e. without consideration of
neighbor interaction, formulated by applying a
divergence operator to reorientation rate vector
fields in orientation space. This scalar divergence
function then quantifies stability of grains under
homogeneous boundary conditions as a function of

orientation and strain state. Extrinsic reasons for
orientation gradients are addressed by calculating
the influence of grain–neighbor interaction directly
using a crystal plasticity finite element approach.

1.4. Plan of the paper

The plan of the paper is as follows: In Section
2 we introduce the reorientation field divergence
as a scalar function in Euler space for quantifying
the intrinsic origin of orientation gradients and for-
mulate it for fcc and bcc crystals for the plane
strain case. In Section 3 we check the consistency
of these predictions by use of crystal plasticity
finite element simulations. In Section 4 we investi-
gate the influence of neighborhood on the forma-
tion of orientation gradients using a crystal plas-
ticity finite element bicrystal model. Section 5
provides a discussion of the predictions, compares
the findings with experimental data from the litera-
ture, and explains differences found between the
fcc and the bcc structure.

2. Divergence of crystal reorientation fields as
intrinsic measure for orientation gradients

2.1. Concept and calculation method

The theoretical approach we suggest in this
paper for the explanation of the formation of in-
grain orientation gradients under homogeneous
external boundary conditions is based on strain rate
homogenization modeling and on crystal plasticity
finite element modeling. It aims at explaining why
initially uniformly oriented crystals can under
homogeneous boundary conditions form in-grain
orientation gradients during plastic straining and
how this phenomenon depends on crystal orien-
tation (intrinsic dependence) and on grain–
neighbor interaction (extrinsic dependence). In
contrast to some of the above quoted works the
present investigation does not make any predic-
tions about the spatial arrangement, size, or shape
of in-grain orientation gradients but provides a
more general geometrical approach for calculating
what the potential tendency of a particular grain
is to form orientation gradients within its original
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borders as a function of its initial orientation, its
neighbor grains, and the strain state.

The intrinsic origin of orientation gradients is
investigated on the basis of the kinematic stability
of grains with respect to small changes in starting
orientation. This follows a suggestion of Kocks
[49] who stated that orientation gradient effects
may proceed from a variation in slip system acti-
vation throughout a grain entailing microscopic
initial variation in slip and hence in the plastic
rotation leading to local domains with different
orientation. We will extent this approach and show
that the tendency to build up orientation gradients
can be formulated in terms of the orientation
dependence of such in-grain variations in slip sys-
tem selection and the resulting in-grain spread of
the reorientation rate. A consequence of this model
is that one can quantify the orientation dependence
of the phenomenon by calculating the dependence
of reorientation rate upon tiny changes in the initial
host orientation.

It will be shown that it is a strong function of
the grain orientation itself whether such initial vari-
ations entail in-grain orientation gradients during
plastic straining or not. As was found earlier and
as will be shown below the reorientation rate vec-
tor itself is not an adequate measure of future orien-
tation gradients.

The orientation dependence of in-grain orien-
tation gradients is in the intrinsic approach, i.e.
without consideration of neighbor interaction, for-
mulated by applying a divergence operator to reori-
entation rate vector fields in orientation space.
Such fields are generated by mapping the reorien-
tation rate vectors obtained (in the present case)
from strain-rate homogenization theory for each
orientation throughout orientation space (see e.g.
[11,49–51]). This scalar divergence function then
quantifies kinematic stability of grains under
homogeneous boundary conditions as a function of
orientation and strain state.

It is obvious that such a divergence analysis of
reorientation paths is a general approach for quan-
tifying orientational instabilities. It should be noted
though that the analysis of orientation stability is
not necessarily a non-linear problem, since many
homogenization models are linear. However, the
here suggested divergence approach for the analy-

sis of orientational stability is generally inde-
pendent on the underlying deformation model or
experiment. Its starting point is simply a theoreti-
cally derived or experimentally observed reorien-
tation field in orientation space (not in real space).

Fig. 1 describes the principle of our approach
(intrinsic case). The size of the different grain
regions is purely schematical. Fig. 1(a) shows a
grain in the initial state with some small initial
orientation variation and after straining with a
larger orientation variation. This is a case where
the initial orientation variation becomes stronger
during straining, due to different slip system acti-
vation in the different regions. This is a case where
reorientation vectors of different regions in the
same grain are non-zero and point in opposite
directions (arrows). Mathematically this corre-
sponds to a positive divergence of the reorientation
field (source in the reorientation vector field)
characterizing kinematically unstable orientations
which have an intrinsic tendency to build up orien-
tation gradients.

Fig. 1(b) shows a case where reorientation vec-
tors of different regions in the same grain are non-
zero and identical. This means the entire grain
rotates homogeneously with the same reorientation
vector. In this case the initial orientation fluctu-
ation remains unchanged, but the bulk grain
undergoes bulk reorientation. Mathematically this
corresponds to zero divergence of the reorientation
field (reorientation identity of the different orien-
tation segments) characterizing orientations which
do not have an intrinsic tendency to build up orien-
tation gradients.

Fig. 1(c) shows a case where reorientation vec-
tors of different regions in the same grain are non-
zero and point towards each other, or more general,
towards the same stable orientation. In this case
the initial orientation fluctuation becomes smaller.
Mathematically this corresponds to negative diver-
gence of the reorientation field (sink in the reorien-
tation vector field) indicating orientations which do
not have an intrinsic tendency to build up orien-
tation gradients.

