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Abstract

Single crystalline copper beams with thicknesses between 0.7 and 5 lm are manufactured with a focused ion beam technique and bent
in a nanoindenter. The yield strengths of the beams show a mechanical size effect (smaller-is-stronger). The geometrically necessary dis-
location (GND) densities estimated from misorientation maps do not explain the observed size effect. Also, accumulation of GNDs prin-
cipally requires pre-straining. We hence introduce a mean-field breakdown theory and generalize it to small-scale mechanical tests other
than bending. The mean-field breakdown limit is defined in terms of a microstructural correlation measure (characteristic dislocation
bow-out length) below which the local availability of dislocation sources and not the density of GNDs dominates the mechanical size
effect. This explains why a size dependence can occur for samples that are not pre-strained (by using a very small critical strain to define
the yield strength). After pre-straining, when GNDs build up, they can contribute to the flow stress. The mean-field breakdown theory
can also explain the large scatter typically observed in small-scale mechanical tests as the availability of sufficiently soft sources at scales
around or below the correlation length does not follow statistical laws but highly depends on the position where the probe is taken.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

As current trends towards device miniaturization accel-
erate, the micromechanical characterization of materials
becomes increasingly important. Mechanical properties
and the underlying plasticity mechanisms at dimensions
below 20 lm differ from those at the macroscopic scale
(smaller-is-stronger) [1–12]. Often, an inverse relationship
is observed between the sample size and the flow stress.
This applies even for compression tests under gradient-free
loading conditions [13–15].

Mechanical tests at the microscale and macroscales are
not only characterized by their sensitivity with respect to
the initial microstructure and specific size-dependent defor-
mation mechanisms (intrinsic size effects) but also by an
increasing relative influence of the experimental initial
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and boundary conditions on the results (extrinsic size
effects). The latter point has been discussed in terms of
sample shape variations, contact, loading procedures and
appropriate criteria to define the onset of plastic flow when
comparing results obtained from samples of different size
[8–10,16–23].

Intrinsic (microstructural) effects that are typically held
responsible for the smaller-is-stronger phenomenon are
geometrically necessary dislocations (GNDs) and pile-up
effects [24]; dislocation starvation [12,25–27]; dislocation
source truncation [28–32]; and changes in the dislocation
forest [33]. The scaling of the yield stress with the probe size
is different for these mechanisms. While GND-related
strengthening leads to power-law exponents close to
�0.5, source limitation effects show an exponent close to
�1 [31]. As will be discussed below, these models all assume
a mean-field behavior of the dislocations. Plastic deforma-
tion below the statistical regime (mean-field breakdown),
however, is characterized by substantial deviations from
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the average dislocation behavior, and hence by large scatter
of the observed flow stress values. This makes it difficult to
fit corresponding data by one exponent alone and by that
assign one single mechanism to the observed size effect.
The same argumentation applies when transitions between
different deformation mechanisms take place in a sequence
of smaller-is-stronger experiments. This can be particularly
expected when probe sizes below and above characteristic
microstructural length scales are used. As will be discussed
later, these inner length scales are referred to here as corre-
lation length [33]. A third problem in assigning a single
exponent and/or mechanism to a set of yield strength data
is the often quite arbitrary definition of the yield begin.

In order to cast these thoughts more consistently into a
generalized interpretation of mechanical size effects, we
first have to classify the different intrinsic mechanisms into
two groups, namely: (i) GND-based concepts and (ii) dislo-
cation source limitation and truncation effects.

1.1. GND-based concepts

Strain gradient models attribute the inverse relationship
between sample size and flow stress (or hardness) in
micrometer dimensions to an increase in the GND density
that is required to accommodate the lattice mismatch aris-
ing from second-order deformation gradients [24,25]. In a
mean-field approximation these defects add to the overall
dislocation density and, hence, strengthen the material
according to Taylor’s law

sa ¼ cGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

gnd þ qa
ssd

q
ð1Þ

where c is a geometrical constant between 0.1 and 0.5, G is
the shear modulus, b is the magnitude of the Burgers vector
and qa

gnd ; qa
ssd and sa are the geometrically necessary and

statistically stored dislocation densities, and the yield
strength on the slip system a, respectively. The strain gradi-
ent theory is often used to explain the indentation size effect
(ISE) [24,25]. In this concept smaller probes are assumed to
create larger strain gradients, which implies that the GNDs
are confined to smaller volumes underneath the indents,
leading to a larger flow stress [1].

