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Abstract—The rolling and shear textures of aluminium (f.c.c.) and Fe-16% Cr (b.c.c) have been
compared. First a 90° rotation relationship about the transverse direction was found experimentally
between the stable orientations of the rolling textures and the shear textures. This was explained with the
symmetry of the glide systems and the orientation relationship between both coordinate systems. Second
for both kinds of deformation namely rolling and shear a 90° rotation relationship about the transverse
direction was also found between the stable b.c.c. and f.c.c. orientations. This was explained with the
Taylor theory and the Sachs model making use of the orientation relationship between f.c.c. and b.c.c.
glide systems.

Résumé—Les textures de laminage et de cission de l'aluminium et d'un alliage Fe-16% Cr ont éte
comparées. Premiérement une relation de rotation de la direction transversale a eté trouvée expérimentale-
ment entre les orientations stables de laminage et de cission, Celleci est expliquée par la symmetrie des
systéms de glissement et la relation du rotation entre les deux “systémes de coordonees. En plus, pour
les deux modes de déformation la méme relation de rotation de 90° autour de la direction transversale
a elé trouvée entre les orientations stables ce et cfe. Cette relation est expliquée 4 1'aide de la théorie de
Taylor et du modéle de Sachs en utilisant la relation d’orientation entre les systémes de glissement cfc
et cc.

Zusammenfassung—Die Walz- und Schertexturen von Aluminium (k.f.z.) und Fe-16% Cr (k.r.z.) wurden
vergleichend untersucht. Erstens wurde bei beiden Materialien experimentell eine 90" Rotationsbeziehung
um die Querrichtung zwischen den stabilen Orientierungen der Walz- und der Schertexturen gefunden.
Diese wird tiber die Symmetrie der Gleitsysteme und die Rotationsbezichung der entsprechenden
Koordinatensysteme erklirt. Zweitens wurde sowohl beim Walzen, als auch bei den Scherverformungen
eine 90° Rotation um die Querrichtung #wischen den stabilen k.r.z. und k.f.z. Endorientierungen gefunden.
Diese Orientierungsbeziechung wird theoretisch mittels der Taylortheorie und des Sachsmodels auf der
Basis der Orientierungsbezichung der k.f.z.- und der k.r.z. Gleitsysteme erklart.

1. INTRODUCTION (¢, -sections) so that no direct comparison of the
textures was possible.

The aim of the present work is first to demonsirate
experimentally that there is a strong equivalence
between the four types of textures namely rolling and
shear textures on the one hand and between [c.c.
and b.c.c. materials on the other hand, and second to
give a theoretical explanation for the observed

correspondence.

The texture development during rolling and shear
deformation of f.c.c. and b.c.c. metals has been
thoroughly investigated in the last 30 years (e.g.
[1.2]). Whereas its evolution is well understood in
terms of the Sachs- [3]. Taylor- [4] and “Relaxed
Constraints” Taylor models [5], only a few remarks
attribute to the relations between f.c.c. and b.c.c.
textures on the one hand [6, 7] and shear and rolling
textures on the other hand.

: : , 2. MATERIALS AND METHODS
Since mostly the pole figures with the highest

intensities are presented ({111} for f.c.c. and {110} for
b.c.c.) the comparison of these textures i1s complicated
and similarities do hardly become obvious. The intro-
duction of the orientation distribution function
(ODF) [8] was assumed to overcome this shortcoming
since here the orientation densities instead of the pole
densities are presented. But in order to display the
most interesting features of the textures the sections
through the Euler angle space (¢,,®,0,) were often
chosen differently for f.c.c. (@,-sections) and b.c.c.
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As example for f.c.c. aluminium (99.9%) and for
b.c.c. a ferritic steel with 16% chromium (FeCr) were
chosen. Aluminium (Al) possesses a high stacking
fault energy and will therefore mainly deform by
{111}{110) slip and not by twinning. Since alloy
elements favour slip on {110} planes in iron [9],
{011}¢111% systems are supposed to be dominantly
active in FeCr. Both materials were cold rolled
homogeneously to 75% reduction, 1.c. for every pass
(reduction Ad, roll diameter r) the ratio between the
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contact length of the strip with the roll /; and the
thickness d, obeved
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The shear textures were produced by inhomogeneous
rolling deformation with very high reductions per
pass. Applying this procedure vields a pronounced
shear texture at the sub-surface layer of the sheets.
For Al this was achieved by rolling at room tempera-
ture on a laboratory rolling mill, whereas for FeCr a
commercial hot band could be used, since during
the last hot rolling steps no phase transformation
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and thus no change of the deformation texture
QCCurs,