For obtaining an intrinsic function of grain frag-
mentation which depends solely on crystal orien-
tation and which is independent of neighbor grain
interaction we calculated reorientation fields by
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Taylor–Bishop–Hill strain-rate homogenization
theory. Calculations were conducted for body cent-
ered cubic (bcc) crystal structure with 12
{110}�111� slip systems and 48 slip systems
(12×{110}�111�, 12× {112}�111�, 24×
{123}�111�) as well as for face centered cubic
(fcc) crystal structure with 12× {111}�110� slip
systems and 18 slip systems (12× {111}�110�,
6× {110}�110�), exerting homogeneous external
plane strain conditions with relaxation of longitudi-
nal and transverse shear constraints at the grain
level (pancake model) (see overviews in [55–57]).
Finally we applied a divergence operator to the
obtained reorientation vector field. The resulting
scalar divergence function was developed in the
form of spherical harmonics using a series expan-
sion degree of 34 and then plotted in orientation
space.

Since the approach suggested in this paper
essentially takes a geometrical view at the develop-
ment of crystal orientations it is only capable of
addressing observations (1)–(6). Observations (7)
cannot be explained in the present framework since
this would require to include dislocation dynamics

Fig. 1. (a) Grain in the initial state with some small initial
orientation variation and after straining with a larger orientation
variation. This is a case where the initial orientation variation
becomes stronger during straining, due to different slip system
activation in the different regions. This is a case where reorien-
tation vectors of different regions in the same grain are non-
zero and point in opposite directions (arrows). Mathematically
this corresponds to a positive divergence of the reorientation
field (source in the reorientation vector field) indicating orien-
tations which have a tendency to form orientation gradients. (b)
Case where reorientation vectors of different regions in the
same grain are non-zero and identical. The entire grain rotates
homogeneously with the same reorientation vector. In this case
the initial orientation fluctuation remains unchanged, but the
grain undergoes bulk reorientation. Mathematically this corre-
sponds to zero divergence of the reorientation field
(reorientation identity with the surrounding orientations) indi-
cating orientations which do not have a tendency to form orien-
tation gradients. (c) Case where reorientation vectors of differ-
ent regions in the same grain are non-zero and point towards
each other, or more general, towards the same stable orien-
tation. In this case the initial orientation fluctuation becomes
smaller. Mathematically this corresponds to negative diver-
gence of the reorientation field (sink in the reorientation vector
field) indicating orientations which do not have a tendency to
form orientation gradients.
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based effects [9,52–54] which are not part of this
investigation.2 On the other hand it is likely that,
due to the dominance of the reorientation field for
the formation of orientation gradients [11,50,51],
explicit incorporation of dislocation dynamics
effects would lead to an overall damping force, i.e.
to slower rotations, rather than to entirely different
results. In other words, this paper concentrates on
the kinematic origin of orientation gradients, i.e.
on the role of changes in slip system selection and
the resulting reorientation changes as a function
of orientation.

2.2. Results for body centered cubic crystal
structure (intrinsic, reorientation field
divergence)

Fig. 2 shows the reorientation field divergence
of a bcc polycrystal with 12 slip systems, derived
by using the pancake model. The figure is in the
form of j1=constant sections in Euler-space to
show the divergence along relevant plane strain
deformation and shear texture fibers and compo-
nents.3 The intensity lines show areas with positive
divergence above +1. The diagram shows high
divergence around the rotated cube
({001}�110�, j1 = 0°, f = 0°, j2 = 45°) and the
Goss ({011}�100�, j1 = 0°, f = 45°, j2 = 0°)
texture components as well as along the ζ-fiber.
This is only in part in accord with experimental
experience. Whilst orientations around Goss and

2 Attempts were made to calculate microtextures from dis-
crete dislocation dynamics [54]. However, such approaches are
computationally too time-consuming for formulating a theory
of orientation gradients.

3 For bcc materials these are the αbcc-fiber (fiber axis �110�
parallel to the rolling direction including major components
{001}�110�, {112}�110�, and {111}�110�), γ-fiber (fiber
axis �111� parallel to the normal direction including major
components {111}�110� and {111}�112�), η-fiber (fiber
axis �001� parallel to the rolling direction including major
components {001}�100� and {011}�100�), ζ-fiber (fiber
axis �011� parallel to the normal direction including major
components {011}�100�, {011}�211�, {011}�111�, and
{011}�011�), �-fiber (fiber axis �011� parallel to the trans-
verse direction including major components {001}�110�,
{112}�111�, {111}�112�, and {011}�100�), and θ-fiber
(fiber axis �001� parallel to the normal direction including
major components {001}�100� and {001}�110�).

Fig. 2. Reorientation rate vector field divergence of a bcc
polycrystal with 12 slip systems; pancake model; j1=constant
sections in Euler space; intensity lines show areas with diver-
gence above 1.

the ζ-fiber are indeed known to form strong orien-
tation gradients under plane strain conditions, the
rotated cube orientation {001}�110� is known as
a very stable component without building up pro-
nounced in-grain orientation gradients during plane
strain deformation (see experiments in
[30,31,33,58]). Section 5 will provide a more
detailed comparison with experimental data.

