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For the sharp indentation of soft metals, we first reveal a simple relation between the nominal hardness, Hn, and the flow stress,
rr, i.e. Hn = 4.4rr. Further, using the relation proposed herein instead of the well-known Tabor’s relation and the analysis per-
formed by Nix/Gao on the geometrically necessary dislocations, a simple indentation nominal hardness–depth relation at the micro-
scale is obtained. The model agrees well with the experiment data in the literature and the simulation based on a strain gradient
theory.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Size effects were frequently observed in microinden-
tation tests [1–4]. A number of factors, e.g. tip defects
[5], creep [6], plastically graded surface [7,8] and geomet-
rically necessary dislocations (GNDs), may be responsi-
ble for this phenomenon. In the present paper, we focus
on the size effects induced by GNDs, which has under-
gone much research during the past decade [9–17]. Nix
and Gao [9] proposed a model to interpret the depth-
dependent hardness observed in microindentation tests
by including the effect of GNDs. The model has been
widely used recently (e.g. [18–21]), for instance to evalu-
ate the characteristic length of the materials. In the mod-
el of Nix and Gao [9], the hardness is defined as the
indentation load dividing by the projected contact area.
However, in many circumstances the determination of
the projected contact area at the microscale is not easy
due to the presence of piling-up [22,23]. For example,
the standard method by Oliver and Pharr [24] used to
measure hardness can significantly underestimate the
contact area if the indented materials exhibit piling-up.
In this case, if the Young’s modulus of the material is
known, the method suggested by Joslin and Oliver [25]
may be used to evaluate the projected contact area; how-
ever, the initial unloading slope is involved, and the er-
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rors in this might be large in practice. If the Young’s
modulus of the material is unknown, additional experi-
mental facilities, such as atomic force microscopy
(AFM), may be applied to determine the extent of the
piling-up. However, it should be noted that AFM can
only be used to scan the residual impression after
unloading; direct measurement of the contact area at
the maximum indentation depth appears to be impossi-
ble. Thus, in order to investigate the role played by
GNDs in microindentation tests, it is necessary and
important to develop a model to interpret the effect of
GNDs on directly measurable quantities. Bucaille
et al. [26] and Cao and Lu [27] attempted to address
the effect of GNDs on the indentation loading curve.
However, these studies were based on the representative
strain and the fitting functions presented by Dao et al.
[28], which may exhibit significant errors when applied
to some important highly plastic metals [29] (e.g. copper,
gold and silver, for which the ratios of the Young’s mod-
ulus to the yield strength are large). Based on this pre-
mise, the present study attempted to address the
correlation between the material properties and directly
measurable quantities in the sharp indentation of soft
metals at the microscale.

According to the systematic finite element analysis
performed in our recent research [29–31], we first reveal
a simple relationship between the nominal hardness Hn

and the flow stress rr corresponding to the specific rep-
resentative strain er, i.e.
sevier Ltd. All rights reserved.
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Figure 2. Dependence of the representative strain on the indenter half-
apex angle.
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H n ¼ j0rr ð1Þ
for conical indentation into soft metals (with a large ra-
tio of Young’s modulus to yield strength; Fig. 1 gives a
schematic plot of the conical indentation). Here j0 is a
constant and is equal to 4.4 for a given range of the
half-apex angle h of the indenter (i.e. h varies from 60
to 80�) according to our recent studies [29–31]. er de-
pends on h only (see Fig. 2), and the relation between
rr and er is given by the following power function:

rr ¼ Ken
r ð2Þ

where K is the strength coefficient and the strain-harden-
ing exponent n lies in the range of 0–0.5. Hn is a directly
measurable quantity and is defined as

H n ¼
P

pðtanðhÞhÞ2
ð3Þ

where P is the indentation load and h is the indentation
depth (see Fig. 1). It should be emphasized here that the
nominal hardness defined by Eq. (3) only depends on the
half-apex angle h and the directly measurable quantities,
i.e. the indentation load P and the depth h. The hardness
used in the model of Nix and Gao [9] depends on the
contact depth hc (see Fig. 1) aw well as the load P and
the half-apex angle h; thus the effects of piling-up or
sinking-in will come into play.

Eq. (1) is quite similar to the well-known Tabor’s
relation between the hardness and the flow stress, i.e.