The textures were determined by measuring incom-
plete X-ray pole figurcs in the back reflection mode
[10]. From a set of four pole figures ({111}, {200},
{220}, {311} for Al and {110}, {200}, {112}, {103} for
FeCr) the ODF was calculated using the series expan-
ston method (/,, = 22) [8]. The here presented, sym-
metric pole figures are recalculated from the ODF.
Since the stress state at the surface is rotated 45°
about the transverse direction when compared to the
stress state in the center the surface textures are also
symmetrical so that the recalculated pole figures can
be considered.

Levels: Max: 6.0
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(d)
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Fig. 1. Recalculated pole figures ol aluminium and Fe-16% Cr. RD = rolling direction. (a) Aluminium,
75% homogeneously cold rolled, {111} pole figure. (b) Fe-16% Cr, 75% homogencously cold rolled, {110}

pole figure. (¢} Aluminium, 75% inhomogeneously cold rolled. 1.e. sheared,

{111} pole figure. (d)

Fe-16% Cr, 73% inhomogenecously hot rolled, i.e. sheared, {110} pole figure.
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Fig. 2. Orientation distribution functions (ODFs) of aluminium and Fe-16% Cr. (a) Aluminium, 75%

homogeneously cold rolled, o,-sections. (b) Fe-16% Cr, 75% homogeneously cold rolled, @, -sections. (c)

Aluminium, 75% inhomogeneously cold rolled, i.e. sheared, ¢,-sections. (d) Fe-16% Cr, 75% inhomoge-
neously hot rolled. 1.e. sheared, @,-sections.

3. EXPERIMENTAL RESULTS AND EVALUATION

In Fig. 1(a,b) the {111} pole figure for Al and
the {110} pole figure for FeCr are depicted
for the homogeneously rolled samples, whereas
Fig. 1(c.d) expose the pole figures obtained [rom the
surface layers of the inhomogeneously rolled Al and
FeCr. In Fig. 2(a—d) the corresponding ODFs are

shown in @,-sections for b.c.c. and in @,-sections for
f.cic.

Regarding the pole figures and ODFs of Figs 1 and
2, one realizes that all four textures look completely
different. If however the important components are
described by Miller indices (Table 1), one can observe
two features. First the rolling components of f.c.c.
and b.c.c. are nearly identical, if the Miller indices are
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simply interchanged from {hkl} {(wrw) into {urw|
Chikly [6, 7). Second, for both materials again nearly
identical components are obtained when the Miller
indices between the prominent rolling and shear
orientations are cxchanged. This means the f.c.c.
rolling components coincide with the b.c.c. shear
components and vice versa. Such a transformation of
indices corresponds to an interchange of R and N and
thus describes a rotation of 90° aboult the transverse
direction (T). This means a 90° rotation of stable
orientations about 7 holds for two kinds of trans-
formation. First for rolling or shear components
from f.c.c. to b.c.c. and vice versa. Second for both
fc.c. and b.c.c. between rolling and shear orien-
tations.

To study these relationships the {111} pole figures
for all four samples [Fig. 1(a—d)] were recalculated
from the ODF data. To achieve comparability the
b.c.c. rolling texture and the f.c.c. shear texture had
to be rotated 90° about T whereas for the b.c.c. shear
texture no rotation was necessary (Fig. 3). The ODFs
were rotated in the same way and plotted in ¢,-sec-
tions (Fig. 4). The pole figures as well as the ODFs
are very similar to each other,

4. INTERPRETATION OF THE TEXTURE
RELATIONSHIPS

The here demonstrated simple 90° rotation re-
lationships between f.c.c. and b.c.c. deformation tex-
tures on the one hand and between rolling and shear
textures on the other hand must be caused by princi-
pal equivalences during deformation.