Fig. 3(a) shows the reorientation field diver-
gence for 48 slip systems (bcc, pancake model). It
reveals high divergence around the Goss compo-
nent and an absolute maximum at the RZbcc

component (j1 = 34°, f = 84°, j2 = 45°). Fig. 3(b)
shows in the form of a j2 = 45°-section some
details of the divergence between 0.1 and 1. It can
be seen that some orientations around the γ-fiber
and on the α-fiber reveal small positive divergence.
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Fig. 3. (a) Reorientation rate vector field divergence of a bcc polycrystal with 48 slip systems; pancake model; j1=constant sections
in Euler space; intensity lines show areas with divergence above +1. (b) Details of the divergence function shown in (a) between
0.1 and 1.

2.3. Results for face centered cubic crystal
structure (intrinsic, reorientation field
divergence)

Fig. 4 shows the reorientation field divergence
of a fcc polycrystal with 12 slip systems, calculated
by using the pancake model. The figure is in the
form of j2=constant sections to show relevant
components of typical fcc plane strain deformation
and shear textures.4

4 For fcc materials these are the αfcc-fiber (fiber axis �011�
parallel to the normal direction including major components
{011}�100�, {011}�211�, {011}�111�, and
{011}�011�) and the β-skeleton line (less symmetric fiber
including major components {211}�111� (Cu-component),
�{123}�634� (S-component) and {011}�211� (Brass-
component)).

The results show strong divergence close to the
{001}�110� component. This is equivalent to the
divergence observed around the Goss component
for the bcc structure because of the 90° rotation
relationship about the transverse direction between
the fcc and the primary 12 bcc slip systems. Sig-
nificant divergence appears in the vicinity of the
Brass component ({110}�112�) and towards
higher angles on the αfcc-fiber. According to the
predictions the Goss and the cube orientation
should reveal a relatively weak intrinsic tendency
to build up orientation gradients. This is in contra-
diction to experimental observations. In the follow-
ing sections we will show, that these deviations are
essentially due to the influence of the neighbor
grains which are not included in this section. Cal-
culations on the basis of 18 slip systems reveal
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Fig. 4. Reorientation rate vector field divergence of a fcc
polycrystal with 12 slip systems; pancake model; j2=constant
sections in Euler space; intensity lines show areas with diver-
gence above +1.

similar divergence behavior (Fig. 5). The
maximum on the αfcc-fiber is shifted from the
Brass towards the Goss component.

3. Verification of the reorientation field
divergence theory using a crystal plasticity
finite element method

3.1. Concept and calculation method

The results obtained form the divergence calcu-
lations presented in the preceding section are
influenced by the homogenization model used for
the calculation of the reorientation fields. Various
approaches can be used for the calculation of the
reorientation field, for instance crystal plasticity

Fig. 5. Reorientation rate vector field divergence of a fcc
polycrystal with 18 slip systems; pancake model; j2=constant
sections in Euler space; intensity lines show areas with diver-
gence above +1.

finite element, Taylor–Bishop–Hill, or self-consist-
ent models.

This section presents crystal plasticity finite
element calculations showing predictions of orien-
tation gradients of selected single crystal orien-
tations under external (not necessarily internal)
plane strain boundary conditions. The results are
compared with the predictions made in the pre-
vious section. In order to simulate external plane
strain conditions the free surface of the crystals
was constrained to preserve orthorhombic sym-
metry during plastic straining.

Mesh configuration was conducted via
ABAQUS/CAE [59] using a 3-dimensional linear
element type with eight nodes and eight integration
points. The total number of elements was 512
(8×8×8). An implicit crystal plasticity procedure
proposed by Kalidindi et al. [60] was implemented
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and used for the time integration of the constitutive
equations. Calculations were carried out using the
finite element program ABAQUS in conjunction
with the user defined material subroutine UMAT
[59]. Simulations were based on 48 slip systems
(12× {110}�111�, 12× {112}�111�, 24×
{123}�111�) in case of bcc crystals and on 12
{111}�110� slip systems in case of fcc crystals.
For selected bcc and fcc grain orientations plane
strain compression to 50% thickness reduction was
simulated (thickness reduction is given as �d/d0,
where d is the thickness).

3.2. Results for body centered cubic crystal
structure (intrinsic, FEM)

Fig. 6(a) shows the accumulated misorientations
in gray scale coding (with light values indicating
large misorientations) for a bcc grain with initial
rotated cube orientation, {001}�110�, after 50%
plane strain deformation. The projected orientation
distribution is given in the form of {111} pole fig-
ures. The open squares show the initial orientation
(which was the same at all integration points). The
black dots show the orientations of all integration
points after deformation. It is remarkable, that
neither bulk rotation nor orientation gradients
occur. This behavior corresponds to the case
described in Fig. 1(c). The prediction is in very
good accord with the reorientation divergence
model using 48 slip systems [Fig. 3(a,b)].

Fig. 6(b) shows the results for the inverse Brass
component ({112}�110�, j1 = 0°, f = 35°,
j2 = 45°). It can be seen that the initially uniform
grain has split up into two different orientation

Fig. 6. Accumulated misorientations in gray scale coding
(light values indicate large misorientations) for a bcc grain (48
slip systems) after 50% plane strain deformation. The texture
is given in the form of {111} pole figures. The open square
shows the initial orientation (which was the same at all inte-
gration points) and the black dots show the orientations after
deformation. The starting orientations were (a) 45° rotated cube
orientation (j1 = 0°, f = 0°, j2 = 45°); (b) inverse Brass orien-
tation (j1 = 0°, f = 35°, j2 = 45°); (c) Goss orientation
(j1 = 0°, f = 45°, j2 = 0°); (d) less symmetric orientation
(j1 = 0°, f = 18°, j2 = 73°); (e) RZbcc orientation (j1 = 34°,
f = 84°, j2 = 45°); (f) 90° rotated Goss orientation (j1 = 0°,
f = 90°, j2 = 45°).
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branches, related to each other by a rotation about
the longitudinal direction, corresponding to a crys-
tal �110� axis. The mutually misoriented volume
portions are connected by orientational transition
bands. This behavior corresponds to the case
described by Fig. 1(a). The reorientation diver-
gence model also predicts a positive though weak
divergence value matching this result [see Fig. 3(b)
around f = 35°, j1 = 0°).