H ¼ jrr;Tabor ð4Þ
where the hardness H = P/p(tan(h)hc)

2 (see Fig. 1 for hc)
and j is a constant; according to the analysis of Cheng
and Cheng [32], this constant is around 2.75 for highly
plastically materials. It has been noted that friction
may affect the contact area at the given indentation load
[33], and will thus influence the value of j. The represen-
tative stress rr,Tabor depends on the representative strain
defined by Tabor [33], and their relation is given by Eq.
(2). The Tabor’s representative strain is also a function
of the half-apex angle h; for instance, for h = 70.3�, it
is around 8%.

At the macroscale, the relation given by Eq. (1) per-
mits the determination of the flow stresses correspond-
ing to the representative strains of the materials from
the nominal hardness. At the microscale, Nix and Gao
[9] showed that the density of the GNDs under the in-
denter might be expressed as

qGND ¼
3

2 tan2ðhÞbh
ð5Þ
P

hθhc

Figure 1. A plot of the conical indenter.
where b is the magnitude of the Burgers vector. Durst
et al. [34] modified Eq. (5) by considering the size of
the plastic zone and gave

qGND; m ¼
3

2 tan2ðhÞbh
1

f 3
ð6Þ

where the parameter f reflects the effect of the size of the
plastic zone. When it is taken as 1, the density of the
GNDs is that given in the model of Nix and Gao [9].
In the work of Durst et al. [34], it is taken as 1.9.
According to Nix and Gao [9], the flow stresses in the
absence of the GNDs and in the presence of GNDs,
respectively, are given by

rr;0 ¼
ffiffiffi
3
p

Gab
ffiffiffiffiffi
qs

p ð7aÞ
and

rr ¼
ffiffiffi
3
p

Gab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs þ qGND;m

p
ð7bÞ

where qs is the density of the statistically stored disloca-
tions (SSDs) and G represents the shear modulus. a is a
constant. Using the relation between the flow stress and
the nominal hardness as given by Eq. (1) instead of Ta-
bor’s relation (Eq. (4)) as applied in the model of Nix
and Gao [9], we obtain from Eq. (7)

H n

H 0
n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

qGND;m

qs

r
ð8Þ

where H 0
n is the nominal hardness at the macroscale.

Further, using Eqs. (6) and (7a), the following indenta-
tion nominal hardness–depth relation at the microscale
can be obtained from Eq. (8)

H n

H 0
n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�

h

r
ð9Þ

where h* is the material characteristic length and is given
by

h� ¼ 87
ba2

tan2ðhÞ
1

f 3

G

H 0
n

� �2

ð10Þ

Besides the procedure above, the nominal hardness–
depth relation may also be derived from the work of
Bucaille et al. [26]. In their work, it is assumed that
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Figure 3. Depth-dependent nominal hardness from the MSG theory
[13] and the model given by Eq. (9).
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the ratio of the contact depth to the indentation depth is
a constant, and the following relation is obtained by
using the model of Nix and Gao [9]:

P ¼ C0h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�NG

h

r
ð11Þ

where C0 is the indentation loading curvature at the
macroscale and C0h2 is the corresponding indentation
load. h�NG is the material characteristic length defined
in the model of Nix and Gao [9], i.e.

h�NG ¼
81

2

ba2

tan2ðhÞ
G

H 0

� �2

ð12Þ

Unlike the definition given by Eq. (10), h�NG defined in
the work of Nix and Gao [9] depends on the hardness
at the macroscale H0. Dividing Eq. (12) with p(tan(h)h)2

and according to the definition of the nominal hardness
given by Eq. (3), we have

H n ¼ H 0
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�NG

h

r
ð13Þ

which has the same form as Eq. (9) and the difference
lies in the definition of the material characteristic length
as given by Eqs. (10) and (12), respectively.

Eq. (9) has the same form as the model of Nix and
Gao [9], with only the hardness in their model replaced
by the nominal hardness defined by Eq. (3). However,
the accurate measurement of the projected contact area
in the use of the model of Nix and Gao [9] may be dif-
ficult. Therefore, Eqs. (1) and (9) may provide an easier
way to estimate the material characteristic length and
the representative stress in the absence of the effect of
GNDs. Eq. (1) is supported by the systematic finite ele-
ment analysis [29–31]; in the present paper, verification
of Eq. (9) using the mechanism-based strain gradient
(MSG) theory [11] and the experiments performed by
Durst et al. [35] has been carried out. Using the MSG
theory, Huang et al. [13] have simulated the microinden-
tation test performed by McElhaney et al. [3]. The detail
procedure for the simulations can be found in Ref. [13].
Using the indentation loading curve from the simula-
tions in Ref. [13] for the polycrystalline copper, the
depth dependence nominal hardness is obtained and
plotted in Figure 3. Fitting the computational data using
Eq. (9) gives the nominal hardness at the macroscale
H 0

n ¼ 837 MPa and h* = 0.503 lm. Further, taking
shear modulus G = 40 GPa, Burgers vector
b = 0.255 nm, half-apex angle h = 72� and f = 1.0, the
Taylor’s constant a determined using Eq. (10) is 0.3. It
is noted that the computational data in Figure 3 from
the simulations of Huang et al. [13] corresponds to
a = 0.7. The difference between the Taylor’s empirical
constant a obtained from the present model and that
from the work of Huang et al. [13] may be explained
by considering the effect of the plastic zone size (PZS).
As mentioned above, Durst et al. [34] has addressed
the effect of the PZS and suggested a parameter f larger
than 1.0. In the study of Huang et al. [13], the effect of
PZS has been included in the simulation. If a is taken
as 0.7, fitting the simulation results in Figure 3 using
Eq. (9) gives the parameter f = 1.74, which is near to
the value of 1.9 as used in the work of Durst et al.
[34]. In other words, if, in the model given by Eq. (9),
the effect of PZS is included by taking f = 1.74, a = 0.7
will lead to a good agreement with the simulation result
of Huang et al. [13]. In this sense, the predicted result
using the model given by Eq. (9) is indeed consistent
with that from the simulation based on the MSG plastic-
ity [13]. However, it should be noted that a = 0.7 is be-
yond the general range of 0.1–0.5; this might be due to
the effects of mechanical polishing on the experiments
of McElhaney et al. [3] as argued by Durst et al. [34].
Bearing this point in mind, we further verify the model
by using the experimental data in the work of Durst
et al. [35] for Ni SX(1 00), NiFe28 and tungsten. Using
the indentation loading curves in their experiments, the
nominal hardness was determined at different indenta-
tion depths as given by the points in Figure 4. The solid
lines in Figure 4 give the fitting results using Eq. (9). The
results show that indeed the model matches the experi-
ments remarkably well and the material characteristic
lengths (as shown in the figure) are reasonable when
compared with the results reported in Ref. [35].

We now discuss the limitations of the results given by
Eqs. (1) and (9). First, the model is limited to the micr-
oindentation and the cases in which the indenter can be
assumed to be ideally sharp. Second, according to the
results in Refs. [29,30], Eq. (1) requires a large ratio of
the Young’s modulus to the representative stress; for
example, it should be larger than 500 for h = 70.3�.
The study of Cao and Lu [27] shows that Eq. (9) may
be invalid if the ratio of the Young’s modulus to the rep-
resentative stress is smaller than a certain value.

Thus, it may be concluded that Eqs. (1) and (9) as re-
ported in the present work may only be applicable to
highly plastic metals. This conclusion could apply to
Eq. (13), which is obtained from the model of Bucaille
et al. [26], because the assumption in their study, i.e.,
the ratio of the contact depth to the indentation depth
is constant, is only valid for the highly plastic metals.
Although the present results are limited to highly plastic
materials, such a property range still includes many
important engineering metals, such as some steels, cop-
per, silver and gold [36]. Moreover, the highly plastic
metals have larger ratios of the shear modulus to the
hardness or nominal hardness; according to the analysis
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Figure 4. Depth-dependent nominal hardness from the experiment of
Durst et al. [35] and the model given by Eq. (9).

Y. Cao et al. / Scripta Materialia 59 (2008) 518–521 521
of the Nix and Gao [9] and also Eq. (10), the size effects
due to GNDs will be more significant in these circum-
stances. Thus the development of a model to interpret
the effect of GNDs on the indentation response of soft
metals is particularly necessary and important.

We reveal a simple relation between the nominal
hardness and the flow stress corresponding to the repre-
sentative strain given by Figure 2 in the present work.
Using this relation instead of the Tabor’s relation and
the relation between the flow stresses and the density
of dislocations as applied in the work of Nix and Gao
[9], a model to predict the depth-dependent nominal
hardness is proposed. The model agrees remarkably well
with the experiment in the literature and the finite ele-
ment analysis based on the mechanism-based strain gra-
dient plasticity [13]. The results reported herein may
help us to understand the correlation between the di-
rectly measurable quantities in the sharp indentation
into soft metals and the material properties (e.g. the flow
stress) at the macro or microscale.
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