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Notation

As a general scheme of notation, vectors are written as boldface lowercase letters
(e. g., a, b), second-order tensors as boldface capital letters (e. g., A, B), and fourth-
order tensors as blackboard-bold capital letters (e. g., A, B). For vectors and tensors,
Cartesian components are denoted as, ai , A i j , and A i j k l respectively. The action of
a second-order tensor upon a vector is denoted as A b (in components A i j b j , with
implicit summation over repeated indices) and the action of a fourth-order tensor
upon a second-order tensor is designated as AB (A i j k l Bk l). The composition of
two second-order tensors is denoted as AB (A i j B j l ). The tensor (or dyadic) product
between two vectors is denoted as a˝b (ai b j ). All inner products are indicated by a
single dot between the tensorial quantities of the same order, for example, a�b (ai b i)
for vectors and A�B (A i j Bi j ) for second-order tensors. The cross-product of a vector
a with a second-order tensor A, denoted by a � A, is a second-order tensor defined
in components as (a � A)i j D �i k l ak A l j , where � is the Levi–Civita permutation
matrix. The transpose, AT, of a tensor A is denoted by a superscript “T,” and the
inverse, A�1, by a superscript “�1.” Additional notation will be introduced where
required.

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Preface

In the last 20 years, the Crystal Plasticity Finite Element Method (CPFEM) has de-
veloped into an extremely versatile tool for describing the mechanical response of
crystalline materials on all length scales from single crystals to engineering parts.
While this is clearly reflected by an ever increasing number of publications in scien-
tific journals, to date there is no comprehensive monograph on the topic. To change
this situation the authors have brought together their experience with CPFEM in-
to the current book. The aim of the book is to give an overview of the wide field
of models and applications in CPFEM at both small and large scales, and to give
some practical advice to beginners.

The book is organized as follows: The introduction gives a comprehensive
overview over the development of the application of CPFEM in the last 20 years.
The first part gives an introduction into the fundamentals on which the Crystal
Plasticity Finite Element Method is built. As it works in the interface of material
physics, continuum mechanics and applied computer science the reader finds one
chapter on each of these aspects. In the second part the Crystal Plasticity Finite
Element Method is introduced in detail. First, different single crystal constitutive
models are presented, including deformation mechanisms such as dislocation slip,
twinning, athermal transformations, and damage. Second, in view of large scale
applications, different homogenization schemes for the transition from single to
polycrystals are introduced. Finally, some numerical aspects of importance for the
practical implementation of CP as a material model in FEM codes are discussed.
The last and by far most elaborate part of the book is concerned with application ex-
amples. Naturally, most of these examples originate from the work of the authors,
plus some important examples taken from the work of other groups. The aim of
this part of the book is to give an overview on the numerous potential applications
of CPFEM in materials simulation and closes with an outlook of the authors on
future applications of the Crystal Plasticity Finite Element Method.

Düsseldorf, April 2010 Franz Roters
Philip Eisenlohr

Thomas R. Bieler
Dierk Raabe
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1
Introduction to Crystalline Anisotropy
and the Crystal Plasticity Finite Element Method

Crystalline matter is mechanically anisotropic. This means that the instantaneous
and time-dependent deformation of crystalline aggregates depends on the direction
of the mechanical loads and geometrical constraints imposed. This phenomenon
is due to the anisotropy of the elastic tensor, Figure 1.1, and to the orientation
dependence of the activation of the crystallographic deformation mechanisms (dis-
locations, twins, martensitic transformations), Figure 1.2.

An essential consequence of this crystalline anisotropy is that the associated me-
chanical phenomena such as material strength, shape change, ductility, strain hard-
ening, deformation-induced surface roughening, damage, wear, and abrasion are
also orientation-dependent. This is not a trivial statement as it implies that me-
chanical parameters of crystalline matter are generally tensor-valued quantities.
Another major consequence of the single-crystal elastic-plastic anisotropy is that it
adds up to produce also macroscopically directional properties when the orienta-
tion distribution (crystallographic texture) of the grains in a polycrystal is not ran-
dom. Figure 1.3a,b shows such an example of a plain carbon steel sheet with a pre-
ferred crystal orientation (here high probability for a crystallographic f111g plane
being parallel to the sheet surface) after cup drawing. Plastic anisotropy leads to
the formation of an uneven rim (referred to as ears or earing) and a heterogeneous

Figure 1.1 Elastic anisotropy in a polycrystal resulting from superposition of single-crystal
anisotropy.

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32447-7
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2 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

Figure 1.2 Plastic anisotropy in a single crystal due to distinct crystallography.

Figure 1.3 Consequence of plastic anisotropy
when drawing a textured sheet into a cup. The
orientation distribution before deformation ex-
hibits a high volume fraction of grains with a

crystallographic [111] axis parallel to the sheet
normal. The arrows in (a) mark six ears result-
ing from preferential material flow. (b) The
corresponding crystal plasticity finite element
simulation.

distribution of material thinning during forming. It must be emphasized in that
context that a random texture is not the rule but a rare exception in real materials.
In other words, practically all crystalline materials reveal macroscopic anisotropy.
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 3

A typical example of such macroscopic anisotropy is the uniaxial stress–strain
curve, which is the most important mechanical measure in the design of structural
materials. The introductory statement made above implies that uniaxial stress–
strain curves represent an incomplete description of plastic deformation as they
reduce a six-dimensional yield surface and its change upon loading to a one-dimen-
sional (scalar) yield curve, see Figure 1.4. Another consequence of this statement is
that the crystallographic texture (orientation distribution) and its evolution during
forming processes is a quantity that is inherently connected with plasticity theo-
ry, more precisely, with the anisotropy of the underlying plasticity mechanisms.
Texture can, hence, be used to describe the integral anisotropy of polycrystals in
terms of the individual tensorial behavior of each grain and the orientation-depen-
dent boundary conditions among the crystals. Formally, the connection between
shear and texture evolution becomes clear from the fact that any deformation gra-
dient can be expressed as the combination of its skew-symmetric portion, which
represents a pure rotation leading to texture changes if not matched by the rota-
tion implied by plastic shear, and a symmetric tensor that is a measure of pure
stretching. Plastic shear, hence, creates both shape and orientation changes, except
for certain highly symmetric shears. Therefore, a theory of the mechanical prop-
erties of crystals must include, first, the crystallographic and anisotropic nature
of those mechanisms that create shear and, second, the orientation(s) of the crys-

Figure 1.4 Flow stress and strain hardening of anisotropic materials are tensor quantities.
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4 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

tal(s) studied relative to the boundary conditions applied (e.g., loading axis, rolling
plane).

Early approaches to describe anisotropic plasticity under simple boundary con-
ditions considered these aspects, such as the Sachs (1928), Taylor (1938), Bishop–
Hill, and Kröner (1961) formulations. However, these approaches were neither de-
signed for considering explicitly the mechanical interactions among the crystals in
a polycrystal nor for responding to complex internal or external boundary condi-
tions, see Figure 1.5a–d. Instead, they are built on certain simplifying assumptions
of strain or stress homogeneity to cope with the intricate interactions within a poly-
crystal.

For that reason variational methods in the form of finite element approximations
have gained enormous momentum in the field of crystal mechanical modeling.
These methods, which are referred to as crystal plasticity finite element (CPFE)
models, are based on the variational solution of the equilibrium of the forces and
the compatibility of the displacements using a weak form of the principle of virtual
work in a given finite-volume element. The entire sample volume under consider-
ation is discretized into such elements. The essential step which renders the defor-
mation kinematics of this approach a crystal plasticity formulation is the fact that
the velocity gradient is written in dyadic form. This reflects the tensorial crystal-
lographic nature of the underlying defects that lead to shear and, consequently, to
both shape changes (symmetric part) and lattice rotations (skew-symmetric part),
see Chapter 3. This means that the CPFE method has evolved as an attempt to
employ some of the extensive knowledge gained from experimental and theoret-
ical studies of single-crystal deformation and dislocations to inform the further
development of continuum field theories of deformation. The general framework
supplied by variational crystal plasticity formulations provides an attractive vehi-
cle for developing a comprehensive theory of plasticity that incorporates existing
knowledge of the physics of deformation processes (Arsenlis et al., 2004; Curtin
and Miller, 2003; Vitek, Mrovec, and Bassani, 2004a) into the computational tools
of continuum mechanics (Zienkiewicz, 1967; Zienkiewicz and Taylor, 2005) with
the aim to develop advanced and physically based design methods for engineering
applications (Zhao et al., 2004a).

One main advantage of CPFE models lies in their capability to solve crystal
mechanical problems under complicated internal and/or external boundary con-
ditions. This aspect is not a mere computational advantage, but it is an inher-
ent part of the physics of crystal mechanics since it enables one to tackle those
boundary conditions that are imposed by inter- and intragrain micro-mechanical
interactions, Figure 1.6 (Sachtleber, Zhao, and Raabe, 2002). This is not only es-
sential to study in-grain or grain cluster mechanical problems but also to better
understand the often quite abrupt mechanical transitions at interfaces (Raabe et
al., 2003).

However, the success of CPFE methods is not only built on their efficiency in
dealing with complicated boundary conditions. They also offer high flexibility with
respect to including various constitutive formulations for plastic flow and hard-
ening at the elementary shear system level. The constitutive flow laws that were
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 5

Figure 1.5 The increasing complexity of crys-
tal-scale micromechanics with respect to the
equilibrium of the forces and the compatibility
of the displacements for different situations:
(a, b) Single-slip situation in a single crystal
presented in stress space. (c) Portion of a
single-crystal yield surface with three slip sys-
tems. (d) Multislip situation in a polycrystal

where all different crystals have to satisfy an
assumed imposed strain in their respective
yield corners. If the strain is homogeneous,
this situation leads to different stresses in
each crystal (Raabe et al., 2002a, 2004a). τcrit :
critical shear stress; σTBH: Taylor–Bishop–Hill
stress state (stress required to reach a yield
corner).

suggested during the last few decades have gradually developed from empirical
viscoplastic formulations (Asaro and Rice, 1977; Rice, 1971) into microstructure-
based multiscale models of plasticity including a variety of size-dependent effects
and interface mechanisms (Arsenlis and Parks, 1999, 2002; Arsenlis et al., 2004;
Cheong and Busso, 2004; Evers, Brekelmans, and Geers, 2004a,b; Evers et al., 2002;
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6 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

Figure 1.6 Experimental example of the
heterogeneity of plastic deformation at
the grain and subgrain scale using an alu-
minum oligocrystal with large columnar
grains (Sachtleber, Zhao, and Raabe, 2002).
The images show the distribution of the ac-
cumulated von Mises equivalent strain in a
specimen after Δy/y0 D 8 and 15% thickness
reduction in plane strain (y0 is the initial sam-
ple height). The experiment was conducted

in a lubricated channel-die setup. White lines
indicate high-angle grain boundaries derived
from electron backscatter diffraction micro-
texture measurements. The equivalent strains
(determined using digital image correlation)
differ across some of the grain boundaries by
a factor of 4–5, giving evidence of the enor-
mous orientation-dependent heterogeneity of
plasticity even in pure metals.

Ma and Roters, 2004; Ma, Roters, and Raabe, 2006a,b). In this context it should be
emphasized that the finite element method itself is not the actual model but the
variational solver for the underlying constitutive equations. Since its first introduc-
tion by Peirce et al. (1982), the CPFE method has matured into a whole family of
constitutive and numerical formulations which have been applied to a broad variety
of crystal mechanical problems. See Table 1.1 for examples and Roters et al. (2010)
for a recent review.

In this book we give an overview of this exiting simulation method. In Part One
we introduce the fundamentals of the approach by briefly reiterating the basics of
the underlying metallurgical mechanisms, of continuum mechanics, and of the
finite element method.

Subsequently, in Part Two, we discuss the details of classical and more advanced
dislocation-based constitutive models which are currently used in this field. In this
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 7

Table 1.1 Some examples for different applications of the crystal plasticity finite element (CPFE)
method.

Application of the CPFE
method

References

Forming, deep drawing,
process modeling, cup
drawing, springback, earing,
wire drawing, extrusion,
anisotropy, design

Beaudoin et al. (1993), Beaudoin et al. (1994), Neale
(1993), Kalidindi and Schoenfeld (2000), Nakamachi, Xie,
and Harimoto (2001), Zhao et al. (2001), Xie and
Nakamachi (2002), Raabe et al. (2002a) McGarry et al.
(2004), Raabe and Roters (2004), Zhao et al. (2004a), Tugcu
et al. (2004), Delannay et al. (2005), Li, Kalidindi, and
Beyerlein (2005), Raabe, Wang, and Roters
(2005), Tikhovskiy, Raabe, and Roters (2006), Delannay,
Jacques, and Kalidindi (2006), Chen, Lee, and To
(2007), Raabe (2007), Nakamachi, Tam, and Morimoto
(2007), Ocenasek et al. (2007), Tikhovskiy, Raabe, and
Roters (2007), Li, Donohue, and Kalidindi (2008c), Li et al.
(2008b), Zhuang et al. (2008), Delannay et al.
(2009), Zamiri, Bieler, and Pourboghrat (2009)

Surface roughening, ridging,
roping, thin-film mechanics

Becker (1998), Raabe et al. (2003), Zhao, Radovitzky, and
Cuitino (2004b), Yue (2005), Siska, Forest, and Gumbsch
(2007), Zhao et al. (2008)

Damage, fatigue, cyclic
loading, void growth, fretting

Bruzzi et al. (2001), Turkmen, Dawson, and Miller
(2002), Goh, Neu, and McDowell (2003), Turkmen et al.
(2003), Kysar, Gan, and Mendez-Arzuza (2005), Dick and
Cailletaud (2006), Sinha and Ghosh (2006), Potirniche et al.
(2006), Zhang and McDowell (2007), Cheong, Smillie, and
Knowles (2007), Dunne, Walker, and Rugg (2007a), Liu et al.
(2007), Bieler et al. (2009), Kumar et al. (2008), Mayeur,
McDowell, and Neu (2008), Patil et al. (2008), Watanabe et
al. (2008), McDowell (2008), Mayama, Sasaki, and Kuroda
(2008), Borg, Niordson, and Kysar (2008)

Creep, high-temperature
deformation, diffusion
mechanisms

McHugh and Mohrmann (1997) Balasubramanian and
Anand (2002), Hasija et al. (2003), Bower and Wininger
(2004), Venkatramani, Ghosh, and Mills (2007), Agarwal et
al. (2007), Venkataramani, Kirane, and Ghosh (2008), Xu et
al. (2009)

Nanoindentation, pillar testing,
microbending, microscale
deformation, miniaturized
mechanical testing

Wang et al. (2004), Zaafarani et al. (2006), You et al.
(2006), Raabe, Ma, and Roters (2007a), Casals, Ocenasek,
and Alcala (2007), Zaafarani et al. (2008), Alcala, Casals, and
Ocenasek (2008), Weber et al. (2008), Xu et al. (2009), Demir
et al. (2009)
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Table 1.1 Some examples . . . (continued).

Application of the CPFE
method

References

Grain boundary mechanics,
Hall–Petch behavior, grain
interaction, grain size effects,
strain gradient effects,
nonlocal formulations,
interface mechanics,
superplasticity

Becker and Panchanadeeswaran (1995) Mika and Dawson
(1998), Acharya and Beaudoin (2000), Meissonnier, Busso,
and O’Dowd (2001) Barbe et al. (2001), Raabe et al.
(2001), Evers et al. (2002), Park et al. (2002), Clarke,
Humphreys, and Bate (2003), Wei and Anand (2004), Fu,
Benson, and Meyers (2004), Evers, Brekelmans, and Geers
(2004a), Evers, Brekelmans, and Geers (2004b), Diard et al.
(2005), Bate and Hutchinson (2005), Wei, Su, and Anand
(2006), Murphy et al. (2006), Deka et al. (2006), Ma, Roters,
and Raabe (2006a), Ma, Roters, and Raabe (2006b), Counts
et al. (2008a), Gurtin, Anand, and Lele
(2007), Venkatramani, Ghosh, and Mills (2007), Okumura
et al. (2007), Gerken and Dawson (2008b), Gerken and
Dawson (2008a), Kuroda and Tvergaard (2008a), Bitzek et al.
(2008), Borg, Niordson, and Kysar (2008), Li et al. (2009)

In-grain texture formation,
grain-scale mechanics,
mesoscale, nonuniform
deformation, texture evolution,
texture stability, anisotropy

Peirce et al. (1982), Peirce, Asaro, and Needleman
(1983), Asaro and Needleman (1985) Becker (1991), Becker
et al. (1991), Bronkhorst, Kalidindi, and Anand
(1992), Kalidindi, Bronkhorst, and Anand (1992), Beaudoin
et al. (1995), Becker and Panchanadeeswaran
(1995), Beaudoin, Mecking, and Kocks (1996), Beaudoin,
Mecking, and Kocks (1996), Sarma and Dawson
(1996b), Sarma and Dawson (1996a), Bertram, Böhlke, and
Kraska (1997), Mika and Dawson (1998), Sarma,
Radhakrishnan, and Zacharia (1998), Forest (1998), Mika
and Dawson (1999), Miehe, Schröder, and Schotte
(1999), Bhattacharyya et al. (2001), Raabe et al. (2001), Miller
and Turner (2001), Kalidindi (2001), Balasubramanian and
Anand (2002), Van Houtte, Delannay, and Kalidindi
(2002), Delannay, Kalidindi, and Van Houtte (2002), Raabe,
Zhao, and Mao (2002b), Raabe et al. (2002c) Sachtleber,
Zhao, and Raabe (2002), Kim and Oh (2003), Clarke,
Humphreys, and Bate (2003), Choi (2003), Zaefferer et al.
(2003), Erieau and Rey (2004), Roters et al. (2004), Bate and
An (2004), Raabe, Zhao, and Roters (2004b), Li, Van Houtte,
and Kalidindi (2004), Sarma and Radhakrishnan
(2004), Anand (2004), Roters, Jeon-Haurand, and Raabe
(2005), Van Houtte et al. (2005), Li, Kalidindi, and Beyerlein
(2005), Van Houtte et al. (2006), Delannay, Jacques, and
Kalidindi (2006), Tang et al. (2006), Tikhovskiy, Raabe, and
Roters (2006), Kim and Oh (2006), Murphy et al.
(2006), daFonseca et al. (2006), You et al. (2006), Musienko
et al. (2007), Han and Dawson (2007), Lee, Wang, and
Anderson (2007), Tikhovskiy, Raabe, and Roters
(2007), Zhao et al. (2008), Mayeur, McDowell, and Neu
(2008), Delannay et al. (2009) Zhang et al. (2009)
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 9

Table 1.1 Some examples . . . (continued).

Application of the CPFE
method

References

Dislocation-based constitutive
modeling

Arsenlis and Parks (1999), Arsenlis and Parks
(2002), Arsenlis and Tang (2003), Arsenlis et al.
(2004), Evers et al. (2002), Evers, Brekelmans, and Geers
(2004b), Cheong and Busso (2004), Ma and Roters
(2004), Evers, Brekelmans, and Geers (2004a), Ma, Roters,
and Raabe (2006a), Ma, Roters, and Raabe
(2006b), McDowell (2008), Li et al. (2009)

Deformation twinning Kalidindi (1998), Staroselsky and Anand (1998), Marketz et
al. (2002), Staroselskya and Anand (2003), Marketz, Fischer,
and Clemens (2003), Salem, Kalidindi, and Semiatin (2005)

Martensite mechanics, phase
transformation, shape memory

Marketz and Fischer (1994), Marketz and Fischer
(1995), Tomita and Iwamoto (1995), Diani, Sabar, and
Berveiller (1995), Diani and Parks (1998), Cherkaoui,
Berveiller, and Sabar (1998), Cherkaoui, Berveiller, and
Lemoine (2000), Thamburaja and Anand (2001), Tomita
and Iwamoto (2001), Govindjee and Miehe (2001), Anand
and Gurtin (2003), Turteltaub and Suiker
(2005), Thamburaja (2005), Lan et al. (2005), Turteltaub and
Suiker (2006b), Tjahjanto, Turteltaub, and Suiker
(2008), Geers and Kouznetsova (2007),

Multiphase mechanics Hartig and Mecking (2005), Tjahjanto, Roters, and
Eisenlohr (2007), Mayeur, McDowell, and Neu (2008), Inal,
Simha, and Mishra (2008), Vogler and Clayton (2008)

Crystal plasticity and
recrystallization

Bate (1999), Raabe and Becker (2000), Raabe
(2000), Radhakrishnan et al. (2000), Raabe (2002), Takaki et
al. (2007), Raabe (2007), Semiatin et al. (2007), Zambaldi et
al. (2007), Loge et al. (2008)

Numerical aspects, finite
element shape effects, mesh
dependence, accuracy, robust
integration methods, texture
discretization

Miehe (1996), Bachu and Kalidindi (1998), Harewood and
McHugh (2006), Amirkhizi and Nemat-Nasser
(2007), Harewood and McHugh (2007), Kuchnicki, Cuitino,
and Radovitzky (2006), Melchior and Delannay (2006), Zhao
et al. (2007), Li, Yang, Sun (2008a), Eisenlohr and Roters
(2008), Ritz and Dawson (2009), Barton et al. (2004), Gerken
and Dawson (2008b)

context we explain the representation of dislocation slip, displacive transformations
such as martensite formation and mechanical twinning, and the failure mecha-
nism within such a variational framework. Also, we address homogenization and
numerical aspects associated with the finite element solution of crystal plasticity
problems.

Finally, Part Three presents a number of microscopic, mesoscopic, and macro-
scopic applications from the field of CPFE modeling.
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2
Metallurgical Fundamentals of Plastic Deformation

2.1
Introduction

One of the most essential aspects of microstructures is that although their evolu-
tion direction is prescribed by thermodynamic potentials and their gradients, the
selection of the actual evolution path is strongly determined by kinetics.

This means that microstructures form on thermodynamic transients and as a
rule not in full thermodynamic equilibrium. It is this strong influence of thermo-
dynamic nonequilibrium mechanisms that entails the large variety and complexity
of microstructures typically encountered in engineering materials. Frequently, mi-
crostructures that correspond to a highly nonequilibrium state provide particularly
advantageous material property profiles (see Figure 2.1).

Figure 2.1 Some of the important scales and lattice defects in metallurgical engineering.

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32447-7
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14 2 Metallurgical Fundamentals of Plastic Deformation

Figure 2.2 Edge dislocation and its effect on crystallographic shear.

This book is concerned with those microstructural defects that contribute to
the elastic-plastic deformation of metals. Plastic deformation at ambient temper-
ature occurs in crystalline metals mainly through dislocations, martensite forma-
tion, and mechanical twinning. In this context dislocations are the most important
lattice defects and they are usually the main carriers of plastic deformation (see
Figure 2.2).

Mechanical twinning and martensite formation are referred to as displacive
deformation mechanisms and they typically contribute less to the plastic shape
changes than do dislocations but have a large impact on hardening and flow stress.

2.2
Lattice Dislocations

Dislocations are linear crystallographic defects within the otherwise regular crys-
tal structure. They are geometrically described by the line tangential vector and
the Burgers vector (shear vector). There are the two extreme cases of a screw disloca-
tion, where the tangential and the Burgers vector coincide, and the edge dislocation,
where they are perpendicular to each other, see Figure 2.3. Mixed dislocations are
intermediate between these. Dislocations found in real materials are typically of
mixed kind. Two dislocations of opposite orientation, when brought together, can
cancel each other (referred to as annihilation), but a single dislocation cannot dis-
appear on its own except when reaching a free surface.

Simple edge dislocations can be described as being caused by the termination of
a plane of atoms in the middle of a crystal, as illustrated in Figure 2.4a,b. In such
a case, the surrounding planes are not straight, but instead bend around the edge
of the terminating plane. When enough force is applied, this extra plane passes
through planes of atoms, breaking and joining bonds. This means that the disloca-
tion moves and thereby shears the crystal.