In contrast to this model of size-dependent plasticity,
recent experimental and theoretical works report about
mechanical size effects under well-controlled deformation
conditions in cases without externally imposed strain gradi-
ents or insufficient densities of GNDs, respectively [12,20–
22,25,27,32,31,34–36]. These works suggest dislocation
source limitation criteria as an alternative explanation for
the size effect as outlined in (ii).

Another, more fundamental reason why GND-based
theories cannot always explain size effects plausibly is that
their accumulation requires an initial amount of pre-strain-
ing or thermomechanical treatment as in-grown disloca-
tions at the onset of straining are not polarized (except in
perlite or martensite). When measuring the yield strength
after little or no pre-straining, GNDs cannot build up,
and hence do not contribute to the size effect. Indeed,
recent results in this field suggest that GNDs can cause a
size effect of strain hardening rather than of the yield
strength.

1.2. Dislocation source limitation and truncation effects

The second group of approaches to explain the smaller-
is-stronger phenomenon considers dislocation slip and
multiplication mechanisms that become size-dependent
when the probe size becomes smaller than the microstruc-
ture correlation length [33]. These models explain the smal-
ler-is-stronger effect without the presence of increased
GND densities at smaller scales. The correlation length n
is defined here as the most frequently occurring dislocation
segment length between two pinning points that can poten-
tially act as a dislocation source. It can be related to the
inverse square root of the dislocation density (Taylor con-
figuration), half the dislocation cell size or the average
spacing of hard junctions. For the analysis of the yield
stress size dependence at probe scales below that correla-
tion length, statistical assumptions on the distribution
and availability of potential dislocation sources do no
longer apply. We refer to this situation as a mean-field
breakdown regime. Three types of phenomena have been
considered to be relevant for size effects in or close to that
regime: dislocation starvation (exhaustion); dislocation
source limitation or, respectively, truncation; and forest
dislocation changes.

Dislocation exhaustion was primarily discussed for pil-
lar compression [12,25,27]. It refers to a situation, where
the smaller-is-stronger phenomenon of compressed crystals
is associated with the depletion of mobile dislocations that
leave the probed volume before multiplication can replen-
ish the dislocation flux that is required to match an
imposed shape change [26,29,37–40].

The dislocation source limitation or, respectively, source
truncation effect refers to a situation, where, in confined
geometries, only a limited number of potential (i.e. suffi-
ciently soft) dislocation sources are available
[9,10,29,31,41]. The source-operation stress is related to
the dislocation arrangement. As the activation stress for
Frank–Read sources scales inversely with the spacing of
the pinning points, a mechanical size effect occurs if the
softest sources (largest pinning length) in smaller samples
become necessarily more narrow and, hence, harder to acti-
vate. This case is simply a generalization of the dislocation
starvation mechanism because the main point about dislo-
cation depletion is not that the existing dislocations leave
the sample through the surface but that an insufficient
number of sources are available to replenish the flux
required to comply with the imposed boundary conditions.

A third aspect describes changes in the forest dislocation
arrangement. The dislocation forest can act on size effects
in two ways. First, potential dislocation sources are an
inherent part of the forest arrangement. This establishes a
relationship between the correlation length valid for a spe-



1 Kernel average misorientation is a measure of the average misorien-
tation between a given data point and its neighbors (excluding misorien-
tations higher than some prescribed value).
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cific dislocation arrangement that is being probed and the
softest available dislocation source length within this
arrangement. Secondly, the dislocation forest acts through
conventional effects, such as elastic interaction, cutting and
reactions among dislocations in the ensemble when slip
occurs.

These three groups of mechanisms thus have in common
that the limitation in the dislocation multiplication rate
through an insufficient availability of soft sources is the
dominant factor for the smaller-is-stronger effect. This phe-
nomenon can be expressed in terms of the Orowan equa-
tion [30,42–44]: when crystals are plastically loaded,
dislocations glide and multiply following the locally acting
shear stresses under the constraint of matching the imposed
velocity gradient,

_c ¼ qmbvþ _qþmbl ð2Þ
where qm is the density of existing mobile dislocations, _qþm is
the rate of dislocation multiplication, l is the mean free
path and v is the dislocation velocity. The first term in this
equation represents the shear resulting from the expansion
of existing dislocation loops and the second one accounts
for the generation of new mobile dislocations.