Fig. 6(c) shows the results for the Goss orien-
tation. The grain has split into two different sharp
orientation branches, related to each other by a
rotation about the transverse direction �011�. As
in the previous case a transition zone mediates
between the orientation fragments. This results is
in excellent accord with the prediction of the reori-
entation divergence model, which revealed a
maximum divergence close to the Goss component
[Fig. 3(a)].

Fig. 6(d) shows the results for the less sym-
metric orientation j1 = 0°, f = 18°, j2 = 73°,
which was chosen because it is known to be
unstable and tends to rotate towards the αbcc-fiber
under plane strain conditions. It can be seen that
the crystal, though building up minor orientation
gradients, nearly rotates in one piece and does not
split into different orientation branches with dis-
similar orientation paths. This behavior corre-
sponds to the case described by Fig. 1(b). The
result is in excellent accord with the reorientation
divergence model, which predicts a very small
value for this component.

Fig. 6(e) shows the results for the RZbcc orien-
tation, j1 = 34°, f = 84°, j2 = 45°, which was
chosen because it was identified as the absolute
maximum in the reorientation divergence model
(Fig. 3). The pole figure obtained by the crystal
plasticity finite element simulation confirms a very
strong tendency of the originally uniformly ori-
ented grain to form orientation gradients. The pole
figure shows a scattered array of orientation frag-
ments after straining, which reveal accumulated
orientation changes of up to 45° from their initial
orientation prior to deformation.

Fig. 6(f) shows the results for the rotated Goss
orientation ({110}�110�, j1 = 0°, f = 90°,
j2 = 45°), which splits strongly during straining.
This in excellent accord with the reorientation field

divergence model, which shows a local maximum
close to the rotated Goss orientation. Since the
component is itself unstable under plane strain con-
ditions, it rotates into this maximum and then starts
to split up and form orientation gradients as pre-
dicted in the previous section.

3.3. Results for face centered cubic crystal
structure (intrinsic, FEM)

Fig. 7(a) shows the accumulated misorientations
in gray scale coding (using light values for large
misorientations) for a fcc grain with initial Goss
orientation after 50% reduction in thickness. The
orientation distribution is given in the form of
{111} pole figures. The open squares show the
initial orientation (which was the same at all inte-
gration points). The black dots show the orien-
tations of all integration points after deformation.
For the Goss orientation neither bulk rotation of
the entire crystal nor in-grain orientation gradients
have occurred during plastic straining. This
behavior corresponds to Fig. 1(c). It is in very good
accord with the reorientation divergence model
using 12 slip systems (Fig. 4). The Goss orientation
in fcc crystals with 12 slip systems is under plane
strain conditions kinematically similar to the
rotated cube orientation in bcc crystals with 48 slip
systems [Fig. 6(a)]. The similarity is due to the 90°
transverse rotation relationship which exists
between the two texture components on the one
hand and the 12 fcc {110}�111� slip systems and
the 12 primary bcc {111}�110� slip systems on
the other hand [61]. As will be discussed in the
next section the stability of the bcc rotated cube
orientation and of the fcc Goss orientation are
influenced differently by grain neighbor interac-
tion. It turns out that the fcc Goss orientation is
strongly affected by neighbor grains.

Fig. 7(b) shows the results for the Brass compo-
nent ({110}�112�, j1 = 35°, f = 45°, j2 = 0°). It
can be seen that the initially uniform grain has
changed its overall orientation and at the same time
built up strong orientation gradients inside its bor-
ders. The reorientation divergence model shown in
Fig. 4 is in excellent accord with this observation
since it predicts a pronounced positive divergence
matching the finite element result (see Fig. 4
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between j1 = 30° and 35° at f = 45° in the
j2 = 0° section).

Fig. 7(c) shows the results for the 45° rotated
cube orientation. It can be observed that the grain
has formed pronounced orientation gradients
resulting in two different orientation branches,
related to each other by a �011� crystal rotation
axis parallel to the transverse direction. A tran-
sition zone preserving the original bulk orientation
remains between the orientation fragments [11].
This results is in very good accord with the predic-
tion of the reorientation divergence model, which
showed a pronounced positive value of the diver-
gence at the rotated cube orientation in the first
section of Fig. 4.

Fig. 7(d) shows the result for the less symmetric
S orientation ({123}�634�, j1 = 60°, f = 32°,
j2 = 65°) which was already well investigated
using crystal plasticity simulations by Beaudoin et
al. [2]. It can be seen that the crystal, though
undergoing substantial formation of orientation
gradients, rotates as an entity and does not break
up into completely different orientation branches
with dissimilar orientation paths. This behavior
corresponds to the case described by Fig. 1(b). The
result corresponds very well to the reorientation
divergence model which predicts a rather small
value for this component.