The distortion of the atoms surrounding dislocations lead to characteristic strain
and stress fields through which the dislocations interact strongly with each other
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2.2 Lattice Dislocations 15

Figure 2.3 The vectors that characterize the geometry of edge and screw dislocations.

Figure 2.4 Scale images of lattice distortion
due to dislocations. (a) View along the line
direction of an edge dislocation (i. e., onto
the left face in Figure 2.3). (b) View normal

to the glide plane of a screw dislocation (i. e.,
onto the right face in Figure 2.3). The disloca-
tion line runs vertically along the center of the
image.

and with other externally or internally imposed elastic fields. The strain and stress
fields are different for screw and edge dislocations. Figure 2.5a,b shows two1) of the
three Volterra distortions. The displacement types presented here (shear parallel to
the dislocation line: screw dislocation; shear perpendicular to the dislocation line:
edge dislocation) indicate the distortions of an initially perfect continuum cylinder.
The elastic stresses associated with them describe the elastic fields of ideal edge
and screw dislocations, respectively, outside their cores.

The equation for two-dimensional edge dislocations (with an infinite extension of
the dislocation line) can be derived by solving the compatibility equations for plane-
strain conditions under consideration of force equilibrium according to Volterra
(1907). The plane-strain state describes a situation where all particles of a body are
displaced parallel to an arbitrary plane, and the displacements are independent of
their coordinate parallel to the plane normal. For an infinite edge dislocation with
its Burgers vector parallel to the first coordinate axis e1 and tangent vector parallel

1) b k x and b k z
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16 2 Metallurgical Fundamentals of Plastic Deformation

Figure 2.5 Two of the three Volterra distortions. The displacement types of an initially perfect
cylinder and the elastic stresses associated with them describe the elastic fields of ideal edge (a)
and screw (b) dislocations, respectively, outside their cores.

to the third coordinate axis e3, the stress field is

σ11 D � μb
2π(1 � ν)

x2
�
3x2

1 C x2
2

�
�
x2

1 C x2
2

�2 , (2.1a)
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x2
�
x2

1 � x2
2

�
�
x2

1 C x2
2

�2 , (2.1b)

σ12 D μb
2π(1 � ν)

x1
�
x2

1 � x2
2

�
�
x2

1 C x2
2

�2 , (2.1c)

σ33 D ν(σ11 C σ22) D � μbν
π(1 � ν)

x2

x2
1 C x2

2
. (2.1d)

The strain field is readily obtained by using Hooke’s law.
For an infinite screw dislocation with its Burgers vector and tangent vector par-

allel to e3 the stress field is given by

σ13 D σ31 D � μb
2π

x2

x2
1 C x2

2
, (2.2a)

σ23 D σ32 D μb
2π

x1

x2
1 C x2

2
. (2.2b)

In Eqs. (2.1) and (2.2) σ i j denotes the stress field, μ is the shear modulus, and ν
is the Poisson ratio. These eigenstress fields introduced by dislocations into the
metallic lattice can lead to pronounced interactions among them promoting struc-
ture formation (e.g. dislocation cells), see Figure 2.6.

In real crystals dislocations usually slip on densely packed planes containing both
the dislocation line and the Burgers vector. The Burgers vector is usually along a
densely packed crystallographic direction, as illustrated in Figure 2.7. Using dense-
ly packed planes and the shortest possible translational shear vectors minimizes
the elastic energy and the Peierls barrier of the defect.
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2.2 Lattice Dislocations 17

Figure 2.6 Bright-field transmission elec-
tron microscope image of dislocations in a
face-centered cubic Fe–Mn steel. The image
reveals that dislocations tend to self-organize

and arrange in cell structures provided that
the stacking fault energy and the temperature
are not too low.

Figure 2.7 Close-packed lattice plane (f1 1 1g in face-centered
cubic, or f0 0 0 1g in hexagonal crystals) with arrows indicat-
ing the six lattice-invariant displacement (Burgers) vectors
(corresponding to h1 1 0i in fcc and h1 1 -2 0i in hex).

For a screw dislocation, the dislocation line direction and the Burgers vector are
parallel; hence, the dislocation can slip in any plane containing the dislocation.
For an edge dislocation, the dislocation line direction and the Burgers vector are
perpendicular, so there is only one plane in which the dislocation can slip. There is
an alternative mechanism of dislocation motion, fundamentally different from slip,
that allows an edge dislocation to move out of its slip plane, known as dislocation
climb. Dislocation climb allows an edge dislocation to move perpendicular to its
slip plane. However, this mechanism is nonconservative as it requires the diffusion
of point defects through the crystal lattice. If a vacancy moves next to the boundary
of the extra half plane of atoms that forms an edge dislocation, the atom in the
half plane closest to the vacancy can jump and fill that vacancy. This atom shift
moves the vacancy in line with the half plane of atoms, causing a shift, or positive
climb, of the dislocation. The process of a vacancy being absorbed at the rim of a
half plane of atoms, rather than being created, is referred to as negative climb. A
main difference between dislocation slip and climb is the temperature dependence.
Climb occurs much more rapidly at high homologous temperatures than at low
temperatures owing to an increase in vacancy density and motion. Slip, on the
other hand, has a weaker dependence on temperature and prevails for most metals
at room temperature.

The dislocation density in a material is increased by plastic deformation through
dislocation storage, bow out, and multiplication. Their mutual interaction stress
and cutting processes increase the overall flow stress of metallic crystals usual-
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18 2 Metallurgical Fundamentals of Plastic Deformation

ly observed during plastic straining in a regime below about 0.3 of their absolute
melting temperature. This effect is referred to as strain hardening. Tangles of dislo-
cations are found at the early stage of deformation and appear as non-well-defined
boundaries. The process of dynamic recovery leads eventually to the formation of
a cellular structure containing boundaries with misorientations that usually do not
exceed a few degrees.

Adding pinning points that inhibit the motion of dislocations, such as solute
alloying elements and additional interfaces (from second phases or grain bound-
aries), can introduce stress fields that ultimately strengthen the material by requir-
ing a higher applied stress to overcome the pinning stress and continue dislocation
motion and multiplication. The effects of strain hardening by accumulation of dis-
locations and the grain structure formed at high strain can be removed by appropri-
ate heat treatment (annealing) which promotes the recovery and subsequent recrys-
tallization of the material. The combined processing techniques of work hardening
and annealing allow for control over dislocation density, the degree of dislocation
entanglement, and ultimately the yield strength of the material.

2.3
Deformation Martensite and Mechanical Twinning

Martensitic transformations are characterized by a diffusionless change in the crys-
tal lattice structure. This applies not only to thermally induced martensite forma-
tion, but also to deformation-induced formation. It is important to note that the
shift of the atom positions relative to their former parent phase breaks the transla-
tional symmetry (in contrast to dislocation slip), that is, the transformation creates
a new crystallographic orientation variant. Hence, the martensitic transformation
involves a definite orientation relationship with the parent phase (matrix) because
the atoms shift their positions in a coordinated manner. Possible orientation rela-
tionships of this kind were described by Kurdjumov and Sachs (1930), Nishiyama
(1934), and Wassermann (1935) in the 1930s. In both models the f110g planes
of the martensite are parallel to the f111g planes of the parent austenite. In the
description of Kurdjumov and Sachs a h111i direction in the martensite coincides
with a h110i direction in the austenite. In the description of Nishiyama and Wasser-
mann a h110i direction in the martensite coincides with a h112i direction in the
austenite.

There is always a change in shape, which means that there is a strain associated
with the transformation. As in mechanical twinning, there is an invariant plane.
Different from mechanical twinning the martensitic transformation may also in-
volve volume changes which occur normal to the invariant plane. More specifically,
the overall shape change created by the martensitic transformation can be approx-
imated by a simple shear parallel to the habit plane, which is the common and
thus coherent plane between the phases, and a uniaxial expansion normal to that
habit plane. Deformation-induced martensitic transformations rarely go to comple-
tion as it becomes increasingly difficult during deformation to render the residual
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Figure 2.8 Bain model explaining the transformation from the face-centered cubic parent phase
(austenite) into the body-centered cubic phase through the compression of the austenitic longi-
tudinal axis and the extension of the two basal axes.

austenite into martensite against the increasing internal stresses that the preceding
transformations created.

For the case of face-centered cubic iron transforming to body-centered cubic fer-
rite (or to tetragonal martensite as in the case of additional interstitial atoms in
the iron such as carbon) the Bain model provides a simple model for the struc-
tural transformation with a minimum of atomic motion, see Figure 2.8. Marten-
sitic transformations cause enormous strains. To minimize the overall mismatch,
the martensite and the surrounding matrix often undergo massive dislocation de-
formation and/or deformation twinning as possible accommodation processes.

Deformation-induced twinning (which is referred to as mechanical twinning)
and deformation-induced martensite formation are displacive transformation phe-
nomena. This means that they form through a coordinated motion of atoms with-
out diffusional steps being involved. Mechanical twinning has taken place when
two separate crystals share some of the same crystal lattice points in a symmetric
manner after straining. The process involves a collective displacement which leads
to the reorientation of the sheared material portion relative to the parent material
into a mirror configuration. A twin shear system is defined by a twin plane and a
twin direction (the shear direction of the process). As deformation-induced twin-
ning is typically constrained by the neighboring material, mechanical twins often
form thin zones to reduce the mismatch with the matrix material (see Figure 2.9).

Mechanical twinning occurs preferentially at low temperatures, in coarse-
grained polycrystals, and at high strain rates. As the formation of mechanical
twins (nucleation phase) is associated with grain boundaries and existing stacking
faults, materials with a low stacking fault energy have a higher tendency to form
twins. The shear created by a deformation twin can often also be described by the
collective motion of partial dislocations on neighboring crystallographic planes.
The formation of partial dislocations requires a low stacking fault energy. The
latter energy is an important measure in dislocation and twinning plasticity. The
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20 2 Metallurgical Fundamentals of Plastic Deformation

Figure 2.9 Electron channeling contrast image in a scanning electron microscope showing
massive mechanical twinning in a face-centered cubic Fe–Mn steel.

face-centered cubic lattice can be built by a stacking sequence of f111g planes. In
a perfect lattice three subsequent positions A, B, and C are occupied by the f111g
planes. In the case of a stacking fault or twinning process, the stacking sequence
is changed, thus rendering the structure locally a hexagonal lattice structure with
a stacking sequence A, B of f111g planes. This local transition is associated with
a penalty energy, which is referred to as stacking fault energy. Metals with a low
stacking fault energy such as austenitic steels or brass have a higher tendency to
form partial dislocations and twins than metals with a high stacking fault energy
such as aluminum.

Although the total amount of shear that deformation twins contribute during
polycrystal straining is not very high compared with dislocation shear, deforma-
tion twins play an important role in texture evolution and grain refinement. The
first point is obvious since deformation twins discontinuously change the crystal-
lographic orientation. The second point is due to the fact the spontaneous orienta-
tion change is larger than 15 degrees, so twin interfaces represent high-angle grain
boundaries. Also, it is essential to note that mechanical twinning is an important
deformation mode when there are not sufficient slip systems to accommodate an
imposed deformation state.
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3
Continuum Mechanics

This chapter recalls basic concepts of solid mechanics to the extent necessary for
the purpose of this book. The interested reader is referred to more exhaustive treat-
ments of this matter, which can be found, for instance, in Bower (2010); Chadwick
(1999); Jirásek and Bazant (2002). Here we restrict ourselves to outlining the essen-
tial aspects of kinematics, the static equilibrium, and the thermodynamic dissipa-
tion in solid matter.

3.1
Kinematics

The term kinematics refers to the study of (typically position-dependent) displace-
ments and, if considering time dependence, motions of a material body without
explicitly asking about the forces that are causing them.

3.1.1
Material Points and Configurations

Consider an infinite number of particles, also termed material points, aggregated
into a deformable body (or continuum). This body shall occupy the regions B0 and
B, bound by the surfaces S0 and S , in three-dimensional space R3 at two different
times t0 and t, respectively. We term B0 the undeformed configuration and B the de-
formed configuration.2) Locations of material points in the undeformed (or reference)
configuration are given by their position vector x, whereas those in the deformed
(or current) configuration are denoted by y (see Figure 3.1). Thus, the displacement
occurring between both configurations is given by u D y � x and is required/set to
be a smooth function of the position of the material point. Equivalently, one defines

2) This terminology differs from the one proposed by Noll (1972), which used placement instead and
reserved configuration for the class of placements that differ only by a rigid-body rotation. However,
we follow the main body of literature on the current subject and call each particular placement a
configuration.

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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u

x y

o

reference current

B0

B

Figure 3.1 Deformable body (continuum) oc-
cupying region B0 in the reference configura-
tion and region B in the current (or deformed)
configuration. The positions of material points

are, respectively, denoted by x and y. The spa-
tial heterogeneity of displacement u entails
a deformation (or just a rotation in special
cases).

a mapping

y(x) W x 2 B0 7�! y 2 B , (3.1)

which translates material points from the reference into the current configuration
and which is continuously differentiable with respect to position.

3.1.2
Deformation Gradient

Figure 3.2 presents the infinitesimal neighborhood of an arbitrary material point
(small circle in Figure 3.1) within the body in both the reference and the current
configurations. To establish the deformation experienced by a material line seg-
ment dx emanating from material point x in the reference configuration, we locally
expand the mapping given in Eq. (3.1) into a Taylor series and truncate at first
order:

y C dy D y(x) C @y
@x

dx C O(dx2) ,

dy D @y
@x

dx D F dx . (3.2)

From Eq. (3.2) we observe that material lines are homogeneously mapped by the
second-rank tensor F, called deformation gradient, which is given by the partial dif-
ferential of the material point coordinates in the current configuration with respect
to the reference configuration:

F D @y
@x

D Grad y or

Fi j D @y i/@x j in Cartesian components .
(3.3)

Note that deformation gradients are a locally defined quantity and thus typically
vary with position. Hence, F is only a valid characterization of the deformation
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u(x)
x y

o

reference current

dydx

u(x+dx)

Figure 3.2 Infinitesimal neighborhood around
a material point in the reference configuration
(at position x) and in the current configuration
(then at position y). The material line segment

dx is transformed into dy. A gradient in y(x),
which is a consequence of a gradient in the
displacement u(x), results in deformation of
dx.

outside the infinitesimal neighborhood illustrated in Figure 3.2 in the case of ho-
mogeneous (i. e., spatially invariant) deformations.

The inverse of the deformation gradient, denoted by F�1 and defined as F�1 D
grad x () F�1

i j D @xi /@y j , consequently maps from the current configuration
back into the reference configuration.

To map general second-rank tensorial quantities A between the reference (sub-
script “0”) and current configurations, the terms push forward and pull back are
employed and refer, respectively, to the operations

A D FA0F�1 , (3.4)

A0 D F�1A F . (3.5)

The Jacobian of a deformation gradient is defined as

J D det F D d V
d V0

D �0

�
(3.6)

and quantifies the ratio in volume (or inverse ratio in mass densities, � and �0) be-
tween the current and reference configurations. The proof of Eq. (3.6) is skipped,
but it can be easily demonstrated by considering the deformation of an arbitrary
parallelepiped due to F. Since matter cannot be compressed to zero (or even neg-
ative) volume, any physically admissible displacement field fulfills J > 0. In the
special case of incompressibility, which is usually assumed to be satisfied for plas-
tic deformation, the Jacobian is always J D 1.

In addition to volumetric changes it is frequently necessary to evaluate changes
in length and angles resulting from a deformation characterized by F. To this end,
consider the segment dx D dl0 a of a material line in the reference configuration
which gets mapped to dy D dl b D dl0 F a in the current configuration, with a and
b of unit length. Invoking the scalar product, we find

dy � dy D F dx � F dx,�
dl
dl0

�2

D F a � F a D a � FTF a D a � C a D λ2 . (3.7)



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c03 — 2010/7/23 — page 24 — le-tex

�

�

�

�

�

�
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Thus, the symmetric tensor

C WD FTF D FT(FT)T D (FTF)T D CT , (3.8)

termed right Cauchy–Green deformation tensor, characterizes the stretch λ that a
material line along a experiences. Similarly, knowing the directions a1 and a2 and
corresponding stretches (from Eq. (3.7)) of two infinitesimal line segments in the
reference configuration, we can derive the angle θ between them in the current
configuration from

λ1λ2 cos θ D a1 � C a2 . (3.9)

Since C is symmetric and positive-definite, all its eigenvalues μ1, μ2, and μ3 are
real and positive and the corresponding (unit-length) eigenvectors n1, n2, and n3

form an orthonormal basis. Therefore, we have the spectral decomposition

C D
3X

iD1

μ ini ˝ ni . (3.10)

Using Eq. (3.7) to calculate the stretches λ i for material lines aligned with the unit
eigenvectors ni yields μ i D λ i

2, that is, the eigenvalues of C are the squares of
the principal stretches associated with the principal directions ni . Thus, we can
introduce the (symmetric and positive-definite) right stretch tensor:

U D
3X

iD1

λ ini ˝ ni such that UU D U2 D C , (3.11)

which has the same principal directions as C but its eigenvalues are the square
roots of those of C.

3.1.3
Polar Decomposition

The polar decomposition theorem states that any invertible tensor F can be unique-
ly expressed by two alternative (multiplicatively decomposed) forms:

F D RU D VR , (3.12)

with R being a proper orthogonal (i. e., rotation) tensor, and U and V being positive-
definite symmetric tensors. It is straightforward to demonstrate that C D FTF D
(RU)T (RU) D UTRTRU D UTU D U2. Hence, U resulting from the polar de-
composition of the deformation gradient is equivalent to the right stretch tensor
defined in Eq. (3.11). A similar argument leads to an equivalent relation between
V, termed left stretch tensor, and the left Cauchy–Green deformation tensor B D FFT.
For a more exhaustive treatment of B the reader is referred to standard treatises on
continuum mechanics.

The polar decomposition can, thus, be understood in terms of separating the
overall deformation into pure stretching U along the principal directions ni fol-
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lowed by rigid-body rotation R. The alternative form F D VR now simply exchanges
this order of operations such that, first, a rotation R is performed and, second, pure
stretching V D RURT along the now rotated principal directions R ni follows.

3.1.4
Strain Measures

The deformation gradient introduced in Eq. (3.3) can be equivalently expressed in
terms of the displacement gradient @u/@x as follows:

F D @y
@x

D @(x C u)
@x

D I C @u
@x

D I C 1
2

"
@u
@x

C
�

@u
@x

�T
#

C 1
2

"
@u
@x

�
�

@u
@x

�T
#

D I C
�

@u
@x

�
sym

C
�

@u
@x

�
skew

(3.13)

D I C ε C ω , (3.14)

where the symmetric part, ε, and skew-symmetric part, ω, of the displacement gra-
dient correspond to the (small) strain and (small) rotation derived in the framework
of infinitesimal displacements usually known from, for instance, basic courses on
material strength. A relation between the infinitesimal and finite strain framework
can be seen by substituting Eq. (3.13) into the right Cauchy–Green deformation
tensor (Eq. (3.8)) and neglecting terms of quadratic order:

C D FTF D
�

I C @u
@x

��
I C @u

@x

�T

D I C
�

@u
@x

�T

C @u
@x

C
�

@u
@x

��
@u
@x

�T

� I C 2ε . (3.15)

The corresponding relation for the right stretch tensor, using Eq. (3.11), thus reads

U D C1/2 � I C ε . (3.16)

From Eqs. (3.15) and (3.16) we can infer the following definitions of strain mea-
sures based on the right stretch tensor U:

E(1) D U � I , (3.17)

E D E(2) D 1
2

(U2 � I) D 1
2

(C � I) D 1
2

(FTF � I) , (3.18)

E(m) D 1
m

(Um � I) . (3.19)
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The first measure (Eq. (3.17)) is called Biot strain and the second one (Eq. (3.18))
Green’s Lagrangian strain. Both belong to the more general class of Doyle–Ericksen
strain tensors, for which m ¤ 0 in Eq. (3.19). All those strain measures are (neces-
sarily) zero for a vanishing displacement gradient and concur with the small-strain
tensor in the limit of infinitesimal displacement gradients. Furthermore, they only
depend on the stretch, but not on rigid-body rotation (cf. Section 3.1.3).

3.1.5
Velocity Gradient

A time-dependent displacement, or motion, of a body entails a nonzero velocity
field, given by the time derivative of the corresponding displacement field:

v D d
dt

u D Pu D Py . (3.20)

Its spatial gradient (that is, with respect to the current configuration),

L D @v
@y

D grad v , (3.21)

is termed velocity gradient and quantifies the relative velocity between two positions
in the current configuration. The relation between the velocity gradient and the
rate of change, PF, of the corresponding deformation gradient can be inferred from
the equivalence of the relative change in the velocity of two points separated by dy
and the rate of change of their relative position:

L dy D @v
@y

dy � d
dt

dy D d
dt

F dx D PF dx D PFF�1dy . (3.22)

Comparing the leftmost and rightmost expressions in Eq. (3.22), we find that

L D PFF�1 . (3.23)

The velocity gradient can, as any second-rank tensor, be uniquely decomposed in
an additive fashion into a symmetric and a skew-symmetric part,

L D Lsym C Lskew D 1
2

(L C LT) C 1
2

(L � LT) D D C W , (3.24)

which are termed stretch rate tensor and spin tensor, respectively. We note that D
describes the instantaneous rate of pure stretching of a material point, whereas W
quantifies its rate of rigid-body rotation . To illustrate this, one may look at the rate
of change of Green’s Lagrangian strain,

PE D 1
2

( PFTF C FT PF) D (FT PF)sym

D 1
2

(FTLTF C FTLF) D FTDF , (3.25)

which, indeed, does depend only on the symmetric (stretching) part of the velocity
gradient.
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3.1.6
Elastoplastic Decomposition

In all the kinematic treatments above, there has not been any concern regarding
the way by which the material accomplishes the shape change (and possibly rota-
tion) from the reference to the deformed configuration. In this section, the influ-
ence of the physical nature of the material in question, here particularly metals, is
explored.

We recall that for crystalline matter the underlying lattice can deform by (small)
displacements from the equilibrium positions (Figure 3.3a) and by permanent al-
terations of the local atomic neighborhood owing to displacements, which – when
the discussion is restricted to perfect dislocation plasticity – are integer multiples of
the nearest-neighbor connection along closest-packed planes. An example of elastic
lattice shear is shown in Figure 3.3b. The deformation illustrated can, however, be
maintained only if forces are acting on the atoms to displace them from their equi-
librium locations. Once those forces are relieved, the shape change is undone, that
is, the deformation is reversible in nature. Figure 3.3c illustrates the same overall
deformation as shown in the elastic case (Figure 3.3b), but this time in the form of
a permanent lattice rearrangement due to the motion of one dislocation through
the entire observed volume on the lattice plane indicated. Considering an isolated
volume which has been fully traversed by lattice dislocations, two immediate con-
sequences arise: (1) the translation-invariant kinematics of lattice slip entails that
the lattice coordinate system after slipping remains unchanged compared with the
nonslipped situation and (2) owing to the retained perfect atomic arrangement the
lattice is in a stress-free state despite its plastic shape change. Such plastic defor-
mation is a result of stresses acting on the crystal lattice – actually reducing them
– but the presence of those is not essential for the persistence of plastic strain. Given
the fully unloaded state depicted in Figure 3.3c, only further elastic loading of the
lattice, as illustrated in Figure 3.3d, introduces a nonzero stress state similar to that
observed in Figure 3.3b.