Usually in bulk crystal plasticity Orowan’s equation is
not written as a total differential (as is done here). The rea-
sons for usually dropping the multiplication term are that,
first, it does not directly contribute to the shear, and sec-
ondly, a sufficient number of critical bow-out and source
configurations are usually available in a mean-field approx-
imation [43,44]. In bulk plasticity this assumption is justifi-
able as the Taylor stress scales with the square root of the
dislocation density and so does the bow-out stress for a
source when the pinning points are of the same order of
magnitude as the mean dislocation spacing. However, in
confined probe geometries, it is possible that multiplication
rates are not high enough to maintain an imposed shear
rate as the source activation stress scales inversely with size
[27,45–48]. The Orowan equation as written here, there-
fore, maps the kinematic necessity that an imposed velocity
gradient (here in scalar formulation) must be accomplished
by dislocation slip, which has to be permanently replen-
ished by a limited set of sources in the case of small
samples.

In order to study these two different approaches (GNDs
vs. mean-field breakdown) to explaining the smaller-is-
stronger phenomenon in more detail, we investigate the size
effect in terms of bending experiments. Bending is a good
alternative to compression and indentation [6–11]. Stölken
and Evans [6] observed stronger behavior of thinner Ni
polycrystal thin films during bending for the same surface
strain and reported size-dependent strength and strain
hardening. Similarly, flow stresses up to 1 GPa were found
for copper single crystal bending beams with 1 lm thick-
ness by Motz and co-workers [9]. They used the maximum
forces for calculating the yield stresses. The inverse thick-
ness dependence of the yield strength was related to the
existence of GNDs, together with piling-up of dislocations
around the neutral axis of the beams. Corresponding
observations were studied by using 3-D discrete dislocation
dynamics simulations [10]. In that work, the GND densities
were estimated from electron backscattered diffusion
(EBSD)-derived kernel average misorientation (KAM)1

maps [9,21] Eq. (3), where x is the angular rotation over
the distance x along the beam.

qgnd ¼
x
x

1

b
ð3Þ

In this work, cantilever beams of different dimensions
were bent. Samples were manufactured by focused ion
beam (FIB) milling and the beams were deformed with a
spherical diamond tool in a nanoindenter while the forces
were recorded. The GND densities were calculated using
ex situ EBSD measurements of the lattice curvature in
the cross-sections of the deformed beams. As the so-deter-
mined GNDs can only explain a minor portion of the
observed size dependence (depending on the definition of
yield begin), we discuss the results in terms of a generalized
mean-field breakdown concept, as indicated above. This
interpretation of the smaller-is-stronger effect is based on
dislocation multiplication limitation and the availability
of new sources as a function of the sample size in cases,
where the probed volume is close to or even below the
microstructure correlation length.

2. Experimental

Copper single crystals were grown in a Bridgman fur-
nace. Beams were cut and a 3 lm layer was removed by
FIB milling from the top and the side surfaces using high
FIB currents (30 keV, 2–5 nA). The remaining cuts were
made at decreasing currents using 500 pA for surface fin-
ishing. Finally, the side surfaces were cleaned using
100 pA prior to EBSD characterization. FIB machining
tolerance was improved by several means. For instance, a
tapered structure was typically formed when the beam
was machined along the width of the sample. This initial
taper was reduced by tilting the sample by 1.5� with respect
to the FIB milling axis before cutting. In addition, a fast
milling strategy (1 lm2 s�1) for small incidence angle vari-
ation together with low milling currents (500 pA) was used
to manufacture the finest structures. From these single
crystals we manufactured cantilever beams with thicknesses
between 0.7 and 5 lm via FIB milling (Fig. 1). All other
beam dimensions were fixed ratios of their thickness (see
the schematic drawing in Fig. 1, Table 1). The symbols
w, tint, text, L, yexerted and ymeasured represent the width, inte-
rior thickness, exterior thickness, length, exerted moment
arms and measured moment arms, respectively. The mea-
sured moment arm, ymeasured, refers to the values deter-
mined from the scanning electron microscopy (SEM)



Fig. 2. Inverse pole figure maps of the beams before loading. The smaller figure
the beams and the bulk.

Fig. 1. SEM images of three cantilever beams with different thickness from the oblique and transverse views. The schematic drawing shows the beam
geometry and naming convention. The symbols w, tint, text, L, yexerted and ymeasured refer to the width, interior thickness, exterior thickness, length, exerted
moment arms and measured moment arms, respectively, as determined by SEM.

