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 1 Introduction Magnesium-lithium alloys have the 
potential to be one of the lightest possible metallic alloy 
systems. The density of Mg–Li alloys is expected to range 
between 1.74 g/cm3 (ρMg) and 0.58 g/cm3 (ρLi). An addi-
tional benefit of alloying Mg with Li is that Li stabilizes 
the body-centered-cubic (BCC) structure over the hexago-
nal closed packed (HCP) structure with as little as 30 at% 
Li. Since BCC materials are generally more ductile at room 
temperature than HCP materials, they are favored in manu-
facturing operations that require room or low-temperature 
forming operations. 
 While there is little doubt that BCC Mg–Li alloys will 
be light-weight, it is unclear whether these alloys will offer 
advantageous polycrystalline elastic properties. As part of 
a theoretically guided materials design strategy, the single 
crystal elastic constants of various BCC Mg–Li alloys 
were calculated using density-functional theory (DFT) [1]. 
However, there remains the problem of calculating the 
macro-scale polycrystalline elastic properties (like Young’s 

and shear modulus) from the single crystal elastic coeffi-
cients ( ijC ’s) calculated at the atomistic level. To solve this 
problem, a multi-scale approach is needed that starts at the 
atomistic level and spans across the grain size level (typi-
cally between 10–100 µm for engineering polycrystals) to 
the macroscale polycrystal level that includes on the order 
of 

8
10  grains. 

 It is possible to estimate the polycrystalline elastic 
properties using various analytic homogenization tech-
niques (like Voigt, Reuss, and the self-consistent approach) 
as well as the finite element method (FEM). These analytic 
approaches make assumptions on the stress–strain state or 
geometry of the polycrystal in order to derive simple 
closed form solutions. The advantage of FEM is that no 
such assumptions are necessary. In this paper, the useful-
ness of the analytic estimates of polycrystalline elastic 
properties for materials with cubic symmetry is investi-
gated. The polycrystalline Young’s modulus, shear mo-
dulus, and Poisson’s ratio of BCC Mg–Li alloys are  
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estimated using both analytic homogenization techniques 
and FEM from the same ab initio predicted single crystal 
data and then compared. 
 

2 Computational methods 
 2.1 Ab initio calculation of single crystal elastic 
constants DFT calculations [2, 3] were performed using 
a plane wave pseudopotential approach as implemented in 
the Vienna Ab-initio Simulation Package (VASP) code [4, 
5]. The exchange correlation was described by PBE-GGA 
[6] and the Projector Augmented Wave (PAW) method [7] 
was used to describe Mg (where the 2p and 3s electrons 
were considered valence) and Li (where the 2s electron 
was considered valence). Binary alloys were described by 
cubic 2 × 2 × 2 supercells containing a total of 16 atoms. 
The plane wave cutoff energy was set to 260 eV and a 
16 × 16 × 16 Monkhorst–Pack mesh was used to sample 
the Brillouin zone. 
 The ground state properties (T = 0 K) of pure BCC Li 
and Mg as well as 11 alloy compositions were studied. Al-
loy compositions ranged from 6.25 at% Li (one Li atom in 
a 16 atom supercell) to 93.75 at% Li (15 Li atoms in a  
16 atom supercell). In each case, only one local atomic  
arrangement was considered for each composition. These 
atomic arrangements were chosen in a manner that pre-
served cubic symmetry. This choice allows the direct de-
termination of all the BCC alloy’s elastic properties. Four 
of these ordered structures are shown in Fig. 1. In the pre-
sent study, only one ordered structure at each concentration 
was considered due to computational limitations. While the 
local atomic arrangement is expected to affect the magni-  
 

 

Figure 1 (online colour at: www.pss-b.com) Atomic arrangments 

of ordered BCC alloys with (a) 6.25 at% solute, (b) 12.5 at% sol-

ute, (c) 25 at% solute, (d) 50 at% solute. 

tude of the elastic properties, it is not expected to greatly 
affect the compositional trends, which are the primary con-
cern of this study. 
 The three independent elastic coefficients of a single-
crystal with cubic symmetry were determined by distorting 
the BCC supercell in three different ways [8]. The first dis-
tortion is the isotropic volume change from which the sin-
gle crystal bulk modulus is determined. The single crystal 
bulk modulus for materials with cubic symmetry can be 
expressed as a linear combination of 

11
C  and 

12
C  

11 12

cubic

2
.