These notions have led to a multiplicative decomposition of the total deformation
gradient (Kröner, 1960; Lee, 1969; Lee and Liu, 1967). It is based on the introduc-
tion of a configuration, termed intermediate (or relaxed, or lattice), corresponding
to a fictitious state of the material in which each material point is individually un-
loaded, hence being only deformed plastically, and – as the most convenient case3)

– having its particular lattice coordinate system coincide with the fixed laborato-
ry system (see Figure 3.4). The transformation from the reference configuration
to this intermediate configuration hence comprises a rotation (to match both co-
ordinate systems) as well as the flow of material expressed in the constant lattice
frame, which are jointly characterized by the plastic deformation gradient Fp. The
subsequent transformation from the intermediate to the current configuration,
corresponding to elastic stretching of the lattice (plus potential rotation), is char-

3) Keeping the lattice coordinate system aligned with the fixed laboratory system avoids otherwise
necessary transformations to rotate the various tensorial material properties into the intermediate
configuration.
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unstrained reference elastic shear only

combined elasto-plastic
deformation

plastic shear from single
dislocation traversal

(a) (b)

(d)(c)

Figure 3.3 Simple cubic lattice structure (a)
experiencing a reversible, elastic shear re-
sulting from small displacements away from
the equilibrium positions (b), and the same
amount of permanent, plastic shear due to
motion of a single dislocation on the plane

indicated by an arrow, which leaves a step in
the surface of the finite volume observed (c).
A combined loading situation is illustrated in
(d), where the already plastically sheared lat-
tice is elastically strained further, thus putting
stress on the configuration depicted in (c).

Xx

reference current

intermediate
(or relaxed)

F(x) y(x)

infinitesimal
neighborhood of x

Fp Fe

nα

mα

Figure 3.4 Multiplicative decomposition
of the total deformation gradient F into two
parts. The plastic deformation gradient Fp
relates the reference and intermediate config-
urations. Next, the transformation from there
to the current configuration is characterized
by the elastic deformation gradient Fe. The

crystal lattice remains undistorted in the inter-
mediate configuration since dislocation glide
rearranges the lattice in a translation-invariant
fashion. The slip plane normal nα and slip
direction mα are exemplarily shown for a slip
system α.
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acterized by the elastic deformation gradient Fe. Therefore, the overall deformation
gradient relating the reference to the current configuration follows from the se-
quence of both contributions as

F D FeFp . (3.26)

It has to be noted that in general there are no globally defined mappings from
which either Fp or Fe can be derived as gradients. The reason lies in the spatial
heterogeneity of plastic deformation which results in equal and opposite incom-
patibilities in both, plastic and elastic, deformation maps. Therefore, the approx-
imation of these maps by (first-order) deformation gradients is only valid if the
(isolated) material point volume under consideration is either fully traversed by
dislocations or uniformly populated by matching dislocations of opposite sign such
that the far field of their individual elastic distortions vanishes. This corresponds
to the situation depicted in Figure 3.3c. If the total Burgers vector within a ma-
terial point volume does not vanish, the internal stresses connected to the elastic
distortion caused by each dislocation are not equilibrated and result in long-range4)

stress fields. Similarly, even if individual material points are considered to be ful-
ly traversed by dislocations or homogeneously populated, there persists a required
(geometrically necessary) dislocation content between neighboring material points
if both experience different slip system activity (or plastic shape change in a less
refined picture). To capture those higher-order effects, the spatial variation of plas-
tic deformation – being equivalent to the respective dislocation activity – has to be
taken into account. A substantial body of research regarding this is available, see,
for instance Bayley, Brekelmans, and Geers (2006); Evers, Brekelmans, and Geers
(2004a,b); Forest, Barbe, and Cailletaud (2000); Gurtin (2002, 2008); Gurtin, Anand,
and Lele (2007); Han et al. (2005); Kuroda and Tvergaard (2006, 2008b); Levkovitch
and Svendsen (2006); Ma and Roters (2004).

Considering the definition of the overall velocity gradient given in Eq. (3.23) to-
gether with the above decomposition, we can derive an expression involving the
elastic and plastic velocity gradients, Le and Lp, which reads

L D PFF�1 D @
�
FeFp

�
@t

Fp
�1Fe

�1 D PFeFpF�1
p F�1

e C Fe PFpF�1
p F�1

e

D PFeFe
�1 C Fe PFpF�1

p F�1
e D Le C FeLpF�1

e . (3.27)

We notice that the total velocity gradient decomposes additively, in contrast to the
multiplicative decomposition of the total deformation gradient. Furthermore, as L
is defined with respect to the current configuration (see Eq. (3.21)), so is Le. The
plastic velocity gradient Lp, however, being defined with respect to the intermediate
configuration, requires a push forward from there to the current configuration (cf.
Eq. (3.4)).

4) in comparison with the spatial extent of the material point in question
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3.2
Mechanical Equilibrium

After having established useful kinematic relations in Section 3.1, we now turn to
the forces acting on the body of material and causing those kinematic reactions.
For the sake of convenience, we use the reference configuration of the body for our
derivations.

The total force, f, experienced by and thus accelerating the body can comprised
body forces per unit mass, g, which result from, for instance, gravitational or mag-
netic fields, and tractions acting on its surface. Since the surface differs between
the reference and the current configuration, two corresponding stress measures are
defined. The Cauchy stress, σ, determines the traction t per unit deformed area with
normal n in the current configuration, whereas the first Piola–Kirchhoff or nominal
stress, P, characterizes the traction t0 per unit undeformed area with normal n0 in
the reference configuration. The force k transmitted via the surface to the body can
thus be alternatively expressed by

k D
Z
S0

t0 dS0 D
Z
S

t dS

D
Z
S0

P dn0 D
Z
S

σ dn . (3.28)

Recognizing that infinitesimal, directed areas dn0 in the reference configuration
transform to dn D JF�T dn0 in the current configuration, with J defined in
Eq. (3.6), one realizes that both stress measures are related by

P D J σF�T . (3.29)

Now integrating the body and surface force contributions over the volume and
surface of the material results in

f D
Z
B0

�0 Pv dV0 D
Z
B0

�0g dV0 C
Z
S0

t0 dS0 , (3.30)

where �0 denotes the appropriate density (mass per initial volume) and Pv � Ry the
velocity derivative with respect to time, that is, the acceleration. After substituting
Eq. (3.28) into Eq. (3.30) and invoking the divergence theorem to express the surface
integral as a volume integral, the balance of linear momentum (Newton’s second
law) reads

0 D
Z
B0

�
�0g C @P

@x
� �0 Pv

�
dV0

D
Z
B0

(�0(g � Pv) C Div P) dV0 . (3.31)
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For Eq. (3.31) to hold for arbitrary material volumes, the integrand has to vanish,
thus yielding the local form of the linear momentum balance:

Div P D �0 (Pv � g) . (3.32)

For the case without (significant) body forces and acceleration in the system –
which is the case we are concerned with – Eq. (3.32) is identical to zero; hence,
static equilibrium is then achieved by requiring only a divergence-free stress field,
that is, Div P D 0.

Without explicit proof (see Betten (1993) or Gross and Seelig (2001), for instance)
it is noted that the balance of angular momentum requires

PFT D FPT () σ D σT . (3.33)

Thus, σ is a symmetric tensor characterized by only six independent components,
whereas P in general is nonsymmetric.

3.3
Thermodynamics

To set up a thermodynamic framework for crystal plasticity constitutive laws we
make use of u and s, the internal energy and entropy, both per unit mass, and start
by stating the first law of thermodynamics, that is, the principle of energy conserva-
tion. This can be done by equating the sum of the rate of change in internal and
kinetic energy to the sum of external power (based on Eq. (3.32)), heat power from
a distributed source with strength r per unit mass, and heat flux connected to the
heat flux vector q0 in the reference configuration:Z

B0

�0( Pu C Pv � v) dV0 D
Z
B0

�0(g � v C r) dV0 C
Z
S0

(t0 � v � q0 � n0) dS0

D
Z
B0

(�0(g � v C r) C

Div P � v C P � Grad v � Div q0) dV0 , (3.34)

where we have again made use of the divergence theorem to transform the sur-
face integral to a corresponding volume integral. As Eq. (3.34) has to hold for any
material volume, the local energy balance in the static case without body force con-
tributions reads

�0 Pu � P � PF C Div q0 � �0r D 0 , (3.35)

which made use of the equality Grad v D @Py/@x D d(@y/@x)/dt D PF.
The second law of thermodynamics requires the rate of change in entropy to be at

least as large as the rate of external entropy supply. The latter is given by summing
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the contributions from heat power and heat flux and dividing both of them by the
absolute temperature T, thus yieldingZ

B0

�0 Ps dV0 �
Z
B0

�0r
T

dV0 �
Z
S0

q0 � n0

T
dS0

D
Z
B0

�
�0r
T

� @

@x

�q0

T

��
dV0

D
Z
B0

�
�0r
T

� 1
T

Div q0 C q0

T 2 � Grad T
�

dV0 . (3.36)

Invoking the same argument as above (validity in arbitrary material volumes), the
local form of the rate, Γ , of internal entropy production follows as the difference
between the left-hand-side and right-hand-side integrands of Eq. (3.36) as

Γ WD �0 Ps � �0r
T

C 1
T

Div q0 � q0

T 2
� Grad T � 0 . (3.37)

From this we derive the dissipation, defined as the rate of production of internal
entropy density multiplied by the absolute temperature (hence, it is also strictly
nonnegative), to be

D WD Γ T D T�0 Ps � �0r C Div q0 � q0

T
� Grad T

D T�0 Ps � �0 Pu C P � PF � q0

T
� Grad T � 0 , (3.38)

in which we substituted the thermal contribution, Div q0 � �0r , from Eq. (3.35).
Now we turn to a constitutive assumption regarding the material behavior. Let

the internal energy depend exclusively on the elastic deformation (gradient) and on
the entropy, that is,

u D u(Fe, s) , (3.39)

which entails the rate of change in internal energy reading

Pu D @u
@Fe

� PFe C @u
@s

Ps . (3.40)

In the simplest case, the mechanical and entropic contributions to the thermody-
namic potential are fully decoupled. Furthermore, the mechanical contribution is
formulated to depend quadratically on the elastic Green’s Lagrangian strain

Ee D 1
2

�
FT

e Fe � I
�

(3.41)

only – since rigid-body rotations do not alter the internal energy – and reads

u(Ee(Fe), s) D 1
2�0

(CEe) � Ee C u th(s) , (3.42)
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with C being the (fourth-order) elasticity tensor. Then, for the above potential, the
stress measure which is work-conjugate to Ee follows as

�0
@u
@Ee

D S D CEe (3.43)

and is termed second Piola–Kirchhoff stress. This stress is a symmetric tensor and is
defined in the intermediate configuration. The related stress measure that is work-
conjugate to the elastic deformation gradient is connected to the partial derivative
of the thermodynamic potential with respect to Fe and can be derived as

�0
@u
@Fe

D �0
@u
@Ee

@Ee

@Fe
D FeCEe D FeS . (3.44)

On the basis of these constitutive assumptions, we reformulate the dissipation
given in Eq. (3.38) in terms of the elastoplastic decomposition introduced in Sec-
tion 3.1.6 and substitute the time derivative from Eq. (3.40) to arrive at

D D T�0 Ps � �0

�
@u
@Fe

� PFe C @u
@s

Ps
�

C P � � PFeFp C Fe PFp
� � q0

T
� Grad T

D
�

PFp
T � �0

@u
@Fe

�
� PFe C

�
T�0 � �0

@u
@s

�
Ps

C FT
e PFp

T � Lp � q0

T
� Grad T � 0 .

(3.45)

In Eq. (3.45) we, first, observe that the two bracketed terms have to vanish, since
the dissipation cannot depend on the rate of change, PFe and Ps, of state variables
(otherwise a negative dissipation circle could be constructed). Therefore,

PFp
T D �0

@u
@Fe

and T D @u
@s

, (3.46)

and the only two nonvanishing dissipative terms left in Eq. (3.45) are connected
to the plastic strain rate and the heat flux in a temperature gradient. Second, us-
ing the equivalence established in Eq. (3.46), one recognizes that the driving force
for plastic strain in the intermediate configuration, that is, the stress that is work-
conjugate to the plastic velocity gradient, can be expressed in terms of the internal
energy and reads

FT
e PFp

T D FT
e �0

@u
@Fe

D FT
e FeS � S , (3.47)

where the relation found in Eq. (3.44) has been substituted. This measure will
reoccur in Chapter 6 on constitutive models; however, since FT

e Fe � I in metallic
materials, it is typically approximated by S only.
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4
The Finite Element Method

The finite element method (FEM) is nowadays without doubt the most popular
simulation tool in structural mechanics. The first finite element simulation was
performed by Courant (1943). The breakthrough of the method came through the
publication of “The Finite Element Method in Structural and Continuum Mechan-
ics” by Zienkiewicz (1967). The three succeeding volumes (Zienkiewicz and Taylor,
2005; Zienkiewicz, Taylor, and Nithiarasu, 2005a; Zienkiewicz, Taylor, and Zhu,
2005b) are considered the most important monographs in the field to date.

In the framework of this book, however, it must be emphasized that the FEM is
just one of several numerical methods to solve nonlinear partial differential equa-
tions. As such, it has to compete with many other methods, such as the finite dif-
ference method (Boole, 1872; Richtmyer and Morton, 1967), the boundary element
method (Banerjee, 1994; Wrobel and Aliabadi, 2002), and meshless methods such
as the discrete element method (Munjiza, 2004; Williams and Mustoe, 1985) and
smooth particle hydrodynamics (Hoover, 2006; Monaghan, 1988), to name only
the most popular ones. Equally important is to realize that the “M” in FEM is for
“method” not “model”, that is, the FEM is just the solver; to build a model it has
to be combined with some physics. In the case of simulations in the field of solid
mechanics a model consists of the geometry of some part (or several parts), me-
chanical boundary conditions and most important a material model, which in the
case of this book is build on crystal plasticity.

Even though the focus of this book is on the material models (crystal plasticity to
be precise) and not the FEM as such, it is important to know at least the basics of
the FEM as they are in part important for the formulation and coding of material
models. In the remainder of the chapter we, therefore, present the fundamentals
of the FEM.

4.1
The Principle of Virtual Work

The principle of virtual work is, among others, one way of deriving the fundamental
equations of the FEM. We start from the assumption of an arbitrary body with
volume V and surface S in static mechanical equilibrium, that is, we set Pv to zero

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32447-7
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36 4 The Finite Element Method

in Eq. (3.32) and push it to the current configuration to get

div σ C � g D 0 . (4.1)

Equation (4.1) has to be satisfied everywhere in space, that is, at an infinite num-
ber of points. As this cannot be handled by a computer, we now invoke the princi-
ple of virtual work to finally discretize the equation. First, we introduce an arbitrary
vector-valued function, δv(x):

(div σ(x) C � g(x)) � δv(x) D 0 . (4.2)

Then we integrate the equation over the volume of the body to findZ
V

(div σ C � g) � δv dV D 0 . (4.3)

δv is called a test function, because it tests whether the constraint (4.1) is fulfilled
wherever δv is nonzero. As it does this not pointwise but in a volume-averaged
(integral) sense, Eq. (4.3) is called the weak form of Eq. (4.1).

Using the chain rule and the divergence theorem, we can rewrite Eq. (4.3) asZ
S

t � δv dS C
Z

V
� g � δv dV D

Z
V

σ � grad δv dV . (4.4)

Now it is important to remember that the test function δv is arbitrary. Therefore,
if we choose δv to be a displacement, the integrands turn out to be of the nature
of mechanical work and this is why the whole procedure is called the principle of
virtual work. In that case, using δ� D (grad δv)sym, we can further rewrite Eq. (4.4)
to finally obtain the basic function of the FEM:Z

S
t � δv dS C

Z
V

� g � δv dV D
Z

V
σ � δ� dV . (4.5)

4.2
Solution Procedure – Discretization

The FEM solves Eq. (4.5) by discretizing the body and introducing a large set of
global shape functions Ma (see Figure 4.1). These shape functions are chosen in
a way that they have a value of 1 at node a of the finite element mesh and 0 at all
other nodes. Any global field, including δv, can then be approximated as

δv(x) D
aDNnX
aD1

Ma δva , (4.6)

with Nn being the number of nodes in the mesh and δva the value of δv at node a.
Equation (4.4) can now be approximated by

aDNnX
aD1

�Z
S

tMa dS C
Z

V
� gMa dV

	
δva D

aDNnX
aD1

�Z
V

σ grad Ma dV
	

δva . (4.7)
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continuous
function

global shape
function Ma

element shape
functions Na

node number

element number

a a+1 a+2 a+3 a+4 a+5 a+63-a 2-a 1-a

e e+1 e+2 e+3 e+4 e+5 e+6e-1e-2

*

linear
approximation

Figure 4.1 The approximation of a continu-
ous function using linear global and element
shape functions in one dimension. Function
values at nodal positions are marked by the

bullets. Element shape functions N�
a are

shown for the running element (upper) index
and fixed value of a.

As δv is an arbitrary test function, so are its values δva. This implies that to fulfill
Eq. (4.7) it has to be fulfilled for each individual addend in Eq. (4.7), so the single
Eq. (4.7) is transferred into a set of Nn equations of the formZ

S
tMa dS C

Z
V

� gMa dV D
Z

V
σ grad Ma dV . (4.8)

The integrals in Eq. (4.8) have to be evaluated over the complete body. To simplify
the numerical evaluation of these integrals, we introduce element shape functions
N e

a , which are nonzero only for those elements e that contain node a and are zero
for all other elements (see Figure 4.1). Again the value of N e

a at node a is one. If
one now splits the integrals in Eq. (4.8) into sums of integrals over the elements,
one gets

NeX
eD1

�Z
Se

tN e
a dSe C

Z
Ve

� gN e
a dVe

	
D

NeX
eD1

�Z
Ve

σ grad N e
a dVe

	
, (4.9)

where Ne is the number of elements. As the elements used in the FEM have simple
regular shapes, the individual element integrals can be easily evaluated numerically
using, for example, Gauss quadrature. It is important to notice that owing to the
special form of the N e

a only those elements contribute to the sums that actually
contain node a; for all other elements the integrals are zero.

When we finally introduce the short forms

Rae D
Z

Se

tN e
a dSe C

Z
Ve

� gN e
a dVe (4.10)

and

Fae D
Z

Ve

σ grad N e
a dVe (4.11)
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38 4 The Finite Element Method

for the outer and inner force contributions, respectively, of element e at node a,
then the whole equation system can be written in vector form as

0
BBB@

F11 C F12 C � � � C F1Ne

F21 C F22 C � � � C F2Ne

...
FNn1 C FNn2 C � � � C FNn Ne

1
CCCA D

0
BBB@

R11 C R12 C � � � C R1Ne

R21 C R22 C � � � C R2Ne

...
RNn1 C RNn2 C � � � C RNn Ne

1
CCCA (4.12)

or simply

F D R (4.13)

in the case when σ in Eq. (4.11) depends linearly on the strain �; F can be rewritten
as F D K u, where u is the vector of all nodal displacements. K is called the global
stiffness matrix. In this case the finite element solver has to finally solve the linear
equation system

R D K u (4.14)

for the nodal displacements u. As stated above, most of the elements do not con-
tribute to the individual sums, which implies that most of the entries of R and K
are zero, that is, R and K are sparse matrices – a fact which is usually exploited in
finite element solvers by making use of solution algorithms particularly optimized
for sparse matrices.

4.3
Nonlinear FEM

In the framework of FEM two sources of nonlinearity can be distinguished:

Geometrical nonlinearities These are caused by the geometry of the model. Ex-
amples are thinning of a tensile sample, buckling, large deformations and/or
rotations, and all problems including contact.

Material nonlinearities These are caused by a nonlinear material model. Exam-
ples of nonlinear materials are hyperelastic materials, materials such as con-
crete that show an unsymmetric tension compression behavior, and certainly
plastic materials.

As this book deals with crystal plasticity, it becomes immediately clear that we
always have to consider nonlinear behavior. In case of nonlinearity, there are two
principal ways of solving the problem using linear solvers.

The explicit method uses the results of prior time steps to extrapolate the solution
of the current time step. Although this approach guarantees a fast solution, it does
not necessarily converge to the correct solution. Therefore, the allowed time step is
rather small for explicit solution schemes.
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4.3 Nonlinear FEM 39

The implicit method uses an iterative scheme to approach the correct solution.
In most cases a simple but effective Newton–Raphson scheme is used, but other
algorithms are equally possible. Implicit schemes have the advantage of always
converging to the correct solution independently of the size of the time step, that is
if they converge at all. On the other hand, they are computationally more costly as
they require additional calculations of, for example, a stiffness matrix. More aspects
of implicit versus explicit integration schemes in the field of crystal plasticity finite
element methods can be found in Chapter 8.
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5
The Crystal Plasticity Finite Element Method
as a Multiphysics Framework

A main conceptual advantage of the crystal plasticity finite element (CPFE) ap-
proach for tackling anisotropic micromechanical problems in materials science
and engineering is that it can combine a variety of mechanical effects, which are di-
rection-dependent owing to the underlying crystalline structure. Figure 5.1 shows
an example where only elastic anisotropy is considered.

When considering elastoplastic problems, CPFE models may not only include
dislocations as the main carriers of plastic deformation in metals but also other
mechanisms which follow dyadic kinematics, see Figures 5.2 and 5.3a and b. Some
of these mechanisms were implemented in CPFE models in earlier works, such as
martensite formation (Lan et al., 2005; Thamburaja and Anand, 2001), shear band
formation (e.g., in glassy matter) (Anand and Sun, 2007, 2005), mechanical twin-
ning (Kalidindi, 1998; Marketz et al., 2002; Salem, Kalidindi, and Semiatin, 2005;
Staroselsky and Anand, 1998), and even superplastic grain boundary shear (Wei
and Anand, 2004; Wei, Su, and Anand, 2006).

Figure 5.1 Finite element example where only elastic anisotropy is considered. The phase frac-
tions and homogenization approaches are indicated as well for the case when more than one
phase and multiple crystals must be considered at one integration point.

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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42 5 The Crystal Plasticity Finite Element Method as a Multiphysics Framework

Figure 5.2 Micrograph showing the complex-
ity of deformation microstructures in cases
where more than one lattice defect type is in-
volved. The electron backscatter diffraction
map shows the orientation contrast of a de-

formed twinning-induced-plasticity steel. The
transmission electron microscopy image in
the inset reveals details of the local interaction
between dislocation cells and deformation
twins.

The CPFE method allows the user to incorporate these mechanisms including
their interactions. But it also adds complexity to the model: The use of different
competing crystallographic deformation mechanisms within a CPFE model re-
quires the formulation of local homogenization rules (Raabe et al., 2002a; Raabe
and Roters, 2004). This means that at some material points only one type of defor-
mation mechanism (e.g., dislocation slip) may occur, whereas at others a mix (e.g.,
dislocations and twins) must be considered within the same material volume, Fig-
ure 5.2. The latter situation requires appropriate submodels that describe the evolv-
ing fractions (e.g., of the twinned volume) and the interactions of coexisting and
competing deformation mechanisms at the same material point, Figure 5.3. Anoth-
er aspect that increases complexity in such cases is the possibility that deformation
martensite or twins may, after their formation, undergo further plastic deformation
or create accommodation strains related to volume changes. Some of these aspects
will be discussed in the ensuing sections of this book.

The CPFE approach can and has been used to devise models for size-dependent
mechanical behavior. For this, the equivalence between a gradient of the plastic
deformation and an excess content of dislocations is exploited. Since excess dislo-
cation content is associated with a lattice orientation change (Kröner, 1958b, 1981;
Nye, 1953) (Figure 5.4), the nowadays accessible high-resolution measurements of
crystal orientation in two and three dimensions allow for thorough validation of
such types of models (Demir et al., 2009; Kuo et al., 2003; Larson et al., 2002; Rot-
ers et al., 2004; Zaafarani et al., 2006; Zaefferer et al., 2003; Zaefferer, Wright, and
Raabe, 2008).