Table 1
Beam dimensions in lm (see also Fig. 1). The symbols w, tint, text, L,
yexerted and ymeasured represent the width, interior thickness, exterior
thickness, length, exerted moment arms and measured moment arms,
respectively. The measured moment arm, ymeasured, refers to the values
determined from the SEM images after deformation.

Beam 1a Beam 1b Beam 2a Beam 2b Beam 3a Beam 3b

w (lm) 4.8 4.8 6.8 6.8 11.7 11.7
tint (lm) 1.5 1.5 2.2 2.2 5.3 5.3
text (lm) 0.6 0.6 1.2 1.3 3.2 3.2
L (lm) 5.9 7.3 10.3 10.6 19.2 20.5
yexerted (lm) 4.0 4.0 8.0 8.0 16.0 16.0
ymeasured (lm) 4.9 3.6 9.4 9.4 18.5 17.1
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images after deformation. The exerted moment arm,
yexerted, refers to the values measured directly during bend-
ing via the indenter device optics. The difference in these
two measures is analyzed in order to estimate possible posi-
tioning and alignment deviations between tool and beam.
Orientation maps were taken using high-resolution EBSD
in a field-emission scanning electron microscope (Fig. 2).
We determined the Schmid factors from the orientations
and boundary conditions (Table 2).

The samples were bent in a hysitron triboscope indenter.
Total displacements of 0.5, 1 and 2 lm were imposed in dis-
s are high-resolution EBSD close-up maps of the transition region between



Table 2
Slip directions, slip planes and the corresponding Schmid factors.

Slip plane, ~n (111) ð�1�11Þ ð�111Þ ð1�11Þ
Slip direction, ~b ½01�1� ½�101� ½1�10� ½0�1�1� [101] ½�110� ½01�1� [101] ½�1�10� ½0�1�1� ½�101� [110]
Schmid factor 0.481 �0.355 �0.126 0.398 �0.232 �0.166 0.032 0.012 �0.043 0.115 0.134 �0.249
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placement control mode, respectively, as a function of the
beam thickness to realize identical strain rates. The displace-
ment was exerted as a sequence of 10 subsequent loading and
five unloading steps for a duration of 10 s for each loading
and unloading step. The dwell time between loading and
unloading steps was 5 s. The loading rates corresponded to
a strain rate of approximately 0.025 s�1 in all cases. A coni-
cal diamond indenter with a spherical tip was used to make
the indentations (5 lm tip radius, Hys-Ti45).
Fig. 3. SEM images after bending at a 70� tilt position for EBSD characterizat
value in this case is an averaged misorientation measure using the first, secon
higher than 0.1. The confidence index is the difference between the first and s
means that 95% of the crystallographic indexing was correct.
3. Results and discussion

We observed dislocation slip traces with a thickness of
�40–50 nm on the surfaces of the beams. They became
more pronounced with increasing beam thickness. Slip
traces are shear steps, hence they reveal areas of pro-
nounced dislocation activity and shear localization. Similar
information was retrieved from the KAM maps of the bent
beams (the corresponding orientation maps were measured
ion together with the corresponding KAMs of the side sections. The KAM
d and third nearest neighbor orientation shells. The confidence index was
econd highest ranked orientation solutions. A confidence index above 0.1



Table 3
Average thickness, GNDs approximated from the measured EBSD misorientations and the corresponding KAM measure at the end of bending
deformation Eq. (3), mean GND spacing and total rotation angle of the beams.

Average thickness (lm) GND (1/m2) Mean spacing (nm) Total rotation (deg)

Beam 1a 1.02 9.58 � 1013 100 2.61 ± 0.31
Beam 1b 1.02 2.21 � 1014 70 6.35 ± 0.49
Beam 2a 1.70 8.26 � 1013 110 4.21 ± 0.19
Beam 2b 1.78 1.04 � 1014 98 4.53 ± 0.11
Beam 3a 4.23 3.08 � 1013 180 4.10 ± 0.54
Beam 3b 4.23 5.44 � 1013 135 5.66 ± 0.27
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ex situ after plastic bending) (Fig. 3). They reveal local ori-
entation gradients, and were used to estimate the GND
densities using Eq. (3) (Table 3). The KAM maps have
the following features. (i) The orientation changes are not
homogeneous but they form localized patterns originating
particularly at the transition zones between the beams
and the bulk material. In these regions 3-D stress concen-
trations prevail. This suggests that deformation occurs in
the form of localized shear zones rather than as ideal
homogeneous bending. (ii) The misorientations at the top
and the bottom parts of the beams are not identical (as
would be expected for ideal bending) owing to the non-
symmetrical influence of the curvature at the connection
Fig. 4. Force–displacement curves of the beams.