Fig. 7(e) shows the results for the RZfcc orien-
tation (j1 = 32°, f = 85°, j2 = 85°), which was
chosen because it was identified as the absolute
maximum in the reorientation divergence model
for an fcc material with 12 slip systems (Fig. 4).
The pole figure obtained by the crystal plasticity
finite element simulation indeed confirms a very
strong tendency to build up strong orientation

Fig. 7. Accumulated misorientations in gray scale coding
(light values indicate large misorientations) for a fcc grain (12
slip systems) after 50% plane strain deformation. The texture
is given in the form of {111} pole figures. The open square
shows the initial orientation (which was the same at all inte-
gration points) and the black dots show the orientations after
deformation. The starting orientations were (a) Goss orientation
(j1 = 0°, f = 45°, j2 = 0°); (b) Brass orientation (j1 = 35°,
f = 45°, j2 = 0°); (c) 45° rotated cube orientation (j1 = 45°,
f = 0°, j2 = 0°); (d) S orientation (j1 = 60°, f = 32°,
j2 = 65°); (e) RZfcc orientation (j1 = 32°, f = 85°, j2 = 85°);
(f) Copper orientation (j1 = 90°, f = 35°, j2 = 45°).
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gradients within the originally uniformly oriented
grain. Some of the orientation fragments reveal
accumulated orientation changes which are much
larger than in all other investigated fcc crystals.

Fig. 7(f) shows the results for the Copper orien-
tation ({112}�111�, j1 = 90°, f = 35°,
j2 = 45°) which forms only weak orientation
gradients during straining. This in good accord
with the reorientation divergence model (Fig. 4).

4. Influence of neighbor grains on the
tendency to form in-grain orientation
gradients

4.1. Concept and calculation method

This section is concerned with the simulation of
the influence of the plastic interaction between a
grain and its neighbor grains on its tendency to
form orientation gradients. This extrinsic effect on
orientation gradients is investigated by exposing
different bicrystal arrangements to external plane
strain loading using the crystal plasticity finite
element method sketched above. Boundary con-
ditions were assigned to the free surface to con-
strain the entire assembly to an orthorhombic shape
in the course of plastic straining (Fig. 8). Mesh
configuration was carried out using
ABAQUS/CAE [59]. The element number in the
3D model was 512 (8×8×8) elements with 64 of
them (4×4×4) in the center part. A 3D solid linear
element type with eight nodes and eight integration
points was employed. An implicit procedure pro-
posed by Kalidindi et al. [60] was used as consti-
tutive crystal plasticity model. The scheme was
implemented in the finite element program
ABAQUS via the material subroutine UMAT [59].

Different crystal orientations, characterized by
different reorientation rate and reorientation diver-
gence, were assigned to the center and surrounding
crystal, respectively. The compound was then
exposed to 50% thickness reduction, like the single
crystals discussed above.

4.2. Results for body centered cubic crystal
structure (extrinsic, FEM)

Fig. 9(a) shows an example of a deformed
bicrystal consisting of two grains with bcc crystal

Fig. 8. The bicrystal set-up and displacement conditions used
in the crystal plasticity finite element simulations. To simulate
the influence of plastic neighbor interaction among the grains,
i.e. the extrinsic component of grain fragmentation, different
bicrystal arrangements were investigated under external plane
strain loading. The free surface was constrained to preserve
orthorhombic symmetry.

structure with 12× {110}�111�, 12×
{112}�111�, and 24× {123}�111� slip systems.
The center grain has Goss orientation,
{011}�100�, and the surrounding grain has
rotated cube orientation, {001}�110�. The gray
scale quantifies the accumulated misorientation at
each integration point (with light values indicating
large misorientations). The figure shows that the
two grains reveal very little interaction. The shape
changes of both individual crystals follow the
exerted plane strain deformation state. The texture
changes in both individual crystals, given in {111}
pole figures [Fig. 9(a)], are similar to those
observed already in the corresponding single crys-
tals [Fig. 6(a,c)]. This homogeneous plastic co-
deformation of both grains can be attributed to two
points which are known from grain interaction
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Fig. 9. (a) Example of a bcc bicrystal (48 slip systems), where the center grain has Goss orientation and the surrounding grain has
45° about normal rotated cube orientation. (b) Example of a bcc bicrystal (48 slip systems), where the center grain has RZbcc orientation
and the surrounding grain has 45° about normal rotated cube orientation.

homogenization theory. First, both grains obvi-
ously have small shear tendency under plane strain
deformation conditions. A grain is characterized by
a large shear tendency when the required amount
of shear on its slip systems (Taylor factor) can be
lowered by dropping some of the external shape
prescriptions at the cost of compatibility with the
neighbor grains. Allowing for the partial relaxation
of shear constraints means for orientations with
large shear tendency that less slip is required for
fulfilling the remaining non-relaxed constraints.
Small shear tendency, as in Fig. 9(a), occurs when
little or no deformation energy can be saved by
dropping external constraints and shearing into a
neighbor grain [57]. A second factor is that both
grains reveal similar kinetic hardness, i.e. both
individual crystals undergo nearly identical thick-
ness reduction. It is an important fact that irrespec-
tive of the obvious strain and stress compatibility
of the two grains the Goss crystal reveals the for-
mation of strong orientation gradients.