3

C C
B

+
=  (1) 

The second distortion into a tetragonal structure 
tet( )ε  and 

the third distortion into a trigonal one 
tri( )ε  are defined as 

tet tri
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δ δ
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where δ  is the distortion. In all ab initio calculations, δ  
was limited to ±4%. Both 

tet

ε  and 
tri

ε  lead to changes in 
the total energy density of the system as a function of δ . 
The change in the total energy density of the distorted sys-
tem is defined as the strain energy density 

tet tri

tet tri0 0

0 0

, ,

E E E E
U U

V V
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where 
tet

U  and 
tri

U  are the strain energy densities of the 
tetragonal and trigonal distorted structures, 

tet
E  and 

tri
E  are 

the energies of the tetragonal and trigonal distorted struc-
tures, 

0
E  is the energy of the undistorted structure, and 

0
V  

is the volume of the undistorted structure. The 
tet

U  and 
tri

U  
data was plotted as a function δ  and fit with a parabola. 
The single crystal elastic coefficients were then calculated 
by taking the 2nd derivative of the parabolic fit at δ = 0 
and using 

2 tet

11 122

3
( ) 3 ,

2

U
C C C

δ

∂
= - = ¢

∂
 (4) 

2 tri

442
4 .

U
C

δ

∂
=

∂
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Five different tetragonal and five trigonal distortions were 
used to calculate the corresponding single crystal elastic 
coefficients. 
 
 2.2 Analytic homogenization – Voigt, Reuss, and 
self-consistent The procedure to estimate polycrystalline 
elastic properties begins by first estimating the polycrystal-
line bulk modulus (B*) and shear modulus (G*) from sin-
gle crystal values. Assuming that all possible grain orienta-
tions are equally likely (i.e. a non-textured material), both 
B* and G* can be used to calculate Young’s modulus (Y*) 
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and Poisson’s ratio ( *)ν  for an elastically isotropic poly-
crystal via well-established elasticity relations. 
 The upper bound on B* and G* was first calculated by 
Voigt [9] based on the assumption that during elastic de-
formation a polycrystal adopts a local uniform strain state. 
The lower bound on B* and G* was calculated by Reuss 
[10] based on the assumption that during elastic deforma-
tion the polycrystal adopts a local uniform stress state. The 
uniform strain and stress assumptions used by Voigt and 
Reuss represent two extremes that are rarely observed. 
 For materials with cubic symmetry, the Voigt and 
Reuss bounds on B* (BV* and BR* respectively) are identical 
meaning that the polycrystalline bulk modulus is equal to 
the single crystalline bulk modulus 

V R cubic
* * *.B B B B= = =  (6) 

The Voigt and Reuss bounds on the polycrystalline shear 
modulus (GV* and GR* respectively) for materials with cubic 
symmetry depend on the single crystal elastic coefficients 
via 

11 12 44

V

3
* ,

5

C C C
G

- +
=  (7) 

11 12 44

5
* ,

4( ) 3
R

G
S S S

=

- +

 (8) 

where ijC  are terms in the stiffness matrix and ijS  = 
1
.ijC

-

 
 A more realistic estimate of *G  can be made by em-
ploying a self-consistent scheme. Hershey [11] derived a 
closed form solution to the self-consistent homogenization 
of the shear modulus 

SC
*( )G  for materials with cubic sym-

metry. He made the following assumptions about the poly-
crystal: (i) it was composed of spherically shaped grains; 
(ii) each grain in the polycrystal was the same size (a uni-
form grain size distribution); (iii) the grain orientation dis-
tribution was random (a non-textured polycrystal). From 
these assumptions, Hershey showed that 

SC
*G  could be cal-

culated by solving the following quartic equation 

4 3

SC 11 12 SC
* *64 16(4 5 )G C C G+ +  

2

11 12 11 12 11 12 44 SC
*[3( 2 ) (5 4 ) 8(7 4 ) ]C C C C C C C G+ + + - -  

11 12 11 12 44 SC
*(29 20 ) ( 2 )C C C C C G- - +  

2

11 12 11 12 44
3( 2 ) ( ) 0 .C C C C C- + - =  (9) 

Once homogenized values of G* and B* have been esti-
mated, other elastic properties of an elastically isotropic 
polycrystalline aggregate can also be calculated with stand-
ard elasticity relations. In particular, Y* and *ν  are 

* *9 * 1 3 * 2
* , * ,

2* *3 * 3 * 2

x x

x x

B G B G
Y

B G B G

ν

-
= =

+ +

 (10) 