Fig. 5. (a) Stress–strain and (b) Kocks–Mecking-type strain hardening diagram
measure we use the d/y ratio. d, F, y, wsum and tav refer to the displacement, f
between the beam and the bulk material. (iii) Orientation
changes initiate from those points, where the applied stress
is highest during bending.

Fig. 4 shows the force–displacement curves for the
beams. The variation in the elastic stiffness is due to the
variation in the moment arms among the different beams.
The flow stresses are calculated from the force–displace-
ment curves using Eq. (4), in which F, y, wsum and tav refer
to the forces, moment arms, width and average thickness of
the beams, respectively (Fig. 1).

r ¼ 4Fy
wsumt2

av

ð4Þ

Fig. 5 shows the bending stress–strain (a) and the strain
hardening (H) diagrams (b). The stresses are calculated
according to Eq. (4) after normalizing the displacements
by the corresponding moment arms. As a strain measure
we use the d/y ratio. d, F, y, wsum and tav refer to the dis-
placement, force, moment arm, beam width and average
beam thickness, respectively. Although normalization of
the displacements does not yield the exact strains (as the
beams were not bent around the same well-defined curva-
ture radius), the match in the elastic stiffness among the dif-
ferent beams shows that the moment arm is a reasonable
normalization measure.

Fig. 6 shows the yield strength data obtained from the
corrected and normalized stress–strain curves given in
s. The bending stress r is calculated using 4Fy=wsum t2
av Eq. (4). As a strain

orce, moment arm, beam width and average beam thickness, respectively.



Fig. 6. Yield strength vs. beam thickness obtained from the stress–strain
curves (Fig. 5) by using three different yield criteria (0.02, 0.06 and 0.10
strain). Y.S. refers to the yield strength.
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Fig. 5 as a function of the beam thickness using three dif-
ferent yield criteria (0.02, 0.06 and 0.10 strain). The motiva-
tion for this analysis is to differentiate between the size
dependence of the yield strength and the size dependence
of the early stages of strain hardening (Fig. 5), as similarly
discussed in Refs. [6,50]. The yield strength values obtained
for a strain of 0.10 are slightly lower than those reported by
Motz et al. for copper single crystals [9]. The reason for the
deviation might be the initial orientation and the yield
strength criterion used in Ref. [9], which was based on
the maximum of the forces rather than on the critical
strain.

Typical criteria for the onset of plastic yielding in previ-
ous works were, for instance, the maximum of the forces, a
0.2% strain threshold (or even considerably larger values)
or the onset strains for necking. The stress values in
Fig. 6 and their dependence on the experimental boundary
conditions reveal that a crisp definition of the yield strength
(and, hence, of its size dependence) is an essential point
when interpreting small-scale experiments: when applying
the lowest yield criterion to the current data (stress at
0.02 strain), the beams show a relatively weak mechanical
size effect of the yield strength. It increases from
150 MPa for the largest beams (4.25 lm beam thickness)
to about 180 MPa for the smallest beams (1 lm beam
thickness). This corresponds to a size-related increase of
20% in yield strength upon probe refinement. In contrast,
the highest yield criterion (stress at 0.1 strain) shows the
strongest increase in strength upon size reduction (about
100%). The flow curves in Fig. 5a shows that at 0.1 cor-
rected strain substantial plastic deformation has already
occurred. This analysis documents that the use of a high
strain value (0.1) as a more or less arbitrary threshold mea-
sure for the yield strength is not useful as it includes strain
hardening effects [50]. It also shows that the yield stress is
only weakly size-dependent when using a small strain crite-
rion to define yield begin [50]. This is also evident from
Fig. 5b, which shows that strain hardening is particularly
pronounced in the incipient strain regime. Such behavior
applies to practically all metals (outside the superplastic
regime). Figs. 5b and 6 further reveal that strain hardening
is also size-dependent, and that it decays drastically, partic-
ularly at the beginning of plastic yielding. This means that
high strain threshold measures for defining yield begin are
not suited for the definition of the yield stress as small
changes in initial strain entail a large shift in the so-defined
yield stress. Corresponding size effect analysis hence pro-
vides no information about the size dependence of the yield
strength. Instead, it quantifies the joint size dependence of
the yield strength and of strain harding. However, it does
so only for a rather arbitrarily selected strain level. In con-
trast, the smallest chosen threshold strain (0.02) is also a
critical measure for the definition of the yield strength (in
the current case), as for some samples Fig. 5a suggests that
plasticity is not yet percolative.