Fig. 9(b) shows a different example of a bcc

bicrystal. The center grain has RZbcc orientation
and the surrounding grain has again {001}�110�
orientation. In this case compatibility in shape
change is not given among the two interacting
crystals. The pole figures show that the interaction
leads to a stronger orientation spread in the
{001}�110� component when compared to the
corresponding single crystal [Fig. 6(a,e)]. Table 1
summarizes some pole figures obtained from the
bicrystal results for the bcc crystal structure. The
data show the rotated cube (j1 = 0°, f = 0°,
j2 = 45°) component, an orientation close to the
rolling texture fiber (j1 = 0°, f = 18°, j2 = 17°),
and the rotated Goss orientation (j1 = 0°,
f = 90°, j2 = 45°) as surrounding grains and the
inverse Brass component (j1 = 0°, f = 35°,
j2 = 45°), another orientation close to the rolling
texture fiber (j1 = 0°, f = 18°, j2 = 73°), the Goss
orientation (j1 = 0°, f = 45°, j2 = 0°), and the
RZbcc orientation (j1 = 34°, f = 84°, j2 = 45°) as
center grains.

The textures show the influence of neighbor
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Table 1
(a) Some pole figures obtained from 3D bicrystal finite element results for bcc crystal structure. The textures show the influence of
neighbor interaction on the resulting orientation gradients for different bicrystal combinations. This table shows the pole figures for
the center grains (see Figs. 8 and 9). (b) Some pole figures obtained from bicrystal finite element results for bcc crystal structure.
The textures show the influence of neighbor interaction on the resulting orientation gradients for different bicrystal combinations.
This table shows the pole figures for the surrounding grains (see Figs. 8 and 9)

interaction on the resulting orientation gradients
for different bicrystal combinations. Table 1(a)
shows the pole figures for the center grains and
Table 1(b) for the surrounding grains. Comparing
these data with the pole figures given in Fig. 6 for
the single grains5 suggests that a significant depen-
dence of the tendency to form orientation gradients
on the neighbor crystals occurs particularly for
grains with high positive divergence. Examples are
the RZbcc orientation and the Goss orientation.
Both texture components revealed very high diver-

5 The single grains (Figs. 6 and 7) have a constrained surface
to preserve orthorhombic symmetry during straining. They must
not be confused with single crystals.

gence of their reorientation rate vector field [Fig.
3(a)]. The bicrystal finite element results confirm
these predictions and show at the same time that
their orientation spread depends considerably on
changes in the neighbor orientations. The tendency
to form orientation gradients within grains with
close to zero or negative divergence reveals much
smaller sensitivity to the orientation of the
neighbor grain. For instance the Inverse Brass
orientation [Table 1(a)] and the 45° rotated cube
component [Table 1(b)] show less changes in the
orientation spread when their neighbor grains are
changed.
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4.3. Results for face centered cubic crystal
structure (extrinsic, FEM)

Fig. 10(a) shows an example of a deformed
bicrystal consisting of two grains with fcc crystal
structure using 12× {111}�110� slip systems.
The center grain has RZfcc orientation and the sur-
rounding grain has Goss orientation. The gray scale
quantifies the accumulated misorientation at each
integration point (light values indicate large
misorientations). The figure shows that the two
grains reveal very little plastic interaction, i.e.
nearly no mutual distortion takes place and both
individual crystals follow the external plane strain
state. The texture changes in both individual crys-
tals, given in {111} pole figures [Fig. 10(a)], are
similar to those observed in the single crystals [Fig.
7(a,d)]. In the bicrystal arrangement the Goss
orientation reveals a larger scatter than as a single
crystal. In contrast, the RZfcc oriented center grain
in the bicrystal reveals weaker orientation gradi-
ents than as a single crystal. Like in the bcc case

Fig. 10. (a) Example of an fcc bicrystal (12 slip systems), where the center grain has RZfcc orientation and the surrounding grain
has Goss orientation. (b) Example of a bcc bicrystal (12 slip systems), where the center grain has Brass orientation and the surrounding
grain has Goss orientation.

this homogeneous co-deformation of the two
grains can—when translated into homogenization
theory—be understood in terms of their small shear
tendency under plane strain deformation conditions
and in terms of their similar Taylor factors.

Fig. 10(b) shows a different example of an fcc
bicrystal. The center grain has Brass orientation
and the surrounding grain has again Goss orien-
tation. In this case the two interacting crystals do
not preserve self-similar shapes as the couple in
Fig. 10(a). Since the Goss orientation alone
deforms symmetrically the strong shape distortion
observed at the interface of the two grains can be
attributed to the strong shear tendency of the Brass
orientation. The two pole figures show that the
interaction leads to a significantly stronger forma-
tion of orientation gradients in the Goss component
when compared to the corresponding single crystal
[Fig. 7(a)] and to the bicrystal in Fig. 10(a). In
contrast, the orientation scatter in the deformed
Brass orientation in the bicrystal is much smaller
than in the corresponding single crystal [Fig. 7(b)].
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The simulations shows that a bicrystal where one
grain has a much larger intrinsic tendency to form
orientation gradients than the other one tends to
distribute the overall orientation scatter over both
crystals rather than concentrating it in one crystal
(namely in the one which tends to form larger
orientation gradients in the intrinsic case).

Beyond the examples given in Fig. 10(a,b) and
Table 2 summarizes the pole figures of further fcc
bicrystal arrangements. The data show the Goss
orientation (j1 = 0°, f = 45°, j2 = 0°), the S orien-
tation (j1 = 60°, f = 32°, j2 = 65°), and the
rotated cube (j1 = 45°, f = 0°, j2 = 0°) component
as surrounding grains and the Brass component

Table 2
(a) Some pole figures obtained from 3D bicrystal finite element results for fcc crystal structure. The textures show the influence of
neighbor interaction on the resulting orientation gradients for different bicrystal combinations. This table shows the pole figures for
the center grains (see Figs. 8 and 10). (b) Some pole figures obtained from bicrystal finite element results for fcc crystal structure.
The textures show the influence of neighbor interaction on the resulting orientation gradients for different bicrystal combinations.
This table shows the pole figures for the surrounding grains (see Figs. 8 and 10)

(j1 = 35°, f = 45°, j2 = 0°), the Copper orien-
tation (j1 = 90°, f = 30°, j2 = 45°), the cube
component (j1 = 0°, f = 0°, j2 = 0°), and the
RZfcc orientation (j1 = 32°, f = 85°, j2 = 85°) as
center grains.

The textures show the influence of neighbor
interaction on the resulting orientation gradients
for different bicrystal combinations. Table 2(a)
shows the pole figures for the center grains and
Table 2(b) for the surrounding grains. The data
suggest that both, orientations with positive and
also with close-to-zero divergence reveal a sig-
nificant dependence of their tendency to form in-
grain orientation gradients on the neighbor crystals.
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This is a different result than obtained for the bcc
crystal structure [see Table 1(a,b)] which revealed
less neighborhood dependence for crystals with
small reorientation divergence. For instance the fcc
Goss orientation and the fcc cube orientation turn
out to show a strong dependence on the orientation
of the neighbor grains (Fig. 10).

5. Discussion

Some of the presented predictions can be com-
pared to experimental observations of orientation
gradients in different texture components and crys-
tal structures deformed under plane strain con-
ditions. In case of the bcc crystal structure parti-
cularly the 45° rotated cube component,
{001}�110�, is well known for its small in-grain
orientation gradients even after large plane strain
deformation. Particularly the EBSP (electron back
scatter diffraction) method has provided detailed
data about orientation gradients in this texture
component. Raabe et al. reported that the orien-
tation scatter in {001}�110� grains typically
remains in the small angle grain boundary regime
below 15° maximum in-grain misorientation (e.g.
[3,30,31,33,58,62]). Similar observations for
{001}�110� grains in polycrystalline specimens
were made by Dillamore et al. [63,64]. Earlier
work on that subject was conducted by Hu on
deformed {001}�110� oriented iron–silicon sin-
gle crystals [65,66]. Hu reported that {001}�110�
oriented single crystals do not change their initial
orientation during rolling deformation and reveal a
uniform microstructure without orientation gradi-
ents after straining. From a simple though suf-
ficiently realistic Schmid-type analysis Hu con-
cluded that the slip systems activated for the plane
strain deformation of a {001}�110� oriented
grain are (101)[111], (101)[111], (011)[111],
(011)[111]. These systems have little mutual elas-
tic interaction and it is assumed that such con-
ditions also promote weak strain hardening. The
various experimental observations about in-grain
orientation gradients in the rotated cube orientation
are in excellent agreement with the predictions
[Fig. 3(a,b), 6(a), 9(a,b)]. Particularly Fig. 9(a,b)
and Table 1(b) demonstrate that the reluctance of

this texture component against the formation of
orientation gradients is not much affected by
grain–neighbor interaction.

Apart from the rotated cube orientation which is
in the bcc structure a good example for very weak
orientation gradients stronger orientation scatter
has been frequently found for {111}�uvw� and
{112}�110� oriented grains (e.g.
[30,31,33,58,67–72]). These studies reported that
such grains reveal small cell sizes, high stored dis-
location densities, and microstructural inhomogen-
eities such as shear bands which provide strong
local misorientations. For the {111}�uvw� grains
the correspondence between experiment and pre-
dictions is less well pronounced. Fig. 3(b) shows
local maxima of the reorientation field divergence
not exactly on the {111}�uvw� orientation fiber
but in its immediate vicinity.

Another orientation which has been intensely
investigated in the bcc structure is the Goss
component, due to its importance in the fields of
shear texture, recrystallization, and secondary
recrystallization (e.g. [33,61,62,71,72]). It was
essentially found that the Goss orientation is in the
bcc lattice stabilized by shear strain. Under plane
strain deformation it is not stable and splits up to
rotate towards {001}�110� and {111}�112�,
respectively, building up strong orientation gradi-
ents. The remaining transition zones between such
orientation branches can preserve the Goss orien-
tation and for instance provide later highly poten-
tial nucleation sites. The strong tendency of the
Goss orientation to form such in-grain orientation
gradients was correctly predicted both, by the
divergence approach [Fig. 3(a)] and by the finite
element approach [Fig. 6(c)].

Similar arguments as for the rotated cube orien-
tation in the bcc lattice apply for the Goss compo-
nent in the fcc lattice. Under ideal plane strain con-
ditions it can essentially be deformed by four
symmetric slip systems. Its small tendency to build
up orientation gradients is not only found in the
reorientation field divergence approach (Fig. 4,
first section) but also in the single crystal simula-
tions [Fig. 7(a)]. However, the fcc Goss component
significantly differs from the bcc rotated cube
orientation with respect to its stability under the
influence of neighbor grains. Comparing Tables
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1(b) (bcc) and 2(b) (fcc) shows that the fcc Goss
orientation builds up larger in-grain orientation
gradients when co-deformed with the Brass or the
Copper texture components than the bcc rotated
cube component. This difference which is also well
known from experiment can be attributed to the
fact that (in this investigation) the fcc orientations
deform by use of 12 slip systems while the bcc
orientations use 48 systems. In other words the bcc
crystals have more degrees of freedom in the dis-
placement and hence deform more like a con-
tinuum when compared to the fcc crystals. Bcc
crystals can therefore obviously better accommo-
date changes in the local boundary conditions. This
might also explain why the rotated cube orientation
is in cold rolled bcc alloys typically much more
pronounced relative to the other texture compo-
nents (see typical bcc α- and γ-fibers) than the
Goss orientation in the textures of cold rolled fcc
alloys (see typical bcc α- and β-fibers).

Besides the complicated fcc Goss orientation
also other fcc texture components have been well
investigated with respect to orientation gradients.
For instance many experiments confirm the present
predictions of a relatively small tendency to build
up pronounced orientation gradients in the fcc
Brass orientation. In contrast the cube orientation
and the S orientation were reported to form larger
orientation gradients (e.g. [5–7,22–27,41,
48,73,74]). However, the present results for the
Goss and the cube orientation underline that their
deformation and rotation paths are in experiments
more governed by their neighborhood rather than
by their (rather weak theoretical) intrinsic tendency
to form gradients.

The prediction and experimental observation of
orientation gradients is not only a problem of fun-
damental interest in the field of crystal kinematics
but is also important in the context of hardening
and recrystallization. Although the fields of texture
and dislocation theory have not yet been fully
merged since the first works of Nye [8], Kröner
[9], and Ashby [10] in this domain the occurrence
of orientation gradients clearly implies the gener-
ation of corresponding in-grain populations of geo-
metrically necessary dislocations. These may con-
tribute in a statistical, mechanically equilibrated
and thus scalar manner or even in a tensorial

fashion to the overall hardening. In either context
the present work suggests that in grains with a
strong kinematical tendency to form in-grain orien-
tation gradients the effect of geometrically neces-
sary hardening should be taken into account. It can
be anticipated that this will have a damping influ-
ence on the formation of orientation gradients since
it provides a certain penalty term opposing further
curvature. Vice versa this means that a theory of
hardening—when considering geometrically
necessary dislocations—must be formulated as an
orientation dependent theory.

Similar arguments apply for the phenomenology
of primary static recrystallization. It is a common
observation that nucleation can only take place in
areas with large stored elastic energy
(thermodynamic instability criterion) and large
orientation gradients (kinetic instability criterion).
On the basis of the present approach the latter cri-
terion implies that recrystallization nucleation must
be considered as a highly orientation dependent
problem (see e.g. [33]).

6. Conclusions

We introduced a theory of orientation gradients
in plastically strained crystals. The aim was to
explain why uniform crystals can—under gradient-
free external loadings—build up in-grain orien-
tation gradients during straining and how this
phenomenon depends on the crystal orientation
(intrinsic dependence) and on the neighbor grains
(extrinsic dependence). The intrinsic origin of
orientation gradients was explained in terms of the
dependence of the crystal reorientation rate vector
on variations in initial orientation. The dependence
was quantitatively formulated by applying a diver-
gence operator to reorientation rate vector fields
calculated by strain-rate homogenization theory.
The predictions were confirmed by crystal plas-
ticity finite element simulations. The extrinsic
influence on in-grain orientation gradients was
addressed by investigating the effects of grain–
neighbor interaction on the subdivision of crystals
using a crystal plasticity finite element bicrystal
model. The main conclusions are:
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1. Orientation dependence of orientation gradients
(intrinsic dependence)

The divergence of reorientation rate vector
fields can be used to quantify the intrinsic
tendency for the formation of in-grain orien-
tation gradients as a function of crystal orien-
tation and strain state. The divergence analy-
sis method is independent on the underlying
deformation model or experiment. Its starting
point can be any theoretical or experimental
reorientation field in orientation space. The
method makes no prediction about the spatial
arrangement of orientation gradients. Positive
divergence indicates orientations with diverg-
ing non-zero reorientation rates which are
unstable and form orientation gradients. Zero
divergence indicates orientations with reori-
entation rate identity with the surrounding
orientations which are not prone to form
orientation gradients. Negative divergence
indicates orientations with converging non-
zero reorientation rates which are kinemat-
ically stable and not prone to form orientation
gradients. Intrinsic results on orientation
gradients obtained by use of a crystal plas-
ticity finite element formulation are in very
good agreement with the reorientation field
divergence function derived by homogeniz-
ation theory. The predictions are in good
accord with experiments except for the fcc
Goss and the fcc cube orientation which
reveal a high dependence of grain neighbor
interaction.

2. Grain neighborhood dependence of orientation
gradients (extrinsic dependence)

Significant dependence of in-grain orientation
gradients on the neighbor crystals (beyond
their intrinsic tendency to form orientation
gradients) was found in the bcc case for
grains with high positive divergence and for
the fcc case for grains with small and high
positive divergence. The differences between
bcc and fcc are due to the difference in slip
selection (we used 12 systems for fcc and 48
for bcc). The formation of orientation gradi-
ents in crystals with close to zero or negative
divergence depends less strongly on changes
in the neighbor orientations. Exceptions occur

for the fcc case where the Goss and the cube
orientation reveal a strong dependence on
grain neighborhood.
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