where *
x

G  can be 
R
*G , 

V
*,G  or 

SC
* .G  

 2.3 Finite element method homogenization 
Polycrystalline elastic properties were calculated using the 
the anisotropic elastic material routine within the commer-
cial finite element code MSC.Marc200×. In order to inves-
tigate the effect of grain size distribution, two different 
polycrystals were meshed and simulated. The first poly-
crystal contained 96 (4 × 6 × 4) equally shaped square 
grains. Each grain was meshed with 27 quadratic brick 
elements resulting in a mesh with 2592 total elements.  
The second polycrystal contained 84 grains of varying 
sizes and shapes. This microstructure was generated by 
performing a Potts Monte Carlo simulation of normal, 
ideal grain growth starting from a random distribution  
of voxels. The grain size distribution in this “realistic”  
microstructure was log-normal where the average number 
of elements per grain was around 49 and the median  
number of elements per grain was 37. All the grains in  
this polycrystal were meshed with quadratic brick elements 
and the resulting mesh had a total of 4096 elements.  
Both the square grain and non-uniform grain size poly-
crystal meshes are shown in Fig. 2. In both polycrystals, 
each grain was assigned a random orientation and the  
elasticity tensor ( ijC ) containing the single crystal elastic 
coefficients was then rotated into the corresponding grain’s 
orientation (i.e. the ijC s in each grain differed only by a ro-
tation). 
 The FEM determined polycrystalline Young’s modulus 
(

FEM
*Y ) and Poisson’s ratio (

FEM
*ν ) were calculated by simu-

lating a uniaxial tensile test. A fixed displacement normal 
to the y-direction in the polycrystal was prescribed while 
displacements on three other orthogonal planes were fixed 
to prevent the mesh from translating. The overall stress–
strain response was then calculated from the nodal reaction 
forces and displacements. Furthermore, because polycrys-
tals containing around 100 grains constitutes a small statis-
tical population, the stress-strain response at each alloy 
concentration was simulated 5 times using the same poly-
crystalline mesh but with a different random orientation 
distribution. An average 

FEM
*Y  and 

FEM
*ν  was then calculated 

from these 5 simulations to approximate a random orienta- 
 
 

 

Figure 2 (online colour at: www.pss-b.com) 96 square shaped 

grain polycrystal mesh and the 84 non-uniform grain shape poly-

crystal mesh used in the FEM simulations. 
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tion distribution. Finally, 
FEM
*G  could be calculated assum-

ing elastic isotropy 

FEM

FEM

FEM

*
* .

*2(1 )

E
G

ν

=

+

 (11) 

 3 Results Single crystal elastic coefficients for or-
dered BCC Mg–Li alloys with compositions ranging from 
0–100 at% Li were calculated using ab initio methods. It 
should be noted that BCC Mg–Li alloys are thermody-
namically stable for Li concentrations greater than 30 at% 
[12]. Nevertheless, the BCC elastic properties for both sin-
gle and polycrystals were predicted in regions where the 
BCC crystal structure is not stable in order to derive the 
complete trends on their concentration dependence. The 
variation of 

11
C , 

12
C , and 

44
C  for single crystals is shown in 

Fig. 3. While there is little literature data available to vali-
date these single crystal elastic coefficients, it is possible  
to compare ab initio calculated and experimental single 
crystal elastic coefficients for pure BCC Li at 78 K [13]. 
The difference between the experimental and predicted 
elastic components is small, between 1–6% (or approxi-
mately 1 GPa). 
 These single crystal elastic coefficients were then used 
as the basis for all the analytic and FEM estimates of poly-
crystalline elastic properties. The dependence of Y*, G*, 
and *ν  as a function of Li content are shown in Figs. 4 and 
5. In each case, the Voigt and Reuss bounds form upper 
and lower bounds, as should be the case. The difference 
between these two bounds varies between 20–130% for 
G* and Y* and 25–50% for *.ν  Such large differences be-
tween the upper and lower bounds illustrate that these 
bounds by themselves do not necessarily restrict the poly- 
 

  

Figure 3 (online colour at: www.pss-b.com) Dependence of the 

ab initio calculated single crystal elastic coefficients for BCC 

Mg–Li alloys on lithium concentration. Experimental Li data at 

78 K is from Nash and Smith [13]. 

 

Figure 4 (online colour at: www.pss-b.com) Compositional de-

pendence of Young’s modulus for polycrystalline BCC Mg–Li 

alloys with a random texture. Red dashed lines indicate FEM cal-

culations, and blue solid lines analytic ones. 
 
crystalline elastic properties to a small-sub set from which 
reasonable values can be extracted. Interestingly enough, 
the self-consistent and FEM predictions fall close to the 
midpoint between upper and lower bounds. This result 
validates Hill’s [14] suggestion that B* and G* can be rea-
sonably estimated by taking an arithmetic mean of the up-
per and lower bound. 
 

  

Figure 5 (online colour at: www.pss-b.com) Compositional de-

pendence of shear modulus for polycrystalline BCC Mg–Li al-

loys with a random texture. Red dashed lines indicate FEM calcu-

lations, and blue solid lines analytic ones. 
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Figure 6 (online colour at: www.pss-b.com) Compositional de-

pendence of Poisson’s ratio for polycrystalline BCC Mg–Li al-

loys with a random texture. Red dashed lines indicate FEM calcu-

lations, and blue solid lines analytic ones. 

 

 In Figs. 4 and 5, the Voigt and Reuss approaches esti-
mate polycrystalline elastic properties for BCC Mg, but the 
self-consistent and FEM approaches do not. In the self-
consistent case, all of the roots to Eq. (9) are imaginary; 
while for FEM, the simulations crash immediately due to a 
non-positive definite stiffness matrix. The self-consistent 
and FEM methods are unable to calculate real elastic 
modulus values in cases when C ¢  (defined in Eq. (4)) is 
negative, as is the case for BCC Mg. When C ¢  is negative, 
it indicates that both the single crystal and polycrystalline 
form of the material is mechanically unstable. In other 
words, BCC Mg will undergo a phase transformation upon 
the application of strain. The negative 

V
*G  and 

V
*Y  also hints 

at this mechanical instability. These results are in agree-
ment with the ab initio Bain path calculations by Jona and 
Marcus [15]. 
 The polycrystalline elastic properties predicted by the 
self-consistent approach do not differ greatly from those 
predicted by FEM. FEM in general predicts a slightly 
lower modulus value and a slightly higher *ν  value. The 
difference between the predicted G* and Y* values from 
both approaches was between 2–17% and between 0–4% 
for *ν . Because the Mg–Li alloy system has low polycrys-
talline elastic modulus values in the Li rich region, the 
relative differences between the self-consistent and FEM 
values can be large. However, the absolute differences be-
tween the two approaches is reasonable: 1–3 GPa for shear 
and Young’s modulus and between 0.003–0.02 for Pois-
son’s ratio. The ability to predict similar polycrystalline 
elastic properties using a quartic equation (solved in-
stantly) and FEM (solved on the order of minutes to hours)  

Table 1 Comparison of polycrystalline elastic properties pre-

dicted by the self-consistent and FEM approaches. 

 FEM square grains  

vs. self-consistent  

FEM non-uniform grains 

vs. self-consistent  

ΔG range (GPa) 0.30–1.50  0.03–0.71  

ΔG avg. (GPa) 0.72  0.35  

ΔY range (GPa) 0.68–3.07  0.07–1.48  

ΔY avg. (GPa) 1.66  0.82  

Δν  range  0.003–0.020  0.000–0.015  

Δν  avg.  0.013  0.007  

 

illustrates the power and value of the self-consistent ap-
proach. 
 A comparison of the polycrystalline elastic properties 
predicted by FEM using a uniform and non-uniform grain 
size distribution reveals that using a non-uniform grain (i.e. 
more realistic) size distribution results in elastic properties 
that are closer to the self-consistent predictions. The differ-
ences between G*, Y*, and *ν  for both FEM approaches 
and the self-consistent approach are summarized in Table 1. 
In general, the FEM predictions using a non-uniform grain 
size polycrystal are 50% closer to the self-consistent re-
sults than the FEM results based on a polycrystal contain-
ing a uniform grain size. At first glance, this trend may be 
regarded as unexpected since the self-consistent approach 
was derived from a polycrystal with a uniform spherical 
grain size distribution. However, FEM simulations based 
on a more realistic polycrystal mesh should lead to a better 
prediction of polycrystalline elastic properties. Therefore, 
the fact that the better FEM predictions lie closer to the 
self-consistent results further validates the self-consistent 
approach. 
 
 4 Conclusions Single crystal elastic coefficients (

11
C , 

12
C , and 

44
C ) were predicted for 11 BCC Mg–Li alloys as 

well as BCC Mg and Li using ab initio methods. A multi-
scale approach that bridged the atomistic and macroscale 
levels was employed to estimate polycrystalline elastic 
properties (Y*, G*, and *ν ) using both analytic homogeni-
zation and FEM methods. As expected, the upper and 
lower bounds for each of the polycrystalline elastic proper-
ties was defined by the Voigt and Reuss solutions. While 
the difference between these two bounds was too large to 
be useful, the arithmetic mean of the two bounds did pro-
vide a reasonable approximation. 
 For elastically isotropic materials with cubic symmetry 
and a random grain orientation distribution (i.e. non-
textured materials), the difference between the polycrystal-
line elastic properties predicted using and FEM and those 
predicted using an analytic self-consistent approach is 
small. Y* and G* computed using FEM were 1–3 GPa 
smaller than those computed using the analytic self-
consistent approach, while the FEM based values for *ν  
were 0.00–0.15 higher. The effect of grain size distribu-
tion on the FEM results was also investigated. The FEM 
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predictions using a non-uniform grain size polycrystal are 
50% closer to the self-consistent results than the FEM re-
sults based on a polycrystal containing a uniform grain size. 
The good agreement between the polycrystalline elastic 
properties derived from the self-consistent approach and 
FEM illustrates the power and value of applying the self-
consistent approach to materials with cubic symmetry. 
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