An interesting additional aspect can be concluded from
the apparent size effect observed for the 0.06 and 0.1 strain
data sets (Fig. 6). These two curves show an inverse square
root yield strength dependence on the beam thickness. This
observation indicates that the size dependence of the flow
stress after an initial amount of pre-straining follows a
GND-based theory (curves for 0.06 and 0.1 strain) while
the initial yield strength after little or no pre-straining does
not (see the curve for the 0.02 strain criterion). This conclu-
sion is plausible as the accumulation of GNDs principally
requires pre-deformation. Using GNDs to explain a size
effect of undeformed samples is not conclusive as in-grown
dislocations at the onset of staining are not polarized.
Hence, when no such pre-straining is imposed (because a
very small critical strain is selected to define the yield
strength) the size dependence must be due to the availabil-
ity of dislocation sources. This aspect will be discussed
below in more detail.

The analysis shows that a more precise definition is
required for the yield strength, particularly when analyzing
mechanical size dependence. One approach might be the
definition of Kocks, who referred to the yield strength as
percolative plastic deformation, where the sheared area
must penetrate the material portion under consideration
[49]. This approach is not well suited for the field of
small-scale plasticity, though, as it anticipates a mean-field
approximation of plasticity and is not directly accessible to
experimental characterization. In contrast, it has frequently
been observed that plasticity occurs in microscale experi-
ments in a highly localized fashion via sudden strain bursts
and microbanding [12,25,27,29,37–39]. These observations
suggest that a mean-field definition of percolative straining
is not adequate in small-scale plasticity, which takes place
essentially in or close to the mean-field breakdown regime.
Another definition for the onset of yielding was suggested
by Van Swygenhoven and co-workers, who used a change
in the direction of the motion of the peaks during in situ
white-light Laue diffraction experiments [50,51]. They also
came to the conclusion that the large smaller-is-stronger
effect reported in some previous works is due to the size
dependence of strain hardening rather than to the size
dependence of the yield strength.
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Fig. 7 compares the experimentally observed to the cal-
culated resolved shear stresses. The experimental data were
derived by translating the resolved macroscopic bending
stresses into the crystallographic shear stresses in the active
slip systems using the Schmid factor for the primary slip
system (0.481). The calculated data in the same diagram
were derived from the misorientation measurements
(Fig. 3) and the corresponding GNDs through Taylor’s
relationship Eq. (1), using a geometry factor (a), Burgers
vector (b) and single crystal shear modulus (G) of 0.4,
0.255 nm and 53 GPa (anisotropy considered), respectively.
The GND density values are shown in Table 3. As the
underlying orientation maps, from which the GNDs were
derived, could only be obtained ex situ after deformation,
we compared the stresses (calculated, measured) at the
end of plastic bending. Thus, this comparison does not help
in analyzing the size effect but it is used as a consistency test
between experiment and GND-based theory. The compar-
ison reveals the following points. First, the strength data
calculated by using the GND densities are in all cases smal-
ler than the experimentally observed values (by a factor of
2.5–3 depending on beam thickness). Secondly, the scatter
for each data set is much smaller than the difference
between the GND-derived and the measured stresses.
Thirdly, the weakness of this comparison is the fact that
the statistically stored dislocation density was unknown
and hence neglected in the stress calculation. The observa-
tions suggest that a gradient-based strengthening mecha-
nism acting solely through additional GNDs cannot be
solely responsible for the observed strength values.

This conclusion, together with the results discussed in
Fig. 6, takes us back to the interpretation of the size effect
in terms of a mean-field breakdown approach. It provides a
statistical interpretation of the smaller-is-stronger phenom-
enon that is in good agreement with recent experimental
observations [12,20–22,25,27,31,34–36,41] and theoretical
considerations without using GNDs [41,52].
Fig. 7. Comparison of the measured resolved shear strength values to the
calculated ones. The experimentally obtained resolved shear strength data
were obtained by multiplying the values obtained from the stress–strain
curves at the end of deformation shown in Fig. 5 with the corresponding
Schmid factor of the primary slip system (0.481). The calculated resolved
shear strength values were obtained from the local misorientation
measurements and the resulting strength effect of the GND density
(Fig. 5) at the end of deformation.
We assume as a starting point that in a micro or nano-
sized samples the availability of soft dislocation sources is
the main factor that can lead to an increase in flow stress
upon size reduction [12,25,27,29,30,37–40]. In the mean-
field breakdown theory we approximate this effect in terms
of two size-dependent functions (Fig. 8). The first one is the
activation stress for a dislocation source, which is a hyper-
bolic function of the bow-out segment length. This func-
tion represents the dislocation source strength at different
available segment scales (top curve). It shows that in
small-scale experiments the softest (i.e. largest) source is
defined by the half probe (sample) size. The second func-
tion shows a typical probability distribution of dislocation
segments that are potentially available as sources (bottom
curve). The latter function has three characteristics: the
minimum possible bow-out length is defined by the Burgers
vector; the maximum value is the half sample or probe size;
and between these two extreme values a pronounced max-
imum is likely to occur. This maximum is referred to as the
correlation length n [33]. It is defined as the most frequently
occurring potential bow-out segment length. It can be
related to the inverse square root of the dislocation density
in the case of a Taylor configuration, to half the dislocation
cell size or to the average spacing of hard junctions. We
give an estimate of the correlation lengths for the current
experiments below. The exact shape of the dislocation
source function is speculative to some extent, but its details
are not vital for maintaining the mean-field breakdown
approach with respect to the interpretation of the smal-
ler-is-stronger effect.

If the mechanical probe size L exceeds the correlation
length n, the experiment is conducted in the mean-field
domain. This regime is characterized by a statistical distri-
bution of sources and a high probability that the probed
material contains a source. Also, the most probable source
size (defined by the correlation length n) is always smaller
than the sample size. For this reason the size effect in this
regime is rather small, and should become less relevant
the more the sample size exceeds the correlation length.
The size effect should depend only weakly on the inherited
microstructure (sample history) in this case. One should
note, though, that the correlation length is a microstructure
parameter and, hence, a history-dependent variable. This
means that the same material will reveal a different correla-
tion length and consequently a different transition size
between the mean-field and mean-field breakdown regime
when the microstructure is altered, e.g. by preceding plastic
deformation or cyclic loading.

In contrast, if the probe size L is smaller than or of the
same order as the correlation length n, the experiment that
takes place is in the mean-field breakdown regime. This
regime is characterized by considerable local fluctuations
in the availability of potential sources. In this case, the
most probable source is generally also the softest available
source. The softest critical bow-out length is always identi-
cal to the half sample size. This relationship leads to a
strong size effect in the mean-field breakdown regime. As



Fig. 8. Schematic presentation of the mean-field breakdown approach as a statistical interpretation of the mechanical size effect. The top row
schematically indicates a set of probed volumes with increasing dimensions and decreasing mechanical size effect (smaller-is-stronger). The second row
shows the dependence of the dislocation source strength in arbitrary units (a.u.) as a function of the critical bow-out length. In small-scale experimentation
the softest (i.e. largest) source is defined by the half probe (sample) size. The third row shows a typical probability distribution of dislocation segments that
are potentially available as sources. The correlation length n is the most frequently occurring potential bow-out configuration, usually given by the inverse
square root of the dislocation density, the dislocation cell size or the average spacing of hard junctions. If the probe L is larger than the correlation length n
the experiment is conducted in the mean-field regime; if it is smaller, the experiment is conducted in the mean-field breakdown regime.

2 For interpretation of color in Figs. 1–8, the reader is referred to the
web version of this article.
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the overall probability to encounter such a soft source,
however, is very small, measurements in this regime neces-
sarily show very large scatter and a strong dependence on
the inherited microstructure.