4.1. Orientation change by slip

First, the relationship between the f.c.c. and b.c.c.
rolling texture development of 90 about T will be
examined. The experimentally found orientation
changes can be tackled by the Sachs model [3] and by
the Taylor “Relaxed Constraints” model [5], which
differ in the way how the active ship systems and the
amount of slip is determined. All models are able to
calculate the resulting antisymmetric part of the
displacement gradient tensor, i.e. the orientation
change. If it can be shown that the 90" rotation
relationship between f.c.c. and b.c.c. is valid for an
orientation change by slip on one system it also holds

Tahble 1. Main orentations in Fe-16% Cr and aluminium after
rolling and shear deformation

Preferred FeCr FeCr Al Al
orientations Rolling Shear Ralling Shear
001} <110 + e - +
1112 <1105 + - - (+)
(111} <110) | 2 - (+)
(1) €112 + e : +

(1111 8) <4411 (+) : — +
011} <1003 - + + -
(011} €211 - + { —
011y <1113 = + (+)

(123 <1113 ~ - + -

(4411 <1111 8 - + | =
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for the linear combination of several glhde systems.
The shear 7 on a slip system with the unit normal
vector of the glide plane n = (n,,n,,n;) and the shp
vector b = (b,.b,,b;) will change any vector 4 as
follows

A=A ~+7(A n)b (2a)
or in case of z activated glide sytems
A=A+ Y [*(4 -n%) b, (2b)

s ]

In order to calculate the orientation change during
rolling a triple of vectors Ay, 4, 4y, lying parallel
to the orthonormal sample coordinate system (R, T
and N) is chosen

I

0 0
R=|o)], T={(1], N=|0 (3)
0 |

Executing the shear 7 on one slip system the vectors
Ag. Ay, and A, generally change their length and
direction into 4%, Ay, and A if the crystal coordi-
nate system is fixed. After the deformation the new
unit vectors of the sample are thus R, 7', and N'.
Following the constraints caused by the rolling mill
however, R and N have to remain invariant during
rolling, so that equation (4) is vahd.

R'|| A ;

N'(Adgx A7), T|(N"xR") (4)

With the help of equation (2) the orientation change
of the sample coordinate system with respect to the
crystal system can be calculated. With regard to
transparency the orientation change due to mobiliz-
ation of one glide system 1s tackled. The calculations
remain however linear if more slip systems are active

R'|R+7(R-n)-b (Sa)

T\ T 4 (T n)- b (5b)

bh-n=10 (5¢)

NNR x T (6a)

N|[R +y(R-n)-b]x [T +y(T-n)-b] (6b)

N IR xT)+y(T-n)(R xb)+ (R -n)b x T)(6c)

NN +3[(T-n)R x b)Y+ (R - n) (b x T)] (6d)

NN 4 7[—m(b x R)+n,(b x T)]  (6e)
N'|N 4 5(b % (0, T — ny R)] (60)
N'|IN +y(—b;n) (6g)

N'|N —y(N-b)-n. (6h)

With equation (6h), the above mentioned interchange
of the glide systems between f.c.c. and b.c.c. namely

SR hf.l:.c- {"T}

bh.::.-i:. . ﬁt’.n.:.n:.; Hb.c.-:.
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(b)
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(d)

Max: 4.8

Levels:
0.5-1-2-4

Fig. 3. Recalculated {111} pole figures of aluminium and Fe-16% Cr. RD = rolling direction. (a)

Aluminium, 75% homogeneously cold rolled, {111} pole figure. (b) Fe—16% Cr, 75% homogencously cold

rolled, data 90° rotated about transverse direction, projection of {111} pole figure. (c) Aluminium, 75%

inhomogeneously cold rolled, i.e. sheared, data 90° rotated about transverse direction, {111} pole figure.
(d) Fe-16% Cr, 75% inhomogeneously hot rolled, i.e. sheared, projection of {111} pole figure.

which also corresponds to a 90° rotation about T, can
now be deduced. Substitution of equation (7) into
equations (5a) and (6h) leads to
R|R + T(R 3 Hb.c.c.) ¥ E"’I:n.n.:.n::. =R —7(R" IIIr:"F.-:.-:.) L
(8a)

ﬁ"””hr T }J[N E bb I.'.'.I:.} ; Hh-u-c-:'ﬁ? + ¥ {hr ) I|I:II'.L'.L.'.} ; bf.c.r.'
(8b)

An additional rotation of the orentation 90°
about T, which was found experimentally and which

transforms R into R* and T into T, respectively
leads to

RY=N: R™=N' (Ya)
N= —-R; N%Y=-—-R (9b)
and thus to
R™ =R"+7(R™ npe. ) bree (10a)
N = N¥ —p(N?* bee ) fiee (10b)
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Equations (5a, 6h) and (10a,b) are completely equiv-
alent. That means a rotation of 90 about T trans-
forms the f.c.c. orientation change into that of b.c.c.
if the amount of shear 7 is the same in the correspond-
ing slip systems. If a f.c.c. orientation (hk/) [urw] is
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changed into (hkl)’ [uvw] by slip a b.c.c. orientation
(—u—v—w) [hki] will be changed Into
(—u —v —w) [hkIT. Applying the Sachs and the
Taylor model it will now be shown that really the
equivalent slip systems are activated involving the
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Fig. 4. Orientation distribution functions (ODFs) of aluminium and Fe-16% Cr. (a) Aluminium, 75%

homogeneously cold rolled, @,-sections. (b) Fe-| 6% Cr. 75% homogeneously cold rolled, data 90° rotated

about transverse direction, @,-sections. (c) Aluminium, 75% inhomogeneously cold rolled, i.e. sheared,

data 90° rotated about transverse direction, ¢,-sections. (d) Fe-16% Cr, 75% inhomogeneously hot rolled,
i.e. sheared, @,-sections.
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same amount of shear in a f.c.c. as well as in a 20°
rotated b.c.c. orientation.

4.2. Equivalence of f.c.c. and b.c.c. deformation in the
Sachs model

In the Sachs model of polycrystalline deformation
the resolved shear stress T on a slip system can be
calculated from the stress state using the Schmid law.
For uniaxial tension stress ¢ one obtains

T =m- g, m=cos(/i) cos(x) (11)
where 4 and x. which define the Schmidfactor m are
the angles between the direction of the stress o and
the slip direction and the slip plane normal, respect-
ively. The slip systems with the highest resolved shear
stress are activated, The stress state during rolling can
be simplified by a tensile stress o, in rolling direction
and a compression stress ¢, of the same magnitude in
normal direction (“Tucker” stress state) [L1]. The
Schmidfactor is then written

m = cos(4,)cos(x,) — cos(4;)cos(k;)  (12a)

m=(R-n)(R-b)—(N n)(N-b) (12b)
where the subscripts indicate the angles of the stresscs
in R (1) and in N(3) with respect to the orientation
of the slip elements. Changing n¢ . iInto by and b, .
into —n,,. . i..e. transforming f.c.c. glde into b.c.c.
glide, and rotating subsequently R into — N and N
into R according to equations (7, 9) does not change
this equation. The {110} <111 slip systems in b.c.c.
have thus the same resolved shear stress as the 90°
about T rotated {111} ¢110) glide systems in f.c.c.

4.3. Equivalence of f.c.c. and b.c.c. deformation in the
Taylor model

The strain tensor ¢° within a crystal due to slip on
z slip systems can be calculated for small strains as
follows
y* (nibj+njb3)

7 (13)

r=|

: |
Eijsz

Rotating the tensor from the crystal system ¢° into the
sample coordinate system ¢* leads 1o

u’ vtw’
Eﬂzﬁ,ec.ﬂ'—]; G: q; ra ,_'i'j (14}
O

where G is the rotation matrix with the normalized
components u’, ¢’, w' etc. to transform the crystal
coordinate system back into the sample coordinate
system. If €§ . is the strain tensor of a b.c.c. orien-
tation. the corresponding strain tensor of a f.c.c.

orientation €, ., additionally rotated 90" about T

into €% can be calculated as follows

H
£ | B e

(15a)

<l
—Ehi
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2 = Gy (—€bee)  Gio' (15b)
f.cc. Q0 b.c.c. Q)
001 001
29 — g1 0] (—€hec) 0T 0] (150
1 00 100

G, is the rotation matrix for the 90° rotation about
T. This changes the strain tensor ¢, for the b.c.c.
orientation

€11 €12 E3
EE-:_-;_': Ea; €33 €93 {1'5}
€y €37 €x
into €2% of a 90° rotated f.c.c. orientation
—€33  €n £y
80 __
E‘I%.c.{:. = €23 —€20 —E3 | “?)

€3 —€2 —E&y

During ideal rolling ¢, is zero (no change of
width) and €;= —e¢,,. That means the strain
tensor of a fc.c. orientation and a 90 rotated
b.c.c. orientation differ only in the shear components
¢, and ¢,;, which are exchanged. Therefore in the
Taylor theory the equivalence of the required combi-
nation of slip systems in f.c.c. and b.c.c. and thus the
occurrence of 90° about T rotated texture com-
ponents is fulfilled only in case of plane strain
deformation.

During rolling of polycrystals however, neither the
Sachs nor the ideal Taylor model is completely
correct. For low degrees of rolling, i.e. for approxi-
mately equiaxed grains the **Full Constraints™ Taylor
[4] model gives a rather good description of the
deformation. With increasing deformation the grains
become flat so that the incompatibility in rolling
direction is reduced, which leads to a relaxation of the
€, tensor component and thus to a decrease of
constraints [5]. An orientation which 1s pronounced
by relaxation of this shear in f.c.c. corresponds to a
b.c.c. orientation, 90° rotated about T, because it
produces the same shear [equations (16, 17)]. But this
is not true, if the rolling degree increases. The shear
€, is the next one to be relaxed by geometrical
reasons. A f.c.c. orientation resulting from this shear
corresponds to a 90° T rotated b.c.c. one, which
requires a relaxation of ¢, to be stable and vice versa
[equations (16, 17)], which is allowed only in very
special cases.

This restriction explains, why rolling textures
of polycrystalline f.c.c. and b.c.c. materials cannot
be transformed into each other after high
deformation by this simple rotation, even if
no deformation inhomogeneities are taken into
account.
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5. EQUIVALENCE OF ROLLING TEXTURES
AND SHEAR TEXTURES

A rotation relationship of 907 about T was found
also for the stable texture components of the sheared
samples with respect to the stable rolling orientations.
For rolling at least two sets of slip systems are
necessary to keep an orientation stable. In the case of
shear, in contrast, only one slip system (or two slip
systems which yield the same principal rotation)
suffices if it produces the requested strain parallel to
the shear plane in shear direction, 1.e. here in the case
of inhomogeneous rolling parallel to the rolling plane
in rolling direction. It is thus obvious, that it will not
be possible to connect the path of onentation change
like it was done between f.c.c. and b.c.c., although the
stable end orientations of rolling and shear can be
transformed into each other.

Due to the symmetry of the slip systems every
stable and metastable rolling orientation in the Sachs
model reveals at least one glide system with a Schmid-
factor of zero. The slip plane normal of such a system
is perpendicular to N and the slip direction (or the
resulting slip direction) is parallel to . The Schmid-
factor m thus changes during rotation about 7.

A.B = const.
(17)

After a rotation of @ = 457 the slip system with m =0
yields a maximum Schmidfactor and the “Tucker™
rolling stress state is changed into a pure shear tensor.
Taking also into account the rotation relationship of
45° between rolling and shear coordinates, the 90°
rotated slip systems with m = 0 in the stable rolling
orientations will be those with the highest resolved
shear stress in a shear experiment. Because their ship
direction is then parallel to the shear direction of the
sample (here: rolling direction) no orientation change
will occur, i.e. these orientations are stable. Therefore

m(w)=A -sin(2w) + B - cos(2w)

TEXTURES IN F.C.C. AND B.C.C. METALS

the 90° rotation relationship of the stable orientations
of rolling and shear deformation can be explained by
the symmetry of the slip systems in the f.c.c. and b.c.c.
lattices and not only by the changed stress state.

6. SUMMARY

It was shown that after rolling of f.c.c. and b.c.c.
metals strong equivalences in textures appear. Be-
tween stable end orientations of both materials a
rotation relationship of 90 about the transverse
direction (T) exists. This was demonstrated by rotat-
ing and adequately presenting the corresponding pole
figures and ODFs. Theoretical considerations lead to
the same relationship. It is true for rolling of single
crystals and polycrystals (Sachs and Taylor model).
But for polycrystalline materials some difficulties
arise when the constraints of the strain are partly
relaxed, especially for the strain €,5. The 90° rotation
changes €,; into ¢,,. The rotation relationship between
stable rolling and shear orientations was found exper-
imentally to be 907 too, which was explained by the
symmetry of the f.c.c. and b.c.c. slip systems.
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