Typically, the dislocation density in those models is divided into dislocations con-
nected to gradients in plastic strain (then termed geometrically necessary (Ashby,
1970)) and ordinary (termed statistically stored) dislocation content. It should be
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5 The Crystal Plasticity Finite Element Method as a Multiphysics Framework 43

Figure 5.3 The conceptual ingredients in crys-
tal plasticity finite element simulations for
elastoplastic micromechanical problems.
(a) Example of a case with one type of de-
formation mechanism (lattice dislocations)

and one phase. (b) Example of a case with
different deformation mechanisms, phases,
orientations, and homogenization schemes at
the same integration point.
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44 5 The Crystal Plasticity Finite Element Method as a Multiphysics Framework

Figure 5.4 Relationship between single dislocations and curvature.

noted, however, that it cannot be distinguished whether an individual dislocation
belongs to the geometrically necessary fraction. This distinction follows only as a
consequence of excess dislocation content within a particular observation volume,
determined by the closure failure of a corresponding Burgers circuit. Even then,
geometrical necessity does not render those dislocations distinct from statistical-
ly stored ones, but both their evolutions must be embedded in a unified kinetic
framework, that is, they can assume either state depending on the local lattice de-
fect configuration.

CPFE simulations can be used both at microscopic and at macroscopic scales
(Raabe et al., 2002a). Examples of small-scale applications are inter- and intragrain
mechanics, damage initiation, mechanics at interfaces, simulation of microme-
chanical experiments (e.g., indentation, pillar compression, beam bending), and
the prediction of local lattice curvatures and mechanical size effects (see Table 5.1).
Consequently, the use of CPFE methods is gaining momentum in the field of
small-scale material testing, where the experimental boundary conditions are diffi-
cult to control and/or monitor. In such cases the experimental results may some-
times be hard to interpret without corresponding CPFE simulations that allow an
experimentalist to simulate the effects of details in the contact and boundary condi-
tions. Miniaturization also occurs in engineering design. Many products nowadays
have dimensions in the range of the grain scale, such as microelectromechanical
systems, bonding wires and pillars, stents, and practically all materials in electron-
ic components. Design of such parts increasingly requires consideration of grain-
scale crystalline anisotropy. Some applications along these lines are discussed in
Part Three.

Macroscopic applications of the CPFE method occur particularly in the fields of
large-scale forming and texture simulations. These problems require appropriate
homogenization schemes within a CPFE model since a large number of crystals
and/or phases are usually considered in each volume element linked with a finite
element integration point. The primary engineering objectives of CPFE applica-
tions in macroscopic forming simulations are the prediction of the precise material
shape after forming, thickness distribution, material failure, optimization of mate-
rial flow, elastic springback, forming limits, texture evolution, and the mechanical
properties of the part formed (Kraska et al., 2009; Nakamachi, Xie, and Harimo-
to, 2001; Raabe, Wang, and Roters, 2005; Xie and Nakamachi, 2002; Zhao et al.,
2001, 2004a). Further related applications include tool design, press layout, and
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Table 5.1 Examples of measurable quantities that can be predicted by crystal plasticity finite
element (CPFE) models.

Prediction by CPFE methods Experimental access

Surface roughening Speckle interferometry, digital image correlation
(photogrammetry), atomic force microscopy, white-light
confocal microscopy

Elasticity, interface mechanics,
grain size effects, grain
interaction, size effects

Indentation testing, tensile and compression testing,
mechanical tests with different sample sizes, digital image
correlation, electron backscatter diffraction, scanning
electron microscopy, ultrasonic testing, X-ray and
synchrotron Bragg peak broadening and shifting

Creep, high-temperature
deformation, superplasticity

Tensile testing, texture measurement, in situ electron
microscopy

Dislocation-based constitutive
modeling

Flow stress measurement, transmission electron
microscopy, lattice orientation measurements, electron
channeling contrast imaging in the scanning electron
microscope

Martensite mechanics, phase
transformation, shape memory

Magnetic measurements, multiphase electron backscatter
diffraction, X-ray and synchrotron Bragg diffraction

In-grain texture, grain-scale
mechanics, nonuniform
deformation, multiphase
mechanics

Digital image correlation, indentation hardness testing,
orientation determination (Kikuchi diffraction in the
transmission or scanning electron microscope; X-ray
Bragg diffraction), mechanical testing

Texture evolution, texture
stability, in-grain texture
formation, anisotropy

Texture measurements using Kikuchi diffraction in the
transmission or scanning electron microscope or X-ray
Bragg diffraction

Forming, deep drawing, process
modeling, cup drawing,
springback, earing, wire
drawing, extrusion, anisotropy,
design, fretting

Shape analysis, cup drawing experiments, springback
measurements, ultrasonic measurement of elastic
polycrystal constants

Crystal plasticity and
recrystallization

Hardness testing, metallography, electrical resistivity, X-ray
and synchrotron diffraction, electron backscatter
diffraction, transmission electron microscopy, grain size
determination, kernel average orientation determination,
calorimetry

Deformation twinning Metallography, X-ray and synchrotron diffraction, electron
backscatter diffraction, transmission electron microscopy,
electron channeling contrast imaging in the scanning
electron microscope

Nanoindentation, microscale
deformation, miniaturized
mechanical testing

Hardness and stiffness analysis using nanoindenter or
nanomanipulator tests, surface shape analysis using
atomic force microscopy, electron microscopy

surface properties (see the references in Table 5.1). The latter aspect involves both
macroscopic (e.g., wrinkling) as well as microstructural (e.g., roping, ridging, or-
ange peel) mechanisms that influence the surface topography (Becker, 1998; Raabe
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et al., 2003; Zhao, Radovitzky, and Cuitino, 2004b). A recent development is the
use of the CPFE method as a virtual mechanical laboratory. This approach substi-
tutes crystal plasticity simulations for rather involved mechanical tests required for
fitting yield surface coefficients (Kraska et al., 2009).

A further advantage of CPFE predictions is that they can be compared with the
finding of experiments in a very detailed fashion probing a variety of quantities.
Corresponding studies compared shape changes, forces, strains, strain path and
rate effects, texture evolution, interface response, local stresses, and size effects
one-to-one at different scales, Table 5.1. Examples of applications and experimental
validation procedures are given in Part Three.

Beyond these metallurgical and mechanical considerations, numerical aspects
also deserve attention. CPFE formulations can be either fully integrated into fi-
nite element codes or implemented as user-defined subroutines into commercially
available solvers. The latter point is important because engineering applications
are often tackled using commercial platforms. The use of standard solvers also
helps to make CPFE methods accessible to a broader community. Since the details
of the finite element method, of the mesh, and of the integration procedures also
play a significant role in CPFE simulations, some of these aspects are discussed in
Chapter 8.

In summary, this book intends to demonstrate that for micro- and macroscale
mechanical problems containing dyadic degrees of freedom for shear, the CPFE
method is an effective modeling platform as it can deal with the delicate inter-
play of different effects such as complicated boundary conditions (e.g., imposed by
the surrounding microstructure or by external fields), various deformation mecha-
nisms and their interactions (e.g., dislocation mechanics at interfaces or twins and
martensite), interface properties (e.g., structural superplasticity or the Hall–Petch
effect), and details of slip localization (e.g., shear band formation) at reasonable
computational cost and by using open-source or commercial solvers.
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6
Constitutive Models

6.1
Dislocation Slip

6.1.1
Introduction

We use the multiplicative decomposition of the deformation gradient F:

F D FeFp . (6.1)

The plastic deformation evolves as

PF D LpFp (6.2)

and in the case of dislocation slip as the only deformation process according to Rice
(1971) Lp reads

Lp D
NX

αD1

Pγ αmα ˝ nα , (6.3)

where the vectors mα and nα are, respectively, unit vectors describing the slip di-
rection and the normal to the slip plane of the slip system α and N is the number
of (active) slip systems; Pγ α is the shear rate for that same system.

6.1.2
Phenomenological Constitutive Models

Phenomenological constitutive models mostly use the critical resolved shear stress-
es of the slip systems, τα

c , as material state variables, S. The resolved shear stress
on slip system α, characterized by its slip direction mα and plane normal nα , is
defined as

τα D FT
e FeS � (mα ˝ nα) . (6.4)

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
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50 6 Constitutive Models

As for metallic materials the elastic deformation is small, Eq. (6.4) is usually ap-
proximated as

τα D S � (mα ˝ nα) . (6.5)

The shear rate is then formulated as a function of the resolved shear stress, τα , and
the critical resolved shear stress,

Pγ α D f
�
τα , τα

c

�
, (6.6)

and the evolution of the material state is formulated as a function of the total shear,
γ , and the shear rate, Pγ ,

τα
c D g(γ , Pγ ) . (6.7)

One prominent group of examples of such a formulation is the one suggested
by Rice, Hutchinson, and Peirce (Rice 1971; Hutchinson 1976; Peirce et al. 1982;
Peirce, Asaro, and Needleman 1983) for face-centered cubic (fcc) metallic crystals.
The kinetic law on a slip system follows

Pγ α D Pγ0

ˇ̌̌
ˇ τα

τα
c

ˇ̌̌
ˇ

1
m

sgn(τα) , (6.8)

where Pγ α is the shear rate for slip system α subjected to the resolved shear stress
τα at a slip resistance τα

c ; Pγ0 and m are material parameters that quantify the ref-
erence shear rate and the rate sensitivity of slip, respectively. The influence of any
slip system � on the hardening behavior of slip system α is given by

Pτα
c D hα�

ˇ̌̌
Pγ �
ˇ̌̌
, (6.9)

where hα� is referred to as the hardening matrix,

hα� D qα�

"
h0

 
1 � τ�

c

τs
,

!a#
(6.10)

which empirically captures the micromechanical interaction among different slip
systems. In this formulation h0, a, and τs are slip hardening parameters, which
are assumed to be identical for all fcc slip systems owing to the underlying charac-
teristic dislocation reactions. The parameter qα� is a measure of latent hardening;
in most cases its value is taken as 1.0 for coplanar slip systems α and �, and 1.4
otherwise, which renders the hardening model anisotropic.

In the literature a number of variations of Eqs. (6.8) and (6.9) can be found. Some
authors use a hyperbolic sine function instead of a power law in Eq. (6.8) (Becker,
1991), whereas others use modified hardening laws such as a generalized Voce
equation (Kocks, 1976; Voce, 1948) instead of Eq. (6.9).

These types of kinetic formulations are currently the most frequently used ones
although they suffer from the drawback that the material state is only described
in terms of the critical resolved shear stress, τα

c , and not in terms of lattice defect
populations (Kocks, 1966; Mecking and Kocks, 1986). The latter approach, however,
is required to render crystal plasticity models path-, history-, and size-dependent as
will be discussed in the following.
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6.1.2.1 Extension to Body-Centered Cubic Materials
In principle, the phenomenological formulation of the constitutive behavior of fcc
materials can be also used for body-centered cubic (bcc) materials. There exists,
however, an atomic-scale intricacy in bcc metals that leads to the nonplanar spread-
ing of the screw dislocation cores (Duesbery and Vitek, 1998; Hull and Bacon,
2001), with the result that dislocation-mediated plasticity in bcc metals involves
more complex mechanisms than in fcc metals. To take these effects into account,
the approach of Bassani, Ito, and Vitek (2001) and Vitek et al. (2004b) can be adopt-
ed, where the effect of nonglide stress is incorporated in the model by modifying
the expression for the slip resistance according to

τα
c, bcc D τα

c � aα τα
ng , (6.11)

where aα is a coefficient that gives the net effect of the nonglide stress on the
effective resistance, and τα

ng is the resolved shear stress on the nonglide plane with
normal Qnα , given by5)

τα
ng D S � (mα ˝ Qnα) . (6.12)

The kinetic law is in this case constructed by inserting the modified critical resolved
shear stress instead of the classical slip resistance into the power-law expression for
the plastic slip rate (Eq. (6.8)). More details on a model for bcc ferrite can be found
in Tjahjanto (2007) and Tjahjanto, Turteltaub, and Suiker (2008).

6.1.3
Microstructure-Based Constitutive Models

In contrast to the phenomenological constitutive models, the microstructure-based
ones use physical measures, which quantify the microstructure, as material state
variables, S. In the case of plasticity, the most important internal variable is certain-
ly the dislocation density as the dislocations are the carriers of plastic deformation.6)

Models that treat the evolution of dislocation densities and calculate the flow stress
from them have been proposed by various authors (Arsenlis and Parks, 2002; Ar-
senlis et al., 2004; Cheong and Busso, 2004; Gao and Huang, 2003; Ma, Roters,
and Raabe, 2006a,b). We will present the model of Ma and Roters (Ma and Roters,
2004; Ma, Roters, and Raabe, 2006a,b) in more detail in the following subsections.
It should be noted that even though the dislocations are the most important in-
ternal variable measure, more parameters are required for a full description of the
microstructure, for example, grain size and shape, second phase fractions, and pre-
cipitate morphology. However, only few of these additional parameters have been
introduced into crystal plasticity finite element (CPFE) constitutive models so far.

5) Note that the elastic stretch is again neglected, see also Eqs. (6.4) and (6.5).
6) It should be noted that in some models dislocation densities are calculated by using the Taylor

equation (τ / p
ρ). These approaches must also be regarded as phenomenological models as

they do not treat the evolution of the dislocations explicitly.
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6.1.3.1 Dislocation-Based Constitutive Laws
in Crystal Plasticity Finite Element Models
The dislocation-density-based constitutive model introduced by Ma and Roters (Ma
and Roters, 2004; Ma, Roters, and Raabe, 2006a,b) uses mobile dislocations, ρα

m,
gliding along slip system α to accommodate a part of the external plastic deforma-
tion. For them to do so, they must overcome the stress field of the parallel disloca-
tions, ρα

P , which causes the passing stress. Also they must cut the forest disloca-
tions, ρα

F , with the aid of thermal activation. In this framework one can define the
parallel dislocation density, ρα

P , and the forest dislocation density, ρα
F , for each slip

system α in the following way: ρα
P are the dislocations parallel to the slip plane,

and ρα
F are the dislocations perpendicular to the slip plane. Considering the im-

mobile dislocation density density, ρα
SSD, for fcc crystals, one can use the following

projections:

ρα
F D

NX
�D1

�α� ρ�
SSD

ˇ̌̌
cos

�
nα , t�

�ˇ̌̌
, (6.13a)

ρα
P D

NX
�D1

�α� ρ�
SSD

ˇ̌̌
sin

�
nα , t�

�ˇ̌̌
. (6.13b)

In these equations we introduce the interaction strength, �α� , between different
slip systems, which comprise those of self-interaction, coplanar interaction, cross
slip, glissile junction, Hirth lock, and Lomer–Cottrell lock. In this formulation only
edge dislocations are considered owing to their limited out-of-plane mobility.

In a dislocation-based model the Orowan equation typically replaces Eq. (6.8) as
the kinetic equation and reads

Pγ α D ρα
mbv α , (6.14)

where ρα
m is the density of mobile dislocations, b is the magnitude of the Burgers

vector, and v α is the average velocity of the mobile dislocations. According to Ma
and Roters (2004), the mobile dislocation density can be calculated from the statis-
tically stored dislocation (SSD) density by a simple scaling law:

ρα
m D 2kB T

c1c2c3μb3

q
ρα

P ρα
F , (6.15)

where T is the absolute temperature, kB is the Boltzmann constant, μ is the shear
modulus, and c1, c2, c3 are constants introduced in the dislocation density evolu-
tion laws below.

Under the assumption of forest cutting as the rate determining process, the ve-
locity of the mobile dislocations can be calculated as

v α D λα νattack exp
�

� Qslip

kBT

�
sinh

�
τα

effV
α

kB T

�
sgn(τα) , (6.16)

where λα is the jump width, which is inversely proportional to the forest dislocation
spacing, νattack is the attack frequency, Qslip is the effective activation energy for
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dislocation glide, and V is the activation volume, which can be calculated as

V D c3λα b2, (6.17)

with c3 being a fitting constant.
Finally, the effective shear stress τα

eff can be calculated from the resolved shear
stress and the passing stress as

τα
eff D

(
jταj � τα

pass D jταj � c1μb
p

ρα
P C ρα

m for jταj > τα
pass

0 for jταj � τα
pass .

(6.18)

The phenomenological description of hardening in Eq. (6.9) is substituted by the
evolution of the dislocation densities. For this purpose rate equations based on in-
dividual dislocation reactions are formulated. In Ma and Roters (2004) four such
processes were taken into account, namely, lock and dipole formation as processes
increasing the dislocation density and athermal and thermally activated annihila-
tion as recovery processes. A detailed derivations of these rate equations can be
found in Ma and Roters (2004). In the following we summarize the results:

	 Lock formation

PραC
SSD D c4

b

q
ρα

F Pγ α (6.19)

	 Dipole formation

PραC
SSD D c5

b
d α

dipole ρα
m Pγ α , with (6.20)

d α
dipole D

p
3μb

16π(1 � ν)

�
jταj � τα

pass

��1
(6.21)

	 Athermal annihilation

Pρα�
SSD D �c6ρα

SSD Pγ α (6.22)

	 Thermal annihilation due to climb of edge dislocations

Pρα�
SSD D �c7

D0b3

kBT
exp

�
� Qbulk

kBT

�
ρα

SSD
2jταj

� Pγ α

Pγref

�c8

(6.23)

The constants c4, . . . , c8 are used for fitting, ddipole is the critical distance for dipole
formation, D0 is the prefactor of the diffusion coefficient, Qbulk is the correspond-
ing activation energy, and Pγref denotes a reference shear rate.

6.1.3.2 Introduction of Geometrically Necessary Dislocations
Most of the constitutive laws reported in the literature can be attributed to the group
of local models in which the total deformation gradient has been decomposed into
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elastic and plastic parts multiplicatively, and from the loading history of one mate-
rial point the constitutive behavior can be fully described. For stress–strain curves
and texture predictions of polycrystals, local models have been shown to be power-
ful and efficient (Bronkhorst, Kalidindi, and Anand, 1992). However, if the simula-
tion scale gets smaller such as in studies focusing on nanoindentation (Zaafarani et
al., 2008, 2006) and micropillar compression (Raabe, Ma, and Roters, 2007a), then
local models can be insufficient owing to their inability to describe size effects.

The grain size dependence of the flow stress was first described by Hall and
Petch by an empirical equation known as the Hall–Petch relation (Hall, 1951; Petch,
1953). Since then, numerous studies have shown that the strengthening effect by
a smaller grain size is due to a higher volume fraction of heterogeneous plastic
deformation in the vicinity of grain boundaries. There are several explanations in
the literature based on dislocation mechanisms such as pileups of mobile disloca-
tions in front of the grain boundaries causing stress concentrations that increase
the slip resistance or strain gradients near grain boundaries producing an extra in-
crement of dislocation densities to increase the slip resistance (Evers et al., 2002).
Furthermore different kinds of experiments such as microtorsion, microbending,
deformation of particle-reinforced metal-matrix composites, and microindentation
hardness tests have clearly shown a length-scale dependence of the flow stress (Gao
and Huang, 2003).

In these experiments typically nonuniform plastic deformation occurs, which
may lead to gradients in orientation and strain near a material point. These gra-
dients can be associated with geometrically necessary dislocations (GNDs) (Ash-
by, 1970). In phenomenological models it is not straightforward how to integrate
GNDs into a constitutive model. In contrast, in dislocation-density-based models
GND concepts can be easily integrated as part of the constitutive framework (Nye,
1953).

However, the calculation of strain gradients renders a constitutive model non-
local, which makes it more difficult to implement. The main reason for this is
that in a nonlocal model a material point is strongly coupled with its neighbor
points during the evolution of GNDs. This means that strain gradient calculations
have to converge for a set of neighboring material points in the same time in-
crement. To achieve this, some authors (Arsenlis et al., 2004; Evers, Brekelmans,
and Geers, 2004a) use the divergence theorem to formulate new differential equa-
tions using GNDs and SSDs as additional degrees of freedom for every node in
an element. These algorithms require additional boundary conditions to be sup-
plied for the dislocation density flux. Although this is not complicated for simple
calculations, it is difficult for complex load cases. An alternative and more gen-
eral integration algorithm was introduced in Ma, Roters, and Raabe (2006a) that
can be used to solve any nonlocal constitutive model based on material subrou-
tine access offered by commercial finite element solvers such as MSC.Marc and
Abaqus.

In this section we will present how GNDs can be introduced in the dislocation
model presented above. Nye’s dislocation tensor (Nye, 1953) can be used to trans-
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late the strain gradient into GNDs:

Λ D 1
b

Curl Fp D � 1
b

�
r x � FT

p

�T
, (6.24)

where the nabla operator r x D @/@x is defined as the derivative with respect to
the reference (material point) coordinate. Using Eq. (6.24), we can calculate the
resultant Burgers vector for an arbitrarily oriented surface. In general, the tensor Λ
is nonsymmetric with nine independent values. Although there are 12 slip systems
for the fcc crystal structure, only six of them are independent (Nemat-Nasser, Ni,
and Okinaka, 1998); therefore, it is impossible to calculate the exact GND content
for every slip system without using additional assumptions.

When the material time derivative of Eq. (6.24) is used in conjunction with
Eq. (6.2), the dislocation tensor in Eq. (6.24) can be decomposed into contributions
from the individual slip systems7) in the following form:

PΛ D � 1
b

�
r x � PFT

p

�T D � 1
b

�
r x � FT

p LT
p

�T D
NX

αD1

PΛα
. (6.25)

Substituting the plastic velocity from Eq. (6.3), it follows that

PΛα D � 1
b

h
r x �

�
Pγ αFT

p nα ˝ mα
�iT

D � 1
b

mα ˝
h
r x �

�
Pγ αFT

p nα
�i

(6.26)

or, since it is possible that gradients for both Pγ α and Fp exist, by expanding the Curl
operation, one can rewrite Eq. (6.26) in the form

PΛα D � 1
b

mα ˝
h
r x Pγ α � FT

p nα C Pγ α
�
r x � FT

p nα
�i

. (6.27)

Indeed Eq. (6.26) defines the change of the GND density as

Pρα
GND D 1

b

ˇ̌̌ˇ̌̌
r x �

�
Pγ αFT

p nα
�ˇ̌̌ˇ̌̌

. (6.28)

The integration of the GNDs into the constitutive model is now simply a mat-
ter of extending the projection into forest and parallel dislocations (Eqs. (6.13a)
and (6.13b)). However, until now it has not been convenient to project ρα

GND into
forest and parallel dislocations as the tangent vectors of GNDs are not constant.
Although in the model so far SSDs are assumed to be edge dislocations only, for
the GND analysis one has to use edge and screw dislocations to preserve the lattice
continuity. Then PΛα

can be decomposed into three groups: one group of screw dis-
locations with a tangent vector parallel to the slip direction mα , and two groups of
edge dislocations with tangent vectors parallel to nα and tα D nα �mα , respectively.
The decomposition then reads

PΛα D PΛα
s C PΛα

en C PΛα
et , (6.29)

7) This decomposition is not unique.



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c06 — 2010/7/23 — page 56 — le-tex

�

�

�

�

�

�

56 6 Constitutive Models

with the dislocation tensors

PΛα
s D � Pρα

GNDsm
α ˝ mα , (6.30a)

PΛα
et D � Pρα

GNDetm
α ˝ tα , (6.30b)

PΛα
en D � Pρα

GNDenmα ˝ nα (6.30c)

and the scalar values

Pρα
GNDs D 1

b

h
r x �

�
Pγ αFT

p nα
�i

� mα , (6.31a)

Pρα
GNDet D 1

b

h
r x �

�
Pγ αFT

p nα
�i

� tα , (6.31b)

Pρα
GNDen D 1

b

h
r x �

�
Pγ αFT

p nα
�i

� nα , (6.31c)

which satisfy

� Pρα
GND

�2 D � Pρα
GNDs

�2 C � Pρα
GNDet

�2 C � Pρα
GNDen

�2 . (6.32)

Equations (6.31) are a set of evolution equations for ρGND, just like those for ρSSD

derived in the previous section. Finally, the extended projection reads

ρα
F D

NX
�D1

�α�
�

ρ�
SSD

ˇ̌̌
cos(nα , t�)

ˇ̌̌
C
ˇ̌̌
ρ�

GNDs cos(nα , m�)
ˇ̌̌

C
ˇ̌̌
ρ�

GNDet cos(nα , t�)
ˇ̌̌
C
ˇ̌̌
ρ�

GNDen cos(nα , n�)
ˇ̌̌ 	

, (6.33a)

ρα
P D

NX
�D1

�α�
�

ρ�
SSD

ˇ̌̌
sin(nα , t�)

ˇ̌̌
C
ˇ̌̌
ρ�

GNDs sin(nα , m�)
ˇ̌̌

C
ˇ̌̌
ρ�

GNDet sin(nα , t�)
ˇ̌̌
C
ˇ̌̌
ρ�

GNDen sin(nα , n�)
ˇ̌̌ 	

, (6.33b)

where absolute values of GNDs are used, so that polarizations of their Burgers
vectors are avoided. A direct result of this treatment is that no kinematic hardening
can be predicted, which is acceptable for single-phase material and unidirectional
loading.

6.1.3.3 Interface Models
Grain boundaries act as obstacles to the motion of dislocations. At the onset of
plastic deformation of polycrystals, mobile dislocations are first created on the slip
system with the largest local resolved shear stress in the grain with the most favor-
able orientation. When encountering a grain boundary, these mobile dislocations
will accumulate in front of that interface. Such events lead to stress concentrations
at a grain boundary that add to the external stress field at this material point. These
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microplastic effects, where the local arrangement of dislocations determines the
local stress, cannot be treated one-to-one in a crystal plasticity continuum mechan-
ical framework because such models map the underlying dislocation mechanics in
a phenomenological statistical or even empirical form. However, homogenization
is admissible at larger plastic strains, where most of the slip activation processes
can be captured by long-range stresses rather than by local ones (Clark et al., 1992).
This means that the dislocation mechanics can, beyond the microplastic regime,
be homogenized in the form of statistical dislocation populations, which in turn
can be embedded as constitutive rate equations in a crystal plasticity theory (Arsen-
lis and Parks, 2002; Evers et al., 2002). The applicability of the CPFE approach to
a large spectrum of intricate micromechanical problems has been shown by many
studies in which both textures and strains were properly predicted when compared
with the findings of corresponding experiments (Beaudoin et al., 1995; Kalidin-
di, Bronkhorst, and Anand, 1992; Raabe et al., 2001; Roters et al., 2004; Sachtle-
ber, Zhao, and Raabe, 2002; Zaefferer et al., 2003; Zhao, Radovitzky, and Cuitino,
2004b).

Dislocation-based models allow explicitly for the incorporation of grain bound-
aries into the constitutive formulation. Two approaches can be found in the litera-
ture. In the first type of models, the grain boundaries are treated as being partially
transparent to dislocations (Ma, Roters, and Raabe, 2006b). In the second type of
models, interfaces appear as perfect obstacles that do not allow dislocation penetra-
tion events (Evers, Brekelmans, and Geers, 2004b). The latter assumption can be
implemented in finite element simulations as an additional set of boundary con-
ditions, namely, as a zero-shear condition perpendicular to interfaces. Although
the latter approach appears to be relatively straightforward at first view, it can be
rather intricate when meshing complicated grain aggregates. As shown in Evers,
Brekelmans, and Geers (2004b), these additional boundary conditions result in an
increased hardening of the material; however, they do not result in an increase of
the initial yield stress, that is, the Hall–Petch effect is not captured. To overcome
this drawback, Evers, Brekelmans, and Geers (2004b) suggested grain boundary
dislocations (GBDs) as an initial content of GNDs at the position of the grain
boundaries. These GBDs are calculated from the crystallographic misorientation
across the interface in the following way (Evers, Brekelmans, and Geers, 2004b).
Consider two crystals of orientation Q I and Q II with slip systems (mα,� , tα,� , nα,�)
and α, � D 1, 2, . . . , 12,8) separated by a grain boundary with normal vector nGB

(Figure 6.1). The density of the GBDs is obtained as

ρα
GB D sgn (nα � nGB)

�jnα � nGBj � ˇ̌
n� � nGB

ˇ̌�2

b2 , (6.34)

where slip system � has to be chosen such as to minimize the magnitude of ρα
GB.

While a rigid grain boundary was assumed in Evers, Brekelmans, and Geers
(2004b), Ma, Roters, and Raabe (2006b) developed a concept to render interfaces
partially transparent to dislocations. The transmission of incoming mobile disloca-

8) The indices α and � always refer to crystals I and II, respectively.
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crystal I

grain boundary

crystal II

incoming
dislocation outgoing

dislocation

Burgers
vector

tangent
vectors

climb
direction

grain boundary
misfit dislocation

lattice
dislocation
in crystal I

mα
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boundary

tα

mβ
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mαβ

tαβ

lattice
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t‘α
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Burgers
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Figure 6.1 Penetration events for mobile
dislocations through a grain boundary. The
experimentally obtained micrograph is taken
from the work of Shen, Wagoner, and Clark

(1986) on steel. Here t0α , t0� , and tα�
GB are the

tangent vectors of the dislocation in the grain
boundary, and mα , m� , and mα�

GB are the slip
direction vectors of the dislocations.

tions through a grain boundary is treated in terms of a thermally activated event.
The enthalpy for this activation process is linked to the elastic energy that is re-
quired for the formation of misfit dislocations which remain as debris in the inter-
face upon slip penetration. This activation enthalpy enters as an additional contri-
bution into the activation term for the slip of mobile dislocations (Eq. (6.16)). It is
likely that each transmission event will occur at the smallest possible energy con-
sumption, which provides a natural selection criterion for the outgoing slip system,
when the incoming one is known.

The task now consists in identifying the abutting (outgoing) slip system on the
other side of the boundary, which provides the closest geometrical match to the
inbound slip system. The smallest misalignment between the active inbound and
the expected outbound slip systems leads to the smallest possible energy barrier.9)

For an arbitrary transmission event, it is obvious that some incoming slip system
does not, as a rule, match a corresponding one on the outbound side exactly, that is,

9) It is not actually checked whether or not this slip system can be activated by the local stress but
it is assumed in a somewhat simplifying fashion that this will be possible, as the slip system
orientation is close to that of the inbound one.
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the shear is usually not coherent on the two sides of a grain boundary. Therefore,
to meet the requirement of the conservation of the lattice defect vector sum when
crossing an interface, certain misfit dislocations will be created in the grain bound-
ary. The energy required to produce such an extra misfit dislocation is taken as
an additional energy barrier measure for this thermally activated slip transmission
event.

One should emphasize that this transmission event provides a method to quan-
tify the penalty energy required for such a situation. However, it should be inter-
preted in a somewhat more statistical manner. This means that it is not required
to yield a strict one-to-one correlation between incoming and outgoing dislocations
rather than a match in the overall shear on either side. Moreover, it is conceivable
that the transmission event only rarely takes place owing to the local stiffening
effect that it introduces. Along with this grain boundary hardening effect, the ac-
cumulation of GNDs in front of the interfaces increases the local stiffness. A final
remark concerns the misfit dislocations. Although they serve as a means to quan-
tify the penalty energy, they will very likely not be stored but be dissolved by some
relaxation process in the grain boundary. This implies that there will be no ac-
cumulation of misfit dislocations in the boundary, which would alter the process
for newly incoming dislocations. The mathematical treatment of this dislocation-
based approach to grain boundary effects in the CPFE framework is discussed in
the following paragraphs. For the slip transmission to occur, the dislocation line
directions have to align with t0α and t0� on the two sides of the boundary, respec-
tively, as illustrated in Figure 6.1. Conservation of the lattice defect, as expressed by
the dislocation tensor, requires

bα�
GB l α�

GB

�
mα�

GB ˝ tα�
GB

�
D bα l α �mα ˝ t0α� � b� l �

�
m� ˝ t0�

�
, (6.35)

where b and l denote the length of Burgers vectors and line segments, respectively,
and the index “GB” refers to the GBD, that is, to the debris which remains in or
at the grain boundary upon slip penetration. The energy of forming this misfit
dislocation at the grain boundary fulfills the inequality

μ
�

bα�
GB

�2
l α�
GB � μ(bα)2 l α � μ(b�)2 l � . (6.36)

As both mobile dislocations in grains I and II are crystal lattice dislocations, it
is assumed that they have equal energies; therefore, the additional energy for the
transmission event is the energy stored in the GBD formed during the process.
The final task is to identify for every slip system α of crystal I a slip system � in
crystal II with the boundary condition that the energy of the GBD is minimized
upon the slip transmission:

E α�
GB D min

�



1
2

μ
�

bα�
GB

�2
l α�
GB

�
. (6.37)

One has to determine bα�
GBmα�

GB and l α�
GBtα�

GB in such a way that Eq. (6.35) is fulfilled.
However, as one is interested in the activation energy (Eq. (6.37)) only, it is suffi-
cient to focus on the magnitudes of the left-hand-side and the right-hand-side of
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Eq. (6.35), which read

bα�
GB l α�

GB D kbα l α(mα ˝ t0α) � b� l �(m� ˝ t0�)k . (6.38)

This expression does not have a unique solution as discussed by Ma, Roters, and
Raabe (2006a,b). Whenever a pair of bα�

GB and l α�
GB satisfies Eq. (6.38), any scaled pair

bα�
GBc0 and l α�

GB/c0, with c0 being an arbitrary constant, would also be a valid solution.
However, when Eq. (6.37) is used to calculate E α�

GB , the result would change by a
factor c0. Certain assumptions can be made to solve this problem. Since dislocation
penetration is achieved by rotation and climb inside the grain boundary plane, it
is viable to assume that the segments of the incoming and outgoing dislocations
have the same length:

l D l α D l � . (6.39)

Additionally, it is assumed that the magnitude of the Burgers vector of the GBD
debris is a constant fraction of the lattice Burgers vector,

b D bα D b� D bα�
GB/c0

9 . (6.40)

Putting both Eq. (6.39) and Eq. (6.40) into Eq. (6.38) allows to express the total
length of the GBD as

l α�
GB D R α�

c0
9

l, with (6.41)

R α� D
���mα ˝ (nGB � nα) � m� ˝

�
nGB � n�

���� . (6.42)

Furthermore, the energy for the activation event of one segment of an incoming
dislocation with length l α then follows as

E α�
GB D min

�



c0

9
1
2

μb2 l R α�
�

. (6.43)

It is worthwhile mentioning at this point that although the absolute magnitude
of E α�

GB can be changed by the choice of c0
9, the ratio of the activation energies for

different boundaries is not affected by this value.
As an example, the activation energies of an incoming dislocation with segment

length b are calculated for twist boundaries which are characterized by rotations
about the [111] and [110] crystal directions, respectively, under the additional con-
straint that the grain boundary plane is perpendicular to the rotation axes. The
calculations apply for the fcc crystal structure. The results are shown in Figures 6.2
and 6.3, where the activation energy has been normalized by the factor 1

2 μb3 and
the constant c0

9 was set to 1. Both figures also show the average of the energy bar-
rier for better comparison. From these curves it is clear that a grain boundary is
a strong obstacle to dislocation motion, as the average activation energies for the
formation of the misfit dislocations easily reach the order of magnitude of the acti-
vation energy for cutting forest lattice dislocations.
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Figure 6.2 Activation energy for the twist grain boundary with rotations about the [111] direc-
tion using c0

9 D 1 in Eq. (6.43).

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

ac
ti

va
ti

o
n

en
er

g
y 

/ 
0.

5 
µb

3

rotation angle about [110] direction (°)

Figure 6.3 Activation energy for the twist grain boundary with rotations about the [110] direc-
tion using c0

9 D 1 in Eq. (6.43).

It is observed that the energies for the slip penetration show a periodic behavior.
This periodicity arises from the octahedral symmetry of the slip systems in the
crystal. The activation energy for the penetration shows a complicated relationship
with the misorientation, especially when the rotation angle is larger than about
20ı . One can see that the energy barrier strongly depends on the misorientation
of the two crystals. However, the average activation energies show a much more
constant behavior, which implies that the strong effects for single slip systems will
be averaged out to some extent in macroscopic experiments.

Finally, one has to consider two special situations. First, when the grain boundary
plane is parallel to the slip plane of the incoming dislocation, the energy barrier is
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(a) (b)
X

Y

X

Y

Figure 6.4 Two-dimensional representation of
the bulk element (a) and of the grain bound-
ary element (b) for the initial case. During
the deformation, for the bulk element grain
boundary dislocations should keep the con-

tinuity of the lattice in X and Y directions,
whereas for the grain boundary element the
lattice continuity is only kept in the X direc-
tion; in the Y direction the penetration energy
is introduced.

set to zero, because the mobile dislocation does not penetrate the grain boundary,
but it moves parallel to the plane. Second, when the plane of the outgoing dislo-
cation is parallel to the grain boundary, l�0 can be set parallel to lα0 as there is no
intersection line with the grain boundary.

In summary, the approach provides an obstacle strength imposed by the pres-
ence of a grain boundary which does not only depend on the grain boundary mis-
orientation but also depends on the grain boundary plane orientation (nGB) and on
the slip systems involved on either side of the interface.

In most CPFE implementations grain boundaries coincide with element bound-
aries. In the dislocation-based approach discussed above a special type of element
across the grain boundary is introduced. In this element half of the Gauss points
belong to one crystal, and the other half belong to the other crystal, see Figure 6.4a
and b. In this new type of element one can use a modified version of Eq. (6.16),
namely,

v α D λα νattack exp
�

� Qα
eff

kBT

�
sinh

�
τα

effV
α

kB T

�
sgn (τα) , (6.44)

where Qα
eff is the modified effective activation energy

Qα
eff D Qslip C Qα

GB . (6.45)

When comparing this equation with the one specified in Section 6.1.3.1, the only
difference is the use of Qα

eff instead of Qslip. The energy Qα
GB is calculated according

to Eq. (6.43) as

Qα
GB D min

�
c9

1
2

μb3R α , (6.46)

where c9 is a dimensionless fitting parameter which is a function of c0
9 and the

grain boundary element thickness LGB.
Modifying the activation energy for an individual dislocation jump in Eq. (6.44)

implies that the boundary is overcome in a single jump. The activation area for
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Figure 6.5 The combination of penetration
through grain boundaries and forest disloca-
tion cutting: (a) the cutting mechanism,
(b) the penetration of a perfect grain bound-
ary, and (c) the finite element method treat-

ment of mixing the two processes. ρα
m is

the mobile dislocation density for slip sys-
tem α, ρα

F is the forest dislocation density, λα

is the average obstacle spacing, and LGB is
the thickness of the grain boundary element.

this event is of the order λα b. In this expression λα is the trapping length of the
mobile dislocation (see Figure 6.5a) and b is the magnitude of the lattice Burg-
ers vector, which is used as an obstacle width for the piercing dislocation density.
However, when simply adding the activation energies, one uses the same activa-
tion area for the transmission event. Therefore, if one treats Eq. (6.46) in such way
that the length of the transmitted dislocations equals λα , the element thickness of
the boundary element should amount to a value close to b (see Figure 6.5b). If one
further starts with a mesh of brick elements, the element volume (bλα λα) would
be of the order of 1 μm3 or less. Even if one uses small samples in the millimeter
size range, this would mean that about one billion elements are required to mesh
such a specimen. This number is out of range for practical applications.

The only way to circumvent this problem is to increase the element thickness
to LGB (Figure 6.5c). When LGB � λα is used, the dislocation length dependence
of Eq. (6.43) can be avoided and the activation energy required for a dislocation
penetration event would then have the same order of magnitude as that required
for forest dislocation cutting, Figures 6.2 and 6.3. For this case one obtains c9 D c0

9.
When a grain boundary element with a thickness different from λα is used, the
fitting parameter is adjusted as follows:

c9 D c0
9

λα

LGB
. (6.47)
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It has to be mentioned though that this is a purely empirical calibration adjust-
ment to realize the use of larger finite elements. Another weak point of placing the
grain boundary inside an element rather than on the element boundary is that al-
though this works well for the simulation of bicrystals (see Section 9.6), it is rather
difficult to mesh more complex grain geometries.

6.2
Displacive Transformations

6.2.1
Introduction

The preceding sections focused on dislocations as carriers of plastic shear. How-
ever, materials such as austenitic steels, transformation-induced-plasticity (TRIP)
steels, brass, twinning-induced-plasticity (TWIP) steels, and shape-memory alloys
deform not only by dislocation slip but also by displacive deformation mechanisms
(also referred to as displacive transformations). These mechanisms are character-
ized by a diffusionless, collective motion of clusters of atoms where each atom
is shifted only by a small distance relative to its neighbors. Such transformations
create shears with kinematics similar to that of dislocation motions.

Two such mechanisms and their incorporation into the CPFE framework will
be discussed here, namely, martensite formation (Lan et al., 2005; Thamburaja
and Anand, 2001) and mechanical twinning (Kalidindi, 1998; Marketz et al., 2002;
Salem, Kalidindi, and Semiatin, 2005; Staroselsky and Anand, 1998). A marten-
sitic transformation changes the lattice structure of a crystal. The resulting shape
change involves, as a rule, also a change in the unit cell volume, that is, a volume
dilatation or contraction. Mechanical twinning proceeds by a shear mechanism
which reorients the affected volume into a mirror orientation relative to the sur-
rounding matrix. We discuss how the CPFE approach can be modified to include
these mechanisms and how the interactions among the competing shear carriers
can be considered in the constitutive formulations.

6.2.2
Martensite Formation and Transformation-Induced Plasticity in CPFE Models

As one possible material where the deformation kinetics are supported by marten-
site formation, we select TRIP-assisted multiphase steels. In these materials, the
presence of metastable retained austenite grains is responsible for the strength–
ductility characteristics (Jacques, Ladrière, and Delannay, 2001). Under mechani-
cal and/or thermal loading, retained austenite may transform into martensite and
generate the TRIP effect. Investigations of the TRIP effect were initiated by Green-
wood and Johnson (1965), who observed irreversible plastic deformations at a stress
lower than the theoretical yield stress of the material. It has been suggested that
the additional plastic deformation of the material is induced by the volume dilata-
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tion accompanying the transformation of retained austenite into martensite (see,
e.g., Fischer et al. (2000)). In the same year, Patel and Cohen (1953) observed that
the martensite forming during transformation develops in that preferential orien-
tation which has the maximum transformation driving force.

A crystallographic model for the kinematics of martensitic transformations was
proposed by Wechsler, Lieberman, and Read (1953). This concept was refined
by Ball and James (1987), who further developed the modeling concept within the
energy minimization landscape. During the last few decades, various constitutive
models for martensitic transformations have been elaborated, such as the one-
dimensional model of Olson and Cohen (1975), which was extended into a three-
dimensional model by Stringfellow, Parks, and Olson (1992). Lately, a fair number
of more complex micromechanical models were suggested, for example, by Bhat-
tacharyya and Weng (1994); Cherkaoui, Berveiller, and Lemoine (2000); Cherkaoui,
Berveiller, and Sabar (1998); Diani and Parks (1998); Diani, Sabar, and Berveiller
(1995); Geers and Kouznetsova (2007); Leblond, Mottet, and Devaux (1986a,b);
Levitas, Idesman, and Olson (1999a); Levitas, Idesman, and Stein (1999b); Mar-
ketz and Fischer (1994, 1995); Tomita and Iwamoto (1995, 2001). These models
have been used in particular for the simulation of TRIP steels. However, a major
drawback in most of the models mentioned above is that they were derived for
a small-strain framework. This can lead to inaccurate predictions as martensite
transformations induce locally large elastic and plastic deformations, even if the
effective macroscopic deformation is relatively small. Furthermore, an isotropic
elastoplastic response is often assumed as a simplification. This constraint is quite
strong, especially when one is concerned with the single-crystal scale, where the
effect of crystallographic anisotropy cannot be neglected.

In the following sections, we elucidate a crystallographically based thermome-
chanical model for simulating the behavior of multiphase TRIP-assisted steels.
The phase transformation model of Suiker and Turteltaub (2005); Turteltaub and
Suiker (2005, 2006a) is applied to simulate the transformation of fcc austenite into
body-centered tetragonal martensite. This model is developed within a multiscale
framework and uses the results from the above-mentioned crystallographic theory
of martensitic transformations (Ball and James, 1987; Wechsler, Lieberman, and
Read, 1953). The martensitic transformation model is coupled to a single-crystal
plasticity model for fcc metals to account for plastic deformation in austenite. The
coupling between the transformation and plasticity models is derived using a ther-
modynamically consistent framework.

6.2.2.1 Decompositions of Deformation Gradient and Entropy Density
The total deformation gradient F and the total entropy density η can be decom-
posed into the respective elastic, plastic, and transformation parts:

F D FeFpFtr and η D ηe C ηp C ηtr . (6.48)

Figure 6.6 gives an illustration of the deformation gradient decomposition with
two intermediate configurations: the first one characterizes the material point after
partly undergoing martensitic transformation, whereas the second intermediate
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Figure 6.6 The four configurations and the corresponding decomposition of deformation gradi-
ent F into the elastic, plastic, and transformation parts.

configuration corresponds to the elastically unloaded configuration already intro-
duced in Section 3.1.6.

The transformation part, Ftr, of the deformation gradient and the transformation
entropy density, ηtr, for a total number of M possible transformation systems are
given by

Ftr D I C
MX

iD1

� ibi ˝ di and ηtr D
MX

iD1

� i λ i
tr

θtr
. (6.49)

Vectors bi and di denote, respectively, the transformation shape strain vector and
the unit normal to the habit plane of transformation system i (measured in the ref-
erence configuration). I is the second-order identity tensor and θtr is the (theoret-
ical) transformation temperature at which transformation occurs instantaneously
without any stress (no energy barrier, no dissipation). The latent heat, λ i

tr, quan-
tifies the heat per unit mass required to transform at θtr. In Eq. (6.49), � i repre-
sents the fraction of the crystal volume which underwent transformation in sys-
tem i, measured in the reference configuration and satisfying the following re-
quirements:

0 � � i � 1 , 0 �
MX

iD1

� i � 1 and �A D 1 �
MX

iD1

� i , (6.50)

with �A the (remaining) volume fraction of austenite, again measured in the refer-
ence configuration. In the case of the transformation from fcc austenite to body-
centered tetragonal martensite, the total number of possible transformation sys-
tems is M D 24.

As a simplification, it is assumed that dislocation plasticity occurs exclusively in
austenite but not in martensite owing to its high yield resistance. Furthermore,
plastic deformations that occurred within austenite prior to its transformation to
martensite are assumed to be inherited by the resulting martensitic phase from
the austenitic parent phase. Accordingly, the evolution of the plastic deformation
gradient Fp (given in terms of the plastic velocity gradient Lp) and that of the plastic
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entropy density ηp are described, in rate forms, by

Lp D PFpF�1
p D

NAX
αD1

Pγ α mα
A ˝ nα

A and Pηp D
NAX

αD1

Pγ α φα
A , (6.51)

where the vectors mα
A and nα

A are, respectively, unit vectors describing the slip direc-
tion and the normal to the slip plane of the corresponding system in fcc austenite
(measured in the second intermediate configuration) and φα

A is interpreted as the
entropy density related to plastic deformation per unit slip in system α. The num-
ber of slip systems in the austenitic phase is denoted by NA D 12. In the above
expressions, Pγ α can be interpreted as the “effective” plastic slip rate of austenitic
slip system α, which is given by Pγ α D �A Pγ α

A / Jtr, with Pγ α
A the rate of slip for sys-

tem α in austenite and Jtr D det Ftr.