In either case, the mean-field breakdown interpretation
of the size effect is simply a generalization of the dislocation
starvation mechanism because the main point of disloca-
tion depletion is not that the existing dislocations leave
the sample through the surface but that an insufficient
number of sources are available to replenish the flux
required to comply with the imposed boundary conditions.
We now apply the mean-field breakdown theory to our
current experimental data. For this purpose we estimate
the correlation length from the average initial dislocation
density of the beams at yield begin using the data shown
in Fig. 6 using the following approach. First, we select the
stresses obtained for the smallest (0.02 strain, blue curve
in Fig. 6)2 and the highest yield criterion (0.1 strain, green
curve in Fig. 6) to obtain an upper and a lower bound for
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the correlation length, respectively. Secondly, we select in
either case only the yield strengths of the largest beams to
make sure that the correlation length represents the bulk
dislocation microstructure of the material in its mean-field
state. This reflects the condition that the initial microstruc-
ture of an undeformed beam that is cut from a bulk single
crystal does not know the size of the sample, provided that
the beam size is larger than the correlation length. Thirdly,
we use the Taylor equation (Eq. (1) in conjunction with a
Taylor factor of 3 to extract the dislocation density of the
largest beams for both cases and, from its inverse square
root, the correlation length. The upper bound estimate
yields a value of 0.35 lm (0.02 strain criterion for yield
begin; largest beam in Fig. 6) and the lower bound estimate
0.26 lm (0.1 strain criterion for yield begin; largest beam in
Fig. 6) for the correlation length. These values are very close
to the dimensions of the smallest half-beam dimensions
(0.51 lm half thickness). This means that, according to this
simple approximation of the correlation length, the beams
were deformed close to the transition regime between the
mean-field and the mean-field breakdown regimes. We
hence attribute the discrepancy between the experimentally
observed smaller-is-stronger effect and the GND-related
contribution (Fig. 7) to the mean-field breakdown effect
(Fig. 8). More specifically, we suggest that the size depen-
dence at the onset of straining is due to the availability of
dislocation sources and the relationship between the dislo-
cation correlation length and the probe size. After some
pre-straining, when GNDs can build up during bending,
they also contribute to the flow stress.

Another aspect that can be discussed in terms of the
mean-field breakdown theory is the large scatter typically
inherent in small-scale mechanical experiments. Plasticity
in probed volumes that are smaller than the correlation
length can only be explained in terms of the specific local dis-
crete behavior of a very small set of dislocations that as a rule
does not match the behavior of a statistical ensemble. As the
dislocation substructure changes at different scales and
under different loading and history conditions, so does the
correlation length. This means that the correlation length,
which acts as a potential critical bow-out radius required
for multiplication, is a pronounced microstructure variable.
When a probed volume is in the mean-field breakdown
regime, the actual mechanical response depends on the dis-
creteness of the local dislocation arrangement. At this scale,
local details in the arrangement and corresponding spatial
fluctuations start to play an important role on the size effect.
4. Conclusions

� We conducted microscale bending of single slip-oriented
copper single crystal beams and subsequent EBSD
characterization.
� Geometrical inaccuracies may significantly influence the

resulting microstructure by causing stress concentra-
tions. The effect of these inaccuracies on the microstruc-
ture can be mapped using EBSD.
� Plastic bending proceeds more in the form of localized

shear events rather than as ideal bending.
� The measured flow strength values were size-dependent.

The yield strengths varied not only with the beam thick-
ness but also strongly with the yield criterion selected.
Changing the threshold strain from 0.02 to 0.1 increased
the flow stress values by 270% for the smallest beams.
The reason for this effect is the size dependence of strain
hardening. The analysis hence revealed that the contri-
bution of strain hardening to the smaller-is-stronger
phenomenon is more important than the incipient size
dependence of the flow strength observed at the onset
of plastic straining. From the size effect exponents we
conclude that strain hardening during the early bending
stages can be attributed to GNDs (see the yield strength
data taken at 0.1 pre-deformation) while the actual yield
strength at a strain of 0.02 (i.e. without substantial pre-
deformation) is not due to GNDs.
� To fully understand the observed smaller-is-stronger

effect we introduce a microstructural mean-field break-
down theory and generalized it to other small mechani-
cal tests. The mean-field breakdown limit is defined by a
microstructural correlation measure (characteristic bow-
out length) below which the local availability of disloca-
tion sources and not the density of GNDs determines
the mechanical size effect. According to our estimates,
the current bending experiments can be interpreted in
terms of this theory. Moreover, the mean-field break-
down approach explains why a (weak) size dependence
can indeed exist for samples that are not pre-strained.
Accumulating GNDs principally requires pre-deforma-
tion. When no such pre-straining is imposed (because
a very small critical strain is selected to define the yield
strength), the size dependence is exclusively due to the
availability of dislocation sources and the relationship
between the dislocation correlation length and the probe
size. After some pre-straining, when GNDs build up
during bending, they also can contribute to the flow
stress. The mean-field breakdown theory can also
explain the large scatter typically observed in small-scale
mechanical tests as the availability of sufficiently soft
sources at scales around or below the correlation length
does not follow statistical laws but is highly dependent
on the position where the probe was placed.
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