6.2.2.2 Constitutive Relations of Stress–Elastic Strain
and Temperature–Reversible Entropy
The constitutive relations between conjugated variables, that is, stress and elastic
strain as well as temperature and reversible entropy, are defined by

S D CEe and ηe D h ln
�

θ
θtr

�
C ηrev , (6.52)

where S is the second Piola–Kirchhoff stress in the second intermediate configura-
tion, which is conjugated to the elastic Green’s Lagrangian strain Ee. Temperature
is denoted by θ and ηrev is the reversible entropy measured at the transformation
temperature, that is, at θ D θtr. The effective elasticity tensor C and the effective
specific heat h comprise volumetrically averaged contributions of the individual
austenitic and martensitic phases:

C D 1
Jtr

 
�ACA C (1 C δtr)

MX
iD1

� iC i

!
and h D �A hA C

MX
iD1

� i h i ,

(6.53)

where δtr D bi � di gives the (system-independent) volume dilatation associated
with each transformation system. Note that the effective elasticity tensor C and
the effective specific heat h evolve with the martensitic volume fractions � i during
transformation.

6.2.2.3 Driving Forces and Kinetic Relations for Transformation and Plasticity
The driving force for the phase transformation, denoted as f i , can be written as

f i D f i
m C f i

th C f i
d C f i

s , (6.54)

where f i
m, f i

th, f i
d , and f i

s summarize, respectively, the mechanical, thermal, de-
fect, and surface energy contributions to the transformation driving force. The me-
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chanical part of the transformation driving force, f i
m, is computed as

f i
m D JtrFT

pFT
e FeSF�T

p FT
tr � (bi ˝ di )

C 1
2

�
CA � (1 C δtr) C i�Ee � Ee , (6.55)

which comprises the contribution of the resolved stress and the elastic stiffness
mismatch between the martensite product phase and the austenite parent phase
with stiffness CA. The thermal part of the transformation driving force, f i

th, de-
scribes the contribution of the mismatch of the specific heat between martensite
and austenite as well as the transformation latent heat, that is,

f i
th D �0

�
hA � hi� �θ � θtr � θ ln

�
θ
θtr

��
C �0

λ i
tr

θtr
(θ � θtr) , (6.56)

with �0 being the mass density in the reference configuration. The defect and sur-
face energy contributions are, respectively, given by

f i
d D ωA

2

�
μA � (1 C δtr)μ i� �2 and f i

s D �
`0

�
2� i � 1

�
, (6.57)

with ωA a scaling factor for the defect energy, � the microstrain parameter related
to the density of dislocations in the austenitic/martensitic region, � an interfacial
energy per unit area, and `0 a length-scale parameter representing the volume-to-
surface ratio of a circular platelet of martensite within a spherical grain of austenite.
In Eq. (6.57), μA and μ i represent the (equivalent) shear moduli of austenite and of
martensite variant i, respectively. The evolution of the martensite fraction during
transformation follows the rate-dependent kinetic formulation:

P� i D

8̂<
:̂

P�0 tanh
�

f i � f i
cr

ν f i
cr

�
if f i > f i

cr ,

0 otherwise ,
(6.58)

where f i
cr stands for the critical value of the transformation driving force. The pa-

rameters P�0 (maximum transformation rate) and ν (viscosity-like parameter) deter-
mine the rate dependence of the transformation kinetic law.

The driving force, gα
A, for plastic slip in the austenitic phase is obtained from the

thermodynamic formulation as

gα
A D FT

e FeS � �mα
A ˝ nα

A

�C �0θ φα
A � ωA μ�w α , (6.59)

where μ is the effective shear modulus, which is computed using a technique sim-
ilar to that used for the effective elasticity tensor, that is,

μ D 1
Jtr

 
�AμA C (1 C δtr)

MX
iD1

� i μ i

!
. (6.60)
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Furthermore, w α is a function that relates the rate of microstrain P� to the plas-
tic slip rates Pγ α as P� D PNA

αD1 w α Pγ α . Finally, the evolution of plastic slip in the
austenitic phase is described using a power-law kinetic relation of the form

Pγ α
A D

8̂<
:̂

PγA,0

��
gα

A

sα
A

�nA

� 1
�

if gα
A > sα

A ,

0 otherwise ,
(6.61)

where sα
A is the resistance against plastic slip on system α. The evolution of the slip

resistance is described through a hardening law where PγA,0 and nA are the refer-
ence slip rate and the stress exponent, respectively. More details on the austenite
elastoplastic-transformation model are reported in Tjahjanto, Turteltaub, and Suik-
er (2008).

6.2.3
Mechanical Twinning in CPFE Models

Arbitrary permanent changes of shape of a single crystal require the operation of
any five linearly independent shear systems (Taylor, 1938). However, the number
of easily activated slip systems of a given crystal structure may be insufficient to
fulfill this requirement. Thus, alternative displacive modes, for instance, mechani-
cal twinning, can also participate in the overall plastic deformation. Low-symmetry
crystal structures, for example, hexagonal crystals with large c/a ratio, are typical
examples for this situation. Also, cubic metals may exhibit mechanical twinning
owing to a relatively strong increase in the critical shear stress at low temperatures
and the rate dependence of slip in the case of bcc materials and owing to a low value
of the stacking fault energy in the case of fcc materials (Hirth and Lothe, 1982).

A mechanical twin formally corresponds to a sheared volume for which the lat-
tice orientation is transformed into its mirror image across a so-called twin or
composition or habitus plane (central dividing plane in Figure 6.7 between parent
and twin). A vector of the initial lattice is moved into its new position in the twin
through a transformation/rotation matrix Q. The same expression for Q was de-
rived for bcc and fcc twins (Hirth and Lothe, 1982; Van Houtte, 1978), exploiting
the equivalence of rotating half of the crystal by an angle π either around the twin
direction or around the twin normal:

Q D 2n ˝ n � δ i j , (6.62)

τ

parent

twin

Figure 6.7 Under an applied stress, half of the initial volume (dashed lines) shears to form a
twin (solid lines) (after Hirth and Lothe (1982)).
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where n is the twin plane unit normal and δ i j is Kronecker’s symbol. Alternative-
ly, twinning can be viewed as unidirectional shear on the habitus plane, that is,
formally similar to bidirectional dislocation slip. In this framework, fcc twins are
of type f111g h112i, bcc twins are of type f112g h111i, and hexagonal twins are of
type f10N12g h10N11i. Although strain-induced twinning has been investigated for
years (Christian and Mahajan, 1995), most of its governing physical mechanisms
still remain unclear. Numerous studies aimed at identifying the influence of the
boundary conditions on mechanical twinning have placed attention on tempera-
ture, grain size, and stacking fault energy and their respective influence on twin
nucleation and growth. Some of the results which are required to derive corre-
sponding micromechanical models are summarized in the following.

	 Temperature and strain rate In most crystal structures twinning gains relevance
as the temperature is lowered and/or the strain rate is increased. The temper-
ature dependence is often explained by the fact that the flow stress increases
steeply with decreasing temperature (in bcc metals), so finally the twin stress
is reached (Hirth and Lothe, 1982). The temperature dependence of the twin
stress is under debate in the literature. Bolling and Richman (1965) and Köster
and Speidel (1965) found a negative temperature dependence of the twinning
stress in fcc crystals, whereas Mahajan and Williams (1973) suggested for the
same structure the opposite trend. Contradictory observations have also been
reported for other crystal structures, so the current state of knowledge seems
insufficient to reach a definitive conclusion, as pointed out by Venables (1964).
Only a few investigations have addressed the strain rate dependence on the twin-
ning stress (Harding, 1967, 1968; Hokka et al., 2006).

	 Grain size Armstrong and Worthington (1973) were the first to propose a link
between the increase in the twinning stress and the decrease of the grain size
by means of a Hall–Petch-type relation. Later experimental studies on different
materials and structures (El-Dana, Kalidindi, and Doherty, 1998; Meyers, An-
drade, and Chokshi, 1995; Song and Gray, 1995; Vöhringer, 1976) supported
this suggestion. It is worth noting that the so-called twin slope, that is, the de-
pendence of twin activation on the grain size, is often found to be much higher
than the corresponding slope for dislocation slip (Armstrong and Worthington,
1973).

	 Stacking fault energy It is well established that twinning occurs preferentially in
materials with low stacking fault energy. With decreasing stacking fault energy
it is easier to separate partial dislocations from each other. This leads to a wider
stacking fault, which may eventually trigger a deformation twin. Concerning the
effect of other parameters, it was proposed that the stacking fault energy increas-
es with increasing temperature (Rémy, 1975). This might explain the apparent
temperature dependence of mechanical twinning. Alternatively, the notion of
an effective stacking fault energy was introduced to consider the effect of the
orientation on the splitting length between partial dislocations (Karaman et al.,
2000b, 1998).
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The preceding list of relevant parameters affecting mechanical twinning is not ex-
haustive since other factors, such as chemical composition, strain and stress state,
and precipitates, also influence strain-induced twinning (Christian and Mahajan,
1995).

The motivation for modeling mechanical twinning in a CPFE framework echoes
practical as well as fundamental demands. Interest in TWIP steels has grown rapid-
ly over the last few years as these grades simultaneously provide high strength
and good ductility. Similar aspects hold for stainless steels, magnesium alloys, and
some intermetallic compounds where deformation twinning plays a role. In each
of these cases an interest exists to predict the mechanical response, the microstruc-
ture evolution, and the texture by using advanced CPFE models.

To our knowledge, the first phenomenological introduction of mechanical twin-
ning into the CPFE framework was accomplished by Doquet (1993), followed
by Mecking, Hartig, and Kocks (1996) and Schlögl and Fischer (1997). The corre-
sponding implementation into a finite element scheme was proposed by Kalidindi
(1998, 2001) and was further developed in Kalidindi (2004).

6.2.3.1 A Modified CPFE Framework Including Deformation Twinning
The CPFE framework discussed in this section follows the outline introduced
above. However, adding mechanical twinning as a possible plastic shear mode
requires the introduction of some additional model ingredients. The activation of
a twin system � implies that a fraction d f � of the single crystalline parent volume
(matrix) reorients by Q� . Figure 6.8 illustrates the decomposition of the global
deformation gradient F when a twin system operates. Considering the formal sim-
ilarity between slip and mechanical twinning, the velocity gradient Lp is extended
by the contribution due to the characteristic twin shear10) γtwin to read

Lp D
0
@1 �

NtwinX
�D1

f �

1
A NslipX

αD1

Pγ αmα ˝ nα C
NtwinX
�D1

γtwin
Pf �m�

twin ˝ n�
twin , (6.63)

where Nslip is the number of slip systems and Ntwin is the number of twin systems.
It should be noted that the present description does not explicitly account for the
morphology and topology of the deformation twins. Instead, a twinned region is
specified by its volume fraction and by the boundary condition that no explicit plas-
tic deformation gradient is prescribed within twinned regions. The Cauchy stress
Nσ of the composite (matrix plus twins) is related to the volume average of the stress
over all constituents:

Nσ D Fe

Je

2
4
0
@1 �

NtwinX
�D1

f �

1
AC C

NtwinX
�D1

f �C�

3
5EeFT

e , (6.64)

where C�
i j k l D Q�

i m Q�
j n Q�

k oQ�
l pCmno p is the elasticity tensor of the matrix rotat-

ed into the respective twin orientation and Ee is Green’s Lagrangian strain derived

10)
p

2/2 for fcc and bcc crystal structures
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Figure 6.8 The three configurations and the corresponding decomposition of the deformation
gradient F into elastic and plastic contributions, modified by Kalidindi (1998, 2001) to account
for mechanical twinning.

from the nonplastic deformation gradient Fe. It is worth noting that a small ho-
mogenization error may occur when this procedure is followed, which is due to
the generation of an orientation dispersion in the twinned fraction. This deviation
occurs whenever the plastic spin of a twin variant is not equal to the plastic spin of
the matrix. In the current case this effect does indeed take place because no plastic
velocity gradient is given in the twinned regions.

The present expression for Lp does not consider subsequent dislocation slip
within twins. This approximation is often suitable for extremely thin fcc and bcc
twins. However, experimental evidence for dislocation activity in mechanical twins
has been reported when twins are larger, for example in high-manganese TWIP
steels (Meng et al., 2007) (due to large strains) and in hexagonal metals (Mg, Zr
due to small twin shear). It may, therefore, be useful to allow for dislocation slip
in twinned regions. In that case, Kalidindi (2001) proposed modifying the plastic
velocity gradient as follows:

Lp D
0
@1 �

NtwinX
�D1

f �

1
A NslipX

αD1

Pγ αmα ˝ nα C
NtwinX
�D1

γtwin
Pf �m�

twin ˝ n�
twin

C
NtwinX
�D1

NslipX
αD1

f � Pγ αQ�mα ˝ nαQ� T
. (6.65)

Furthermore, the twinning of primary twins (secondary twinning) might be con-
sidered as well. At first view the modification of Lp appears rather straightforward.
However, difficulties arise from the increase in the number of shear rates or twin
volume fractions that have to be tracked in this approach, rendering such a model
highly impractical. The time-integration scheme, presented in Chapter 8, remains
essentially unchanged. The nonlinear equation is still expressed in terms of the
second Piola–Kirchhoff stress tensor, written in the intermediate configuration, for
a given microstructure, that is, for state variables that refer to both slip and twin-
ning. Details on the numerical implementation can be found elsewhere (Kalidindi,
Bronkhorst, and Anand, 1992).
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6.2.3.2 Phenomenological Approach to Mechanical Twinning
The plastic velocity gradient is defined in terms of all shear rates Pγ α and all vol-
ume fractions created by the twinning rates Pf � . Phenomenological expressions of
the shear rate for a slip system were introduced above. However, no theory is cur-
rently available to provide a clear function for the evolution of the twinned volume
fraction for an active twin system. For this reason Kalidindi (1998) proposed using
the analogy between slip and twin systems while preserving the unidirectionality
of the twinning mechanism. The twin volume fraction of a system � then evolves
according to a phenomenological power-law equation:

Pf � D

8̂̂
<
ˆ̂:

Pf0

 
τ�

τ�
c

!1/mt

if τ� > 0

0 otherwise .

(6.66)

The computation of this flow rule requires the specification of a critical twinning
shear stress (shear resistance) τ�

c for each twin system. This is a critical point since
experimental observations support the idea that mechanical twins have a “double”
impact on the global strain hardening of the material. First, an increasing num-
ber of twins leads to an increasing hardening effect on slip systems since twin–
matrix interfaces act as obstacles to moving dislocations. This concept is illustrated
in Figure 6.9 for the fcc case. A moving matrix dislocation will most likely en-
counter twins that lie on planes that are noncoplanar with its glide plane, that is,
only noncoplanar twin systems act as obstacles for dislocation motion. Second, the
expansion of new twins is impeded by already existing twins, particularly by those
which are noncoplanar with the respective twin system. Following the first idea, we
can modify the phenomenological slip hardening rule:

Pτα
c D hα Qαj Pγ Qαj, (6.67)

where the hardening matrix hα Qα now depends on the twin volume fractions
through the saturation value τ Qα

s ,

hα Qα D qα Qα

"
h0

 
1 � τ Qα

c

τ Qα
s

!a#
, with

τ Qα
s D τ0 C τt

0
@ X

� noncoplanar with Qα

f �

1
A

1
2

. (6.68)

Dislocations tend to accumulate before twin boundaries, which justifies the
changes in the saturation value for the slip resistances. The Hall–Petch-like for-
mulation that quantifies the contribution due to deformation twinning in the
saturation value is derived naturally from the analogy with grain boundary hard-
ening. It is worth noting that some later works (Salem, Kalidindi, and Semiatin,
2005) suggest not only modifying the saturation values but also modifying h0 to
account for the Basinski effect (Salem et al., 2006; Salem, Kalidindi, and Semiatin,
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grain boundaries

non-coplanar
slip system

coplanar
slip systemtwins

extra hardening
by non-coplanar
twin system

Figure 6.9 The selective hardening role of twin boundaries during dislocation motion for face-
centered cubic (fcc) structures.

F0

∂τβ
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∂τβ
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non-coplanar (ncp)

Figure 6.10 Sequential activation of twin sys-
tems and its phenomenological treatment for
fcc structures. At small cumulative twin vol-
ume fractions F, newly forming twins harden
noncoplanar twin systems more strongly than
coplanar ones. Beyond a critical point (dashed

line) the situation is reversed, such that copla-
nar systems experience a stronger hardening,
which in turn favors activity of noncoplanar
twins. Critical twin shear stress is denoted by
τ�

c .

2005). The second idea refers to a kind of “twin–twin” hardening behavior of the
material and originates from the sequential activation of twin variants during de-
formation. It was often observed that in fcc metals only coplanar twins form at
first in a grain. Upon a strain threshold, deformation twins that are noncoplanar
with the first ones form and result in a ladderlike microstructure. This sequen-
tial activation is phenomenologically translated in terms of two power functions
depending on either strain rate (Salem, Kalidindi, and Semiatin, 2005) or twin
volume fraction rates (Kalidindi, 2001). The two functions cross at a given point.
Below that point, newly formed twins preferentially harden noncoplanar twin sys-
tems. Beyond that point, they preferentially harden coplanar twin systems. This
model approach is easy to handle and has been successfully applied to α-brass (Ka-
lidindi, 2001), α-Ti (Salem, Kalidindi, and Semiatin, 2005), and TiAl (Schlögl and
Fischer, 1997).



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c06 — 2010/7/23 — page 75 — le-tex

�

�

�

�

�

�

6.3 Damage 75

6.2.4
Guidelines for Implementing Displacive Transformations in CPFE Constitutive Models

This section discusses the basic constitutive and kinematic ingredients for im-
plementing displacive shear mechanisms as additional carriers of crystallographic
plastic deformation in CPFE frameworks. The challenges of rendering such mod-
els physically sound and at the same time numerically tractable seem to lie in two
areas. The first one is the appropriate formulation of nucleation and growth mod-
els. The second one is the identification of appropriate homogenization methods.
The first point means that nucleation and growth models should be designed in a
way to capture the basic dependence of displacive transformations on thermody-
namic and microstructural parameters such as temperature, grain size, strain rate,
and stacking fault energy. The second point refers to the desired level of discretiza-
tion. This means that in some cases multiple and repeated transformations may
occur at the same integration point. This requires defining an adequate approach
for tracking and homogenizing the volume portions and interaction mechanisms
for different twin or martensite lamellae or corresponding higher-order transfor-
mations (e.g. twinning of twins), see Figure 5.3b.

6.3
Damage

6.3.1
Introduction

Computational plasticity seeks to predict the deformation processes that occur dur-
ing forming materials or components used in larger assemblies, and to identify
locations where damage is likely to develop during either fabrication or service;
hence, methods to identify damage locations are a major goal of practical com-
putations. A number of approaches are available to identify such locations, from
simple to sophisticated. For example, loading a component will identify locations
where stresses are large, and this information can be used to alter the geometry
to reduce the magnitude of te stress. However, once the geometry has been estab-
lished, there will still be locations that are more susceptible to damage than others,
and the problem remains as to how damage develops in these regions, especially
if there is no damage present in the first place. For damage that has been intro-
duced, the evolution of its growth and its influence on unstable deformation in
the neighborhood have been explored with many approaches. However, identify-
ing criteria for damage nucleation and methods to introduce it into an undamaged
computational material is an important but often elusive goal of computational
plasticity.
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6.3.2
Continuum Approaches to Modeling Damage

Continuum damage and fracture mechanics has provided a wealth of methods
for modeling the evolution of pre-existing damage, but these methods all depend
on knowing where the damage nucleated; hence, a pre-existing void or crack is
normally introduced. Though this offers no cognizance of microscopic-scale pro-
cesses, it has been effective in modeling stochastic aspects of damage multipli-
cation for problems involving multiple phases or pre-existing scattered damage
sites. This process is based upon damage sites being isotropically distributed in the
continuum material. In these problems, once a localized region develops damage
faster than a neighboring region, the degradation of properties allows prediction
of locations where macroscopic failure occurs. This well-developed approach has
been incorporated into the material constitutive models in finite element method
computations without modeling damage sites explicitly. This homogenized dam-
age is based upon the observation that damage reduces the bulk elastic modu-
lus (Lemaitre and Chaboche, 1998), so damage is introduced into the elastic part of
the problem,

σ D (1 � D)C�e , (6.69)

where the elastic stress σ evaluated from the elastic strain �e and stiffness C is
reduced by a factor (1 � D). The plastic response to this damage effect follows
indirectly from the degraded elastic load carrying capability. For isotropic damage
generation, D is a scalar quantity. Many have recognized that damage represent-
ed by D is not isotropic, and have introduced vectorial and tensorial modifications
to this idea to simulate failure processes associated with crystallographic planes,
intergranular fracture, or growth and distortion of voids (Brunig and Ricci, 2005;
Luccioni and Oller, 2003; Menzel et al., 2005; Voyiadjis and Dorgan, 2007). Howev-
er, because these more sophisticated damage shape functions ultimately depend on
microstructural heterogeneities such as grain or phase boundaries and the direc-
tionality of slip systems, these sophisticated descriptions of D should be informed
by the known slip system, crystal orientation, and microstructural characteristics
of the material.

Other approaches examine the effect of specific damage sites in a finite element
method model. For example, the effects of clustering of hard phases in metal ma-
trix composites, and deformation of porous materials have been modeled using
Eshelby inclusions (Wilkinson, Pompe, and Oeschner, 2001). A more common ap-
proach is to introduce pores into a mesh because damage sites often result in for-
mation of a pore; for example, when a microcrack exists in a hard particle and the
crack grows into the ductile surrounding matrix, but blunted by plastic deforma-
tion processes. Such sites can be modeled as pores distributed in a continuum, and
then a homogeneous damage evolution process as described above is used to mod-
el the degradation of load carrying capability in regions between defect sites. This
approach allows the study of microscopic-scale processes of damage or void coales-
cence, for example, holes close together and aligned with directions of maximum
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Figure 6.11 Influence of crystal orientation on grain or phase
boundary damage nucleation. The grain on the right has two
widely spaced damage sites that are favorably oriented for
shear localization between them. In contrast, the grain on the
left has two closely spaced damage sites that are not favorably
oriented for shear localization, but an intragranular crack can
develop from the cracked particle.

shear stresses coalesced by shear localization at small strains (see Figure 6.11) sub-
sequently developing into a crack path. For voids or hard particles located in ran-
dom positions, several researchers (Becker et al., 1989; Horstemeyer, Ramaswamy,
and Negrete, 2003; Nicolaou and Semiatin, 2000, 2003; Pardoen et al., 2003; Rad-
hakrishnan and Sarma, 2004) investigated the effects of initial damage location on
the development of shear localization that precedes propagation of a macroscopic-
scale crack.

Although shear localization can be simulated in continuum models, it is also im-
portant to identify the locations of damage nucleation with respect to microstruc-
tural features and operative slip systems (e.g., Figure 6.11). In Figure 6.11, plastic
deformation processes may not facilitate shear localization between the cracked
particle in the interior of the grain on the left and the pore in the grain bound-
ary between the two grains, because no slip system facilitates localized shear. In
contrast, two pores that are farther apart on opposite sides of the right grain could
be oriented so that shear deformation between them would be favored, and hence
damage may develop where it would not be predicted in a continuum model.

As continuum approaches are valuable for design and modeling at the compo-
nent scale, it is desirable to develop a method by which the continuum anisotropic
damage formulations can be informed by physically modeled plastic deformation
processes. Thus, if models of microstructures using CPFE methods can identify
dislocation-based deformation processes that cause damage nucleation and evo-
lution, existing expressions of damage may be useful in continuum-scale models
(such as a tensorial expression of D in Eq. (6.69)).

6.3.3
Microstructurally Induced Damage

Micromechanics studies show that shear localization at the microscale occurs as
a result of heterogeneous microstructure and grain orientation features such as
inclusion morphology and distribution, grain boundary character, texture, grain
shape, and the operation of slip systems coupled with damage site locations, that is,
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features illustrated in Figure 6.11. Hence, shear localization, and hence the tough-
ness, will depend upon anisotropic microstructural details. This anisotropic effect
is observed at the macroscale by 25 percent variations in KIc with respect to the di-
rection in rolled sheet material (Barlat et al., 2002). However, there has been limited
study of how crystallographic processes lead to failure mechanisms that depend on
local grain and grain boundary orientations, making damage modeling using CPFE
approaches an important area for future study. In particular, CPFE allows the di-
rect modeling of experimentally characterized microstructures where damage has
been observed, to assess physically based theories of damage nucleation and early
growth.

Grain or phase boundaries are often sources of critical damage nucleation, even
when pre-existing cracks may be present within a grain. In aluminum alloys, the
primary mechanisms for grain boundary crack nucleation are void coalescence
between grain boundary precipitates (de Koning et al., 2003; Werner and Prantl,
1990). In fatigue conditions, subcritical short cracks either pre-exist owing to
cracked inclusions (such as constituent particles, see Figure 6.11) or arise from
crack formation in the early stage of fatigue cycling, but do not propagate past
a limiting grain boundary or triple line (Gibson and Forwood, 2002; Luster and
Morris, 1995). When these short cracks are able to penetrate a grain boundary, they
make the transition to longer cracks that may then be adequately modeled with es-
tablished continuum fracture mechanics. This penetration event often takes place
late in the cycling process, indicating that the short crack penetration of the grain
boundary may control fatigue life.

6.3.4
Heterogeneous Plastic Deformation

Both experimental and computational studies suggest that damage nucleation oc-
curs in locations of large strain concentrations, which develop in locations of sub-
stantial heterogeneous deformation near microstructural features such as grain or
phase boundaries. However, if a large local strain is effective in accommodating a
required local geometry change (due to local boundary conditions imposed by dif-
ferential strains in the local neighborhood), a locally large strain may prevent dam-
age nucleation. In contrast, damage may nucleate where an insufficient amount
of strain occurs to accommodate a locally required shape change, such that open-
ing a free surface may require less energy than further deformation in the local
neighborhood. As there are many more large strain sites than damaged sites, large
strain sites are not necessarily damage sites. Furthermore, damage could develop
at modest strains where localized strain incompatibilities develop.

The effects of heterogeneous deformation due to different crystal orientations
across a grain boundary can be more easily illustrated using the hexagonal rather
than cubic crystal structure, because there is less symmetry and a smaller num-
ber of slip systems. Figure 6.12a and b illustrates how two slip systems, basal and
prism, operate with the same Burgers vector on different planes. Yet, neither slip
system will allow a dimension change in the c direction. Hence, hc C ai slip or
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Figure 6.12 Prism (a) and basal (b) slip systems sharing the same slip direction but operating
on different planes.

Figure 6.13 Close to 90ı misorientation between two grains (regardless of orientation of the
c-axis) leads to incompatible strains.

twinning is required to change the dimension of a grain in the c direction, and
these deformation systems are known to be more difficult to operate. Thus, the two
thought experiments in Figure 6.13 illustrate how very heterogeneous deformation
conditions can arise when the c-axes of two grains are misoriented by 90ı (Bieler,
Goetz, and Semiatin, 2005b). When prism slip is favored, two grain orientations
for which basal slip is not favored can deform by extension and elongate similarly
in the tensile direction. However, these two grains contract in perpendicular direc-
tions, leading to a plastic strain incompatibility at the grain boundary, where either
additional slip systems must be activated or voids must develop. For basal slip, both
grains shear similarly, but in opposite directions, leading to a mode I opening force
along the boundary. Similar issues occur in cubic materials, but in a less dramatic
manner, and this may account for the generally higher ductility of cubic metals and
alloys.

Hence, it is clear that strain varies from grain to grain, and even within a giv-
en grain owing to the effects of differing deformation processes in neighboring
grains (effectively illustrated in Figure 6.14 (Delaire, Raphanel, and Rey, 2000)).
The spread of deformation within a grain does not only depend on the orientations
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Figure 6.14 Example of heterogeneous strain
in a copper oligocrystal deformed to strain
of 0.075 (Delaire, Raphanel, and Rey, 2000).
Grains 1, 4, and 6 (bold numbers) show differ-

ent combinations of activated slip systems (in
Schmid and Boas notation), depending on the
strain occurring in neighboring grains.

of the neighboring grains, but also on the constraints provided by neighboring
grains (which diminish, but are still significant several grains away (Becker, 1991;
Dunne, Walker, and Rugg, 2007a; Dunne, Wilkinson, and Allen, 2007b)). Within
a given grain, slip traces of deformation systems with high Schmid factors often
extend all the way across a grain, whereas planes with moderate Schmid factors
may reveal slip traces that extend part way from a boundary into the grain interior.
Experimentally measured surface strain maps on high-purity copper polycrystals
also show that heterogeneous strains extend 20–100 microns into the grain inte-
rior (Clayton and McDowell, 2004; Delaire, Raphanel, and Rey, 2000; Thorning,
Somers, and Wert, 2005; Yao and Wagoner, 1993). Local lattice rotations have
been measured using orientation imaging microscopy, which has allowed direct
comparisons between experiment and CPFE models (Bhattacharyya et al., 2001;
Cheong and Busso, 2004; Prasannavenkatesan et al., 2005; Raabe et al., 2001;
Sachtleber, Zhao, and Raabe, 2002; Tatschl and Kolednik, 2003). Local rotations
measured using high-resolution strain mapping and local strain accumulation
effects at the grain scale were simulated more effectively when a local microme-
chanical Taylor factor was used to identify the activated slip systems (Raabe et al.,
2001).

Because damage originates from strain incompatibilities in specific sites, it is
most appropriate to investigate conditions that lead to damage nucleation using
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CPFE methods that model experimentally realistic microstructures (e.g., Bhat-
tacharyya et al. (2001); Cheong and Busso (2004); Clayton and McDowell (2004);
Dawson, Mika, and Barton (2002); Hao et al. (2004, 2003); Kalidindi and Anand
(1993); Ma and Roters (2004); Ma, Roters, and Raabe (2006a,b); Raabe et al. (2001);
Zaafarani et al. (2006)). As damage events reflect interactions between the mi-
crostructural scale and the atomic scale, they are intrinsically nanoscopic. Thus,
multiscale modeling approaches that include atomistic-scale computations are un-
der development in a number of groups (Buchheit, Wellman, and Battaile, 2005;
Clayton and Chung, 2006; Dewald and Curtin, 2007; Hao et al., 2003; Liu et al.,
2004; McDowell, 2008; Voyiadjis, Abu Al-Rub, and Palazotto, 2004).

6.3.5
Interfaces

Interfaces represent a profound challenge to modeling heterogeneous deformation
and damage nucleation. The cohesive strength of the boundary in real polycrystals
varies according to the atomic-scale arrangement; some boundaries have more dis-
order than others (Watanabe, 1984), leading to lower interfacial cohesive strength.
Many studies have correlated properties of boundaries with their interfacial struc-
ture through coincident site lattice (or low-Σ ) boundaries. Because low-Σ bound-
aries have less free volume owing to better packing efficiency, these boundaries
are assumed to be strong. Materials with large numbers of low-Σ boundaries (Kim
and Oh, 2003; Palumbo, Lehockey, and Lin, 1998; Randle, 2004; Watanabe and
Tsurekawa, 2004) that are well connected as networks (Schuh, Kumar, and King,
2003) exhibit higher flow stress and ductility than materials with few low-Σ bound-
aries (a weak boundary percolation can occur if there are less than 78 percent low-Σ
boundaries (McGarrity, Duxbury, and Holm, 2005)). Because low-Σ boundaries are
less able to absorb lattice dislocations than random boundaries (Kokawa, Watan-
abe, and Karashima, 1981), many researchers have attributed material strength
and ductility (resistance to damage nucleation) to the presence of low-Σ bound-
aries (Tsurekawa, Kokubun, and Watanabe, 1999; Watanabe, 1984; Watanabe and
Tsurekawa, 2004, 2005). This characterization of the boundary state is useful in
computational modeling, as the grain boundary energy used in a Griffith criterion
provides a criterion for nucleating a crack.

Another class of boundaries referred to as special boundaries have interfaces
with low-energy surfaces and repeating polyhedral structural units (generally a
subset of low-Σ boundaries). Of the five parameters that geometrically describe
a boundary, three for the misorientation and two for the boundary normal, low-Σ
boundaries only specify the misorientation, for example, an incoherent Σ 3 twin
boundary (whereas a coherent Σ 3 boundary is special). Many studies show that
the lowest-energy configurations result when the boundary normal is a low-index
crystal plane, or has a common crystal direction about which there is a specified
tilt or twist (Rohrer et al., 2006, 2004; Tschopp, Spearot, and McDowell, 2007; Wolf,
1990). Hence, low-angle boundaries (referred to as Σ 1) are special. In analysis of
beneficial grain boundary character, the most beneficial boundaries are found to
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be those with low surface energy, which also have structural repeating polyhedral
units in the boundary plane (Davies and Randle, 2001; Rohrer et al., 2006).

Whereas the coincident site lattice approach considers how well the lattices on
either side of a boundary are aligned, another approach for assessing grain bound-
ary character is based upon understanding the geometry of GBDs (Brandon, 1966;
Frary and Schuh, 2003). Bollmann (1982) developed the O-lattice approach to iden-
tify GBDs, which has been used to explain diffraction contrast features in grain
boundaries, for example, Solenthaler and Bollmann (1986). GBD Burgers vectors
may or may not reside in the boundary plane, making them mobile or sessile, re-
spectively. Even if boundary dislocations are mobile, they will face barriers at triple
lines (where three boundaries meet), where they may or may not be able to con-
tinue to propagate, depending on whether the triple line is hard or soft (Fedorov,
Gutkin, and Ovid’ko, 2003). Triple lines are often described as I- or U-lines (Boll-
mann, 1984, 1988, 1991), where I-lines are typically intersections of Σ boundaries.
I-lines do not have dislocations entering the boundary from adjacent grains, where-
as U-lines do, resulting in disclinations, where crystal dislocations terminate along
the triple lines. Dislocation transmission is possible through I-lines without devel-
opment of dislocation debris, so they allow slip transfer. From this paradigm, triple
line characteristics affect properties (Bollmann, 1991; Randle, 1995), including the
likelihood of triple-junction cracking (Wu, 1997; Wu and He, 1999). U-lines have
higher energy (due to unbalanced dislocation content), providing sources or sinks
for lattice dislocations during deformation, and are more susceptible to cavitation
damage than I-lines.

There is a possible conceptual disconnect between the slip transparency of I-lines
(junctions of low-Σ boundaries) and the sense of boundaries being strengthen-
ing elements that resist dislocation motion (Kobayashi, Tsurekawa, and Watanabe,
2005; Lim and Raj, 1985; Tsurekawa, Kokubun, and Watanabe, 1999). Clearly, the
influence of low-Σ or special boundaries and associated I-lines on damage nu-
cleation mechanisms is only partially understood. More importantly, the random
boundaries that are more likely to develop damage nucleation need focused and
systematic attention to identify how damage develops, because there will normally
be a significant number of random boundaries in polycrystals.

6.3.6
Cohesive Zone Boundary Modeling

The energy-based definition of the grain boundary character has been modeled
in CPFE modeling using the cohesive force model first presented by Needleman
(1987) and Xu and Needleman (1994), who described the cohesive energy as an
empirical scalar function that relates displacement to normal and shear traction
evolution in the boundary plane (Figure 6.15a and b). Such formulations have been
adopted in damage nucleation models (Arata et al., 2002; Clayton and McDowell,
2004; Hao et al., 2004, 2003). Clayton and McDowell (2004) used nonlocal mod-
els to more accurately predict local stress–strain history, and hence, tractions on
the boundary. From this analysis, they identified a parameter which could be used
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Figure 6.15 (a, b) Cohesive zone interfacial strength models typical of those used in crystal
plasticity finite element (CPFE) modeling: the vertical axis represents tensile or shear strength,
and the horizontal axis represents displacement.

to predict damage nucleation locations, based upon how much accommodation
by void damage is required by the material to deform to a given strain level. This
model assumed isotropic interfacial energy for all boundaries. Such models have
been evaluated to identify how nucleation and growth of voids affects subsequent
deformation processes (e.g., Figure 6.16a and b). However, these models cannot
simulate how a high dislocation density near a boundary can facilitate void nucle-
ation (Wilshire and Willis, 2004). Although cohesive zone energy models can be
made more physically accurate by using atomistic simulations of particular bound-
aries (Spearot, Jacob, and McDowell, 2004), the fact that different boundary struc-
tures and misorientations have different energies is not usually incorporated. Co-
hesive zone boundaries are appealing in that they are two-dimensional, but they do
not use the available information regarding operating slip systems to examine or
analyze damage evolution.

Low-Σ boundary attributes are not a sufficient definition of a strong or weak
boundary. First, the beneficial effect of low-Σ boundaries cannot be exclusively
ascribed to lower solute content, because solute atoms can also strengthen grain
boundaries, for example boron doping in aluminides. Second, even though the
benefit of low-Σ boundaries is statistically convincing, some low-Σ boundaries
do develop damage, whereas many more random boundaries do not, for exam-
ple, Lehockey and Palumbo (1997) and Boehlert, Longanbach, and Bieler (2008)
(Figure 6.17) suggest that additional criteria for identifying strong and weak bound-
aries exist, such as the influence of active deformation systems. There has been
little study of the effects of deformation systems on boundary character (Davies
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Figure 6.16 Influence of cohesive zone in-
terfacial strength models coupled with non-
local CPFE microstructure models on plastic
strain development with and without use of
boundary strength models; representative

two-dimensional plane strain microstructure
and mesh for a two-phase W–(Ni,Fe) alloy (a),
and effects of fracture criteria on stress and
strain (b) (Clayton, 2005).
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Figure 6.17 The fraction of intact boundaries in crept nickel is very high in the low-Σ bound-
aries, but many higher-Σ boundaries are also intact (Lehockey and Palumbo, 1997).

and Randle, 2001); only a few special cases have been examined, for example, Pyo
and Kim (2005); Su, Demura, and Hirano (2003). Third, some general boundaries
have special properties based upon the rotation axis (Lejcek and Paidar, 2005), or
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“plane-matching boundaries,” which are statistically more common than low-Σ
boundaries (Kawahara et al., 2005). Fourth, the benefit of low-Σ boundaries has
rarely been examined in noncubic materials, even though the structure of low-Σ
boundaries is known (see, e.g., Wu, Nazarov, and Zhou (2004) for hexagonal-close-
packed structure and Singh and King (1993) for L10 structure). Finally, GBDs are
also important, as they are interrelated with the structure of the boundary, and
they affect how slip can be transferred across a boundary, as discussed in the next
section. Most of the grain boundary engineering literature is more focused on cre-
ating networks of low-angle boundaries with heat treatments than on examining
why they are effective.

6.3.7
Grain Boundary Slip Transfer

The analysis of heterogeneous strain near boundaries was initiated by Livingston
and Chalmers (1957), who observed that more slip systems are active near bicrystal
grain boundaries than in the grain interiors. However, bicrystals with arbitrarily
oriented grains generally activate only one slip system in the grain interior (unless
orientations are chosen that have the same Schmid factor for multiple slip sys-
tems). In contrast, polycrystals generally require activation of two or more slip sys-
tems owing to compatibility constraints. Although bicrystal deformation provides
insights into mechanisms of deformation transfer, the results cannot be directly
transferred to general grain boundaries in polycrystals.

Studies of deformation transfer have led to identification of some rules by which
a dislocation in one grain can penetrate into a neighboring grain (Clark et al., 1992;
Werner and Prantl, 1990). These rules have been confirmed with atomistic-scale
simulations by de Koning et al. (2003, 2002), and, more recently, criteria based
upon the need for step removal, nucleation of GBDs, and grain boundary normal
stress and shear stress on dislocation pileups have been proposed (Dewald and
Curtin, 2007). The slip transmission process often leaves residual dislocations in
the boundary and requires a change in direction of the Burgers vector along with
a change in the plane orientation, resulting in two intersecting lines in the grain
boundary plane. This geometry is illustrated in Figure 6.18. The three original rules
and three recently proposed rules based upon simulations (Dewald and Curtin,
2007) for slip transmission are:

	 the angle θ between the lines of intersection between the grain boundary and
each slip system must be a minimum;

	 the magnitude of the Burgers vector of the dislocation left in the grain boundary
(correlated to the magnitude of �) must be a minimum;

	 the resolved shear stress on the outgoing slip system must be a maximum;
	 the normal compressive stress on the boundary should be small (for GBD nu-

cleation);
	 the step associated with the residual defect at the boundary should be small;
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Figure 6.18 Angles and vectors used to evaluate the geometrical efficiency of strain transfer at a
grain boundary (Bieler et al., 2009).

	 if a lagging lattice Shockley partial remains near the intersection but has not
been absorbed, the resolved shear stress acting on the leading pileup dislocation
should be high.

Semiquantitative geometrical expressions describing the likelihood of a slip
transmission event have been developed. Luster and Morris (1995) noted that large
values of cos ψ cos � were correlated with observed instances of slip transmission.
Slip transmission criteria depend strongly on the degree of coplanarity of slip sys-
tems engaged in deformation transfer (θ will be small if ψ is small). Other studies
of deformation transfer have focused more on the misalignment of the Burgers
vector colinearity (cos � in Figure 6.18), such as Gibson and Forwood (2002), who
found that twin impingement at boundaries in TiAl is accommodated by a/2h110]
ordinary dislocation slip on a variety of planes on both sides of the boundary, with
residual dislocations left in the boundary.

The process of slip transfer is also dependent on GBDs (Bollmann, 1982; Bran-
don, 1966; Frary and Schuh, 2003). GBD Burgers vectors may or may not reside in
the boundary plane, making them mobile or sessile, respectively. Even if bound-
ary dislocations are mobile, they face barriers at triple lines, where they may or
may not be able to continue to propagate. Triple lines are often described as I-
or U-lines (Fedorov, Gutkin, and Ovid’ko, 2003), where I-lines are typically inter-
sections of low-Σ boundaries. Dislocation transmission without development of
dislocation debris is possible through I-lines, so they permit slip transfer, whereas
U-lines provide sources or sinks for lattice dislocations during deformation. Thus,
triple-line characteristics affect properties (Bollmann, 1991; Randle, 1995), for ex-
ample, cavitation and cracking are more likely at U-lines (Wu, 1997; Wu and He,
1999).

Consideration of the geometry of slip transfer suggests that there are three class-
es of boundaries with respect to their mechanical behavior:

	 the grain boundary acts as an impenetrable interface that forces operation of ad-
ditional intragranular (self-accommodating) slip systems that generate localized
strain and rotations (Zaefferer et al., 2003) to maintain boundary continuity;
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	 the boundary is not impenetrable, and slip in one grain can progress into the
next grain with some degree of continuity (leaving residual boundary disloca-
tions, and perhaps only partial ability to accommodate a shape change);

	 the boundary is transparent to dislocations, and (near) perfect transmission can
occur (e.g., low-Σ boundaries related to I-lines (Lim and Raj, 1985), or low-angle
boundaries (Kobayashi, Tsurekawa, and Watanabe, 2005; Zaefferer et al., 2003);
this type of boundary is most naturally modeled with CPFE methods).

Further complications are suggested from experimental observations. From nanoin-
dentation experiments it is known that grain boundaries impose a threshold
stress effect, such that strain bursts through a boundary occur with increasing
stress/strain owing to the achievement of a stress sufficient to activate a grain
boundary source (Kobayashi, Tsurekawa, and Watanabe, 2005; Wang and Ngan,
2004). The misorientations of boundaries, and hence their properties, change with
strain (Sun, Adams, and King, 2000). For example, a change in boundary character
that affects dislocation absorption or emission from the boundary will affect the
localized rotation gradients arising from GNDs.

Recent computational studies (Tschopp, Spearot, and McDowell, 2008, 2007)
have shown that dislocation emission is correlated with the presence of particu-
lar kinds of polyhedral structural units. However, boundaries with twist character
do not provide the polyhedral units that facilitate atomistic simulations (McDowell,
2008), so random boundaries and curved dislocations are more difficult to simu-
late. Simulations of this scale of defect and boundary structure require large num-
bers of atoms and are limited to nanocrystals; recently, a dislocation loop expansion
into a grain boundary was modeled, and local stress states resulting from disloca-
tion absorption into the boundary were identified (Bitzek et al., 2009). Atomistic
studies are valuable for studying particular cases, and have been effective in iden-
tifying or confirming trends and rules that can used at larger scales.

This discussion clearly shows that before damage nucleation can be predicted,
deformation transfer mechanisms must be modeled in a reasonable manner (as a
catalog of all possible boundaries with different boundary conditions is not easily
achieved using atomistic models). Further, if a relationship between deformation
transfer characteristics and damage nucleation could be developed, this would pro-
vide an effective bridge between atomistic- and continuum-scale models.

To make computational modeling of damage nucleation possible in the CPFE
paradigm, grain boundary elements that allow physically realistic deformation
transfer are necessary. Two approaches of modeling grain boundary deforma-
tion have been proposed, by Ma, Roters, and Raabe (2006b) and Ashmawi and
Zikry (2003). In both cases, grain boundary elements with finite thickness were
used. Ashmawi and Zikry (2003) used the grain boundary element to track the
evolution of dislocation density in elements in an envelope fanning into the grain
interior on either side of the boundary. The most active slip system in this enve-
lope was evaluated, and then this density was tracked with each time step. Grain
boundary elements accumulated the impinging dislocation density as a damage
factor in a continuum element similar to D in Eq. (6.69); this is interpreted as a



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c06 — 2010/7/23 — page 88 — le-tex

�

�

�

�

�

�

88 6 Constitutive Models

pileup that causes cavitation to develop, and hence the reduction in stress carry-
ing capability. Slip transfer was permitted in proportion to the geometrical factor
cos θ cos � to reduce the accumulated dislocation density in the grains on either
side, that is, if θ < 15ı and � < 35ı in Figure 6.18 (based upon experimental
observations of Werner and Prantl (1990)). This formulation used arbitrary square
crystal plasticity elements in square grains with thinner grain boundary elements
having the continuum-based damage nucleation model, so it was not examined
using realistic microstructures.

In contrast, Ma, Roters, and Raabe (2006b) developed a grain boundary element
with crystal plasticity components with an increased resistance to flow stress based
upon the fractional dislocation debris left in a boundary when slip transfer occurs
(see the details in Section 6.1.3.3). This increase in flow resistance is expressed
as an increase in the activation energy barrier for dislocation slip within the grain
boundary element, and hence the deformation process in the boundary is kept crys-
tallographic. However, in both cases, the process of what happens to dislocations
that retain some sense of their identity as they penetrate into the neighboring grain
is neglected for simplicity in the interest of capturing at least some of the physics
of the process. There is clearly opportunity for further insightful development of a
practical grain boundary element that can capture both the dislocation slip transfer
and the damage nucleation processes in practical and realistic ways.

6.3.8
Experimental Studies of Fracture-Initiation Criteria

Although much research in CPFE modeling has focused on ductile cubic metals,
damage nucleation is much more critical in low ductility metals and intermetallics,
at both low-temperature and high-temperature conditions. Owing to more limited
slip, it is easier to experimentally identify relationships between slip, twinning,
and damage nucleation in slip-limited materials. After making unsuccessful at-
tempts to correlate damage with slip transfer in TiAl using only geometrical param-
eters, Simkin, Crimp, and Bieler (2003) developed a fracture-initiation parameter
(termed fip) that is based upon the activity of slip and twinning systems in adjacent
grains during deformation. The fip is analogous to a probability statement about
how likely it is for a given grain boundary to crack when subjected to a stress field.
A fip consists of several physical/geometrical factors that could enhance crack nu-
cleation owing to localized shear strain concentrated at the boundary. Variations of
this idea are presented in equations as Fi , where i is a label (Bieler et al., 2005a,
2009; Boehlert, Longanbach, and Bieler, 2008; Fallahi et al., 2006; Kumar et al.,
2008). For example, the fip parameter F1 is the product of three terms:

F1 D mtwjObtw � Otj
X
ord

jObtw � Obordj . (6.70)

The unit vectors used in the fip expression above are illustrated in Figure 6.19.
The first term is the Schmid factor of the most highly stressed twinning system in
a grain pair, mtw, which identifies twins that cause the largest shear discontinuity
at a grain boundary. The second term is the scalar product of the unit vector of this
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Figure 6.19 Nucleation of a grain boundary crack due to mode
I opening strain at a grain boundary due to highly localized
twin shear.

twin’s Burgers vector direction, Obtw, and the unit vector pointing in the direction
of the maximum tensile stress Ot, that is, Obtw � Ot, which identifies the strength of a
mode I opening component at the boundary. This term is the part of the Schmid
factor related to the slip direction. The third term,

P
ord jObtw � Obordj, is the sum of

scalar products between the Burgers vector of a highly stressed twin system in
the initiating grain (with Schmid factor mtw and the Burgers vector of available
ordinary slip systems in either the same grain or the neighboring (responding)
grain. This term describes how well the local shear direction at the boundary can
be accommodated by dislocation activity in the neighboring or initiating grain, that
is, the scalar product defined by the angle � in Figure 6.18. This quantitatively
expresses one of the three requirements identified by Clark et al. (1992) for slip
transfer. The sum term is maximized when two or more slip systems have a modest
value of �, because when the scalar product is near 1 for one slip system, the scalar
product is much smaller for the rest. Thus, the sum is large when the opportunity
for imperfect slip transfer is large.

From experimental measurements, the fip is larger for cracked boundaries than
intact boundaries, implying that imperfect slip transfer (which leaves residual dis-
location content in the boundary) is strongly correlated with crack nucleation. This
approach has been shown to be statistically significant in two studies of duplex
TiAl alloy, one with deformation of a smooth four-point bend specimen (Kumar et
al., 2008; Simkin, Crimp, and Bieler, 2003), and in four-point bending of a notched
specimen, where the crack path was successfully predicted using this fip (Ng et
al., 2005). A modified version of the fip was used successfully in high-stress creep
of a cobalt-based superalloy (Boehlert, Longanbach, and Bieler, 2008), where slip
transfer rather than twin-strain transfer was used to evaluate the fip. Although this
suggests that the fip concept may be a robust predictor of damage nucleation, fur-
ther examination of this concept in other material systems is needed.

6.3.9
Strain Energy as a Criterion for Damage

Strain energy is a commonly used criterion for damage. A recent example that illus-
trates this approach in crystal plasticity studies is in the work of Dunne, Wilkinson,
and Allen (2007b), who used cumulative plastic slip as a means to predict damage
sites in CPFE studies of nickel and titanium alloys in low cycle fatigue studies.
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In the maximum stress region of a continuum model of a three-point bend speci-
men, they inserted a crystal plasticity section with the same grain configuration as
in a carefully analyzed experiment. Planes with highly active slip corresponded to
planes with high Schmid factors and observed slip bands in the experiment. With
a one-dimensional damage model similar to Eq. (6.69), they were able to simulate
the locations of persistent shear bands and crack positions in a three-point fatigue
bending specimen. However, the details of the crack nucleation differed between
the experiment and the simulation. This was in part due to simplifying assump-
tions regarding the stress state. This work showed that shear bands and cracks are
very sensitive to the actual local geometry of grains.

The importance of local geometry was further emphasized in a systematic com-
putational study of fatigue facet (crack) formation in hard orientations of titanium
in polycrystals (Dunne, Walker, and Rugg, 2007a). Particular orientations of adja-
cent crystals and particular grain boundary inclinations were found to be most like-
ly to generate slip penetration from the adjacent soft grain into the hard grain such
that tensile stresses developed normal to basal planes. Such conditions facilitate
formation of facets that develop into fatigue cracks. This computational study was
consistent with features in deeply characterized experiments of Sinha et al. (2006)
and Bieler, Goetz, and Semiatin (2005b); Bieler, Nicolaou, and Semiatin (2005c).

CPFE is particularly valuable for identifying microstructural conditions where
strain incompatibility develops (this is exaggerated in slip-limited materials). These
incompatibilities develop owing to activation of slip systems that cause shears in
very different directions in adjacent grains, leading to significant local triaxial stress
states and load shedding to harder orientations. Self-consistent modeling of generic
microstructural characteristics have been used to estimate plausible stress states,
for example, Bieler, Nicolaou, and Semiatin (2005c), but, as the prior examples
show, the actual grain geometry leads to very significant variations around such
estimates. It is clear that strain energy is an important metric for predicting loca-
tions where damage is possible, but clearly there are additional criteria that must be
considered (and identified) to account for the fact that not all sites with potentially
dangerous characteristics actually develop damage.

6.3.10
Assessment of Current Knowledge about Damage Nucleation

CPFE modeling is an enabling tool for examining conditions that lead to damage
nucleation. However, the physical understanding that is needed to develop compu-
tationally efficient and robust criteria is relatively undeveloped. Rather than stating
what only may be true on the basis of recent studies, we can provide relationships
between heterogeneous strain and damage nucleation as a list of hypotheses that
can be explored in combined experimental and CPFE computational modeling re-
search programs.

	 Damage nucleation always occurs at locations of maximum strain energy den-
sity (maximum area under the local stress–strain curve).
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	 Large local strains can provide geometrical accommodation that can prevent
damage nucleation.

	 Damage nucleation arises from slip interactions resulting from imperfect slip
transfer through a boundary, which leaves residual dislocation content in the
boundary plane.

	 Damage nucleation occurs in particular boundaries where unfavorable slip in-
teractions take place at the boundary to weaken the boundary.

	 Slip interactions at the boundary are more (or less?) important than the magni-
tude of local strain for predicting damage nucleation.

	 Damage nucleation occurs in locations where there is maximum geometrical
incompatibility arising from highly activated slip systems that cause dominant
shears in very different directions, for example, Bieler, Goetz, and Semiatin
(2005b).

	 Damage nucleation is highly correlated with severe local strain heterogeneity,
for example, lattice curvature.

	 Dislocation-density-based (non-local) formulations of crystal plasticity models
are necessary to adequately predict the local strains, and hence the slip system
activity needed to predict damage nucleation.

	 Damage nucleation depends upon cohesive strength of the boundary, that is, the
energy needed to separate an existing interface–Griffith criterion.

	 Damage nucleation probability is proportional to local hydrostatic tensile stress.
	 Damage nucleation is more likely at triple lines than along boundaries, especial-

ly along U-lines.
	 Slip directions have more influence on damage nucleation than slip planes.
	 Low-Σ boundaries are less likely to accumulate damage than random bound-

aries.
	 Twin boundaries resist damage because they repel dislocations from the bound-

ary.
	 Twin boundaries resist damage because they allow efficient slip transfer.
	 Twin boundaries are schizophrenic (sometimes resistant, sometimes suscepti-

ble to damage nucleation).
	 Fatal flaws are located where there is the highest density of local damage sites.
	 Fatal flaws are located where the size of nucleated damage grows the fastest.
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7
Homogenization

7.1
Introduction

In contrast to the direct crystal plasticity method of modeling aggregates of grains
one-to-one, finite element analysis is often used to predict the mechanical behavior
of engineering structures. This is typically done at the component or design scale
using homogenized material properties (indicated by an overbar). At the continu-
um scale, material points x in the reference configuration B0 
 R3 are projected
by the nonlinear deformation map y(x) W x 2 NB0 ! y 2 B onto points y in the
current configuration B 
 R3. The corresponding tangent map or deformation
gradient is then given by F D @y/@x D Grad y. To derive the work-conjugate stress
P (first Piola–Kirchhoff stress) and solve the equilibrium conditions within the
finite element analysis, a constitutive law which connects P to F is required. How-
ever, a direct formulation of P(F) and its tangent @P/@F is in general difficult to
impossible, since the mechanical response of (metallic) materials is determined by
their underlying microstructure.

This microstructure cannot be regarded as a homogeneous continuum; it typi-
cally contains grains with differing properties. As a rule, in engineering parts and
exemplarily visualized in Figure 7.1, the grain scale is orders of magnitude smaller
than the component scale, thus ruling out the possibility to include all degrees of
freedom presented by a huge grain aggregate. Therefore, the two-level approach
illustrated in Figure 7.1 is pertinent: Each material point x at the component scale
is linked to a (sub)domain B0 
 R3 containing a finite number of microstructure
constituents, for example, grains, for which the individual constitutive behavior can
be modeled, that is, the constitutive relation between P and F is known at this scale.
This constitutive relation is – in general – dependent on the state of the material,
most notably on its thermomechanical history. Since the macroscopic quantities F
and P are related via the volume averages

F D 1
V0

Z
B0

F dV0 , (7.1)

P D 1
V0

Z
B0

P dV0 , (7.2)
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mean-field grain cluster computational

polycrystalline
microstructure

at material point x

component
geometry

representation of       subdomain B0

Figure 7.1 Concept of a two-level homog-
enization strategy. Typically, the constitu-
tive response of material points x required
in the component-scale calculation (top) is
unknown owing to the complicated and evolv-
ing microstructure present at those material
“points” (center). Therefore, a simpler rep-
resentation of this microstructure within a
(representative) subdomain B0 is sought
(bottom). For that representation the over-
all response to the boundary conditions of
the macroscale material point can be derived

from the known constitutive behavior of in-
dividual components (grains) making up
the representative structure. Material point
representations of increasing complexity are
illustrated at the bottom from left to right.
The component-scale image is a DEFORM re-
sult taken from the IMU forming benchmark,
the central three-dimensional grain structure
is adopted from Ludwig et al. (2009), and
the finite element mesh at the lower right is
from Melchior (2009).
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with V0 D
Z
B0

dV0 ,

to the corresponding microscopic quantities F and P inside B0, this “numerical
zoom” shifts the constitutive assumptions between F and P from the macroscale
to the microscale.

The term “homogenization” now refers to the transition between the microscale
and the macroscale defined in a general fashion by Eqs. (7.1) and (7.2). In physics,
such procedures are also referred to as coarse graining. In the next section we first
review methods for how to select grain aggregates in each domain B0 such as to
ensure that they reflect the overall crystallographic texture of the material in ques-
tion in a statistically representative way. After this, the following sections outline
three routes which are mainly followed when it comes to the homogenization of
polycrystalline materials in the framework of component-scale finite element anal-
ysis.

7.2
Statistical Representation of Crystallographic Texture

Crystallographic texture can, for instance, be quantified by the crystallite orienta-
tion distribution function (CODF). This distribution function specifies the proba-
bility density f (Q) in orientation space by which the volume fraction, dV/V , that
is taken up by crystallites falling into an infinitesimal neighborhood around the
orientation Q is determined:

υ � dV
V

D f (Q) dQ . (7.3)

The crystal orientation is described by a proper orthogonal matrix Q D g ˝ e 2
SO(3) which maps the reference basis e onto the crystal basis g. Using the notation
introduced by Bunge (1982), that is, parameterizing Q by Euler angles f'1, φ, '2g,
the infinitesimal volume, dQ, of orientation space follows as

dQ D 1
8π2 d'1 d'2 d cos φ D sin φ

8π2 d'1 d'2 dφ . (7.4)

The normalization factor of 1/8π2 arises owing to the requirement that
H

dV/V�1.
(Note that f (Q) � 1 for a random texture.)

The orientation distribution reflects any symmetry present in the crystal lattice
and/or the sample geometry. This implies the following symmetry relations:

f (Q) D f (QHL) 8HL 2 SL � SO(3) , (7.5)

f (Q) D f (HSQ) 8HS 2 SS � SO(3) , (7.6)

with SL and SS being the symmetry group of the lattice and sample, respectively.
Therefore, the CODF is fully determined from f (Q) within any one of the indepen-
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dent regions of Euler space (also addressed as fundamental zones) resulting from
Eqs. (7.5) and (7.6).

For practical reasons, the CODF is frequently stored in a discrete fashion by
subdividing the fundamental zone Z of Euler space into N boxes of equal angular
extension – typically 5 � 5 � 5 cubic degrees – and recording discrete values, f i , for
each box. Ideally,

f i D
Z

boxi

f (Q) dQ
 Z

boxi

dQ D υi
 Z

boxi

dQ , (7.7)

that is, the f i values are the CODF average within the ith box corresponding to an
average volume fraction υi of crystallites having their orientation falling into this
box.

The task now consists in selecting a finite number, N�, of discrete orientations
such that the overall texture is still represented as accurately as possible by the lim-
ited set. Depending on the requirements of the intended simulation, the individual
volume fractions assigned to each selected orientation may either be equal or differ
from one another.

With respect to the first option, Eisenlohr and Roters (2008) recently combined
a deterministic scheme with a probabilistic scheme to sample a given number
of equally-weighted orientations from a discrete CODF. While the probabilistic
scheme accepts a randomly chosen orientation in proportion to the respective value
of υi , the deterministic part is based on the integer

ni D round
�
Cυi� , (7.8)

which gives the number of times the orientation i should be selected into the rep-
resentative set. To yield an overall set of N� samples, the constant C has to be
iteratively adjusted to fulfill

NX
iD1

ni !D N� . (7.9)

This iterative procedure is easily solved, for instance, with a binary search algo-
rithm in a matter of split seconds on a standard single-CPU computer. Regarding
reconstruction quality, it could be demonstrated that for N� > N the set resulting
from Eqs. (7.8) and (7.9) is much closer to the original CODF than probabilistic
sets using υi as a probability to include orientation i (see Eq. (7.7)). However, for
N� < N a systematic overweighting of orientations with large original υi , and thus
pronounced sharpening of the reconstructed texture, is observed. To overcome this
inherent problem, the deterministic method is modified as follows: if the request-
ed number, N�, of sampled orientations is less than the number of boxes in the
(fundamental zone of the) original CODF, that is, if N� < N , one nevertheless
generates a population of N discrete orientations according to Eqs. (7.8) and (7.9)
but then selects a random subset containing only the requested N� < N orienta-
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tions from the population of N orientations. By this modification, the reconstruc-
tion quality achieved is always at least as good as that with probabilistic sampling
but it becomes clearly superior with increasing N�/N .

Melchior and Delannay (2006) tackled the problem of assigning orientations to
an aggregate of N� differently sized grains which constitute a representative vol-
ume element. They started from a large set of probabilistically selected, equally-
weighted orientations (Tóth and Van Houtte, 1992) and introduced an algorithm to
divide this set into N� collections of mutually similar orientations. Each collection
represents a single grain (of average orientation) and comprises as many orien-
tations as are required to match the respective volume fraction of this grain. By
allowing this additional degree of freedom in the relative weight of assigned (aver-
age) orientations, one can dramatically increase the reconstruction quality resulting
from a fixed number of orientations in comparison with equal-weight probabilistic
sampling.

Böhlke, Haus, and Schulze (2006) presented a possible solution to the problem
of approximating the CODF by a random background plus a small and fixed num-
ber of texture components of variable weight. First, a grid of equal angular exten-
sion in f'1, φ, '2g is constructed within the fundamental zone. An approximation
then results from superposition of (at most) N� von Mises–Fisher distributions,
g(Q, Qα , w ), each centered on a distinct grid point Qα with fixed half-width w:

Nf (Q) D
N�X

αD1

να g(Q, Qα , w ) . (7.10)

The difficulty arises from selecting appropriate Qα out of the available grid points
and assigning respective variable weights να such that the distance

D D
Z

Z
( f (Q) � Nf (Q))2 dQ (7.11)

between the original CODF and its approximation is minimized. This corresponds
to a mixed integer quadratic programming problem, for which robust solvers ex-
ists.

7.3
Computational Homogenization

We recall that within each subregion B0 containing a microstructure attached to a
certain (macroscale) material point x, one defines the deformation map y(x) W x 2
B0 ! y 2 B which translates the reference configuration B0 of that microstruc-
ture to its current configuration B. The associated deformation gradient is given by
F D @y/@x D Grad y. The deformation map can then be expressed as the sum of a
homogeneous deformation F x, inherited from the material point, and a superim-
posed fluctuation field Qw:

y D F x C Qw . (7.12)
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S+

S –

(a) (b) (c)

Figure 7.2 (a) Rigid (displacement fluctuation field Qw D 0 everywhere), (b) homogeneous
boundary conditions ( Qw D 0 on the surface), and (c) periodic boundary conditions ( Qw� D QwC

on corresponding surfaces SC and S�).

Thus, the microscopic and macroscopic deformation gradients are related by

F D F C QF with QF D @ Qw
@x

D Grad Qw . (7.13)

Combining Eqs. (7.13) and (7.1) results in the constraint that the deformation gra-
dient of the fluctuation field vanishes on average:Z

B0

QF dV0 D
Z
S0

Qw ˝ dn0 D
Z
S�

0

Qw� ˝ dn�
0 C

Z
SC

0

QwC ˝ dnC
0 D 0 . (7.14)

The three equivalent integral terms in Eq. (7.14) indicate the three possible
boundary conditions of different rigorousness as shown in Figure 7.2a–c. One
might rule out any fluctuations at all (condition 1), that is, Qw D 0 in B0. How-
ever, homogeneous boundary conditions (condition 2), that is, Qw D 0 on the
surface S0, also satisfy Eq. (7.14). Still more relaxed (periodic) boundary conditions
(condition 3) are possible if the surface is decomposed into two opposite parts
S0 D S�

0 [ SC
0 with S�

0 \ SC
0 D ;. Periodicity of the domain B0 is then ensured

by requiring for each point xC 2 SC
0 that the associated point x� 2 S�

0 has an
opposite normal nC

0 D �n�
0 and equal values of the fluctuation field Qw� D QwC.

Thus, the degree of freedom offered to the microstructure inside B0, and hence its
compliance, increases from condition 1 to condition 3. For the microcontinuum a
static equilibrium is assumed, which, in the absence of body forces, is governed by
the field equation

Div P D 0 in B0 . (7.15)

Computational homogenization now refers to the numerical solution of the
boundary value problem in Qw posed by Eqs. (7.13) and (7.15) in connection with
a constitutive relationship P(F) per individual phase. For this solution, in gen-
eral, a number of techniques can be employed. The majority of recent contri-
butions discretized the boundary value problem by means of the finite element
method, see bottom right of Figure 7.1 and, for instance, Feyel and Chaboche
(2000); Kouznetsova, Brekelmans, and Baaijens (2001); Miehe, Schotte, and Lam-
brecht (2002); Miehe, Schröder, and Schotte (1999); Smit, Brekelmans, and Meijer
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(1998), or using a Fourier series approach on a regular grid (Lebensohn, 2001;
Moulinec and Suquet, 1998). In addition, the boundary element method or mesh-
less schemes are equally applicable to the task.

7.4
Mean-Field Homogenization

Within the mean-field approach, the microstructure present in domain B0 is con-
sidered as a system of inclusion(s) in a matrix (bottom left in Figure 7.1). Here, the
boundary value problem outlined in the preceding section is not solved rigorous-
ly, but only in a volume-averaged sense. This means that the spatial variation in P
and F is not resolved anymore; thus only spatially averaged quantities per phase α
are considered and are denoted by h�iα . Hence, macroscopic quantities valid for
the material point equal the volume-weighted sum of the respective quantities tak-
en over all microstructural constituents. The mean-field counterparts of Eqs. (7.1)
and (7.2) then read

F D 1
V0

NX
α

Z
Bα

0

F dV0 D 1
V0

NX
α

V α
0 hFiα , (7.16)

P D 1
V0

NX
α

Z
Bα

0

P dV0 D 1
V0

NX
α

V α
0 hPiα , (7.17)

with V α
0 D

Z
Bα

0

dV0 .

Regarding the partitioning of stress or strain, the most basic assumptions would
be either equal stress hPiα D P or equal deformation gradient hFiα D F among all
phases/grains α D 1, . . . , N present in the microstructure. These extremal cases
were introduced by Reuss (1929) and Voigt (1889) for elasticity and by Taylor (1938)
assuming uniform plastic strain. Both assumptions disregard the shape and local
neighborhood of the inclusions and generally violate compatibility and equilibri-
um, respectively. More sophisticated assumptions make use of the solution to the
problem of an elastic ellipsoidal inclusion in an infinite elastic matrix given by Es-
helby (1957). A recent review of the by now well-established laws which govern the
strain partitioning in a linear elastic composite has been given by Nemat-Nasser
and Hori (1999). Of those, the most frequently employed are the self-consistent ap-
proach originally suggested by Kröner (1958a) and the scheme introduced by Mori
and Tanaka (1973) (see also Benveniste (1987)). In the former, each inclusion is
treated like an isolated one within a matrix having the (unknown) overall stiffness
of the composite. The latter embeds each inclusion into the original matrix but con-
siders the average matrix strain to act as far-field strain on the overall composite.

However, extension of such homogenization schemes from the linear to the
nonlinear case is facing difficulties, most importantly since the stiffness, that is,
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strain(rate) sensitivity of stress, is typically inhomogeneous for a given phase ow-
ing to its heterogeneous strain. The stiffnesses are usually homogenized by using
the average strain per phase as a reference input into the respective constitutive
law. To establish a link between stress and strain per phase, secant (connecting
total stress to total strain) and tangent (connecting stress increments to strain
increments) formulations for the moduli are employed. The latter has some ad-
vantages since it is not restricted to monotonic loading and generally performs
better for anisotropic material behavior. Hill (1965) originally introduced this in-
cremental scheme together with a self-consistent approach. Lebensohn and Tomé
(1993) later proposed a self-consistent integral formalism which links total stress
to strain rate. Further self-consistent schemes are, for example, due to Berveiller
and Zaoui (1978), who employed a secant modulus tensor, whereas Masson et al.
(2000) proposed an affine formulation. Recent developments in the incremental
tangent formalism can be found, for instance, in Doghri and Ouaar (2003) and De-
lannay, Doghri, and Pierard (2007). For a fairly recent review of the use of mean-
field methods for elastoplastic composites, we refer to Ponte Castaneda and Suquet
(1998).

7.5
Grain-Cluster Methods

Grain-cluster models are an intermediate approach between the mean-field schem-
es and spatially resolved solutions of a representative volume element outlined
above. They reduce the high computational cost of the latter by restricting the dis-
cretization to account only for a small number of domains with (typically) homo-
geneous strain inside each of them. These domains are identified with grains (or
parts of grains), thus extending the mean-field approaches by taking into account
direct neighbor–neighbor interactions among the constituents of a (multiphase)
polycrystal. The introduction of grain aggregates now allows for the relaxation of
the (Taylor) assumption of homogeneous strain in each constituent – this assump-
tion generally leads to an overestimation of the polycrystalline strength and rate of
texture evolution – by enforcing compatibility only in an average sense for the ag-
gregate as a whole. The basic concept of a partial relaxation of the Taylor hypothesis
has been presented in the works of Van Houtte (1982, 1988), Honneff and Mecking
(1978), and Kocks and Chandra (1982).

Van Houtte (1982, 1988) considers in his LAMEL model a stack of two grains.
Both share a common interface with normal n. The stacking direction (and thus
the interface normal) corresponds to the smallest dimension of the grains, that is,
two flat grains lie on top of each other. The stack is subjected to an imposed overall
velocity gradient L D grad Py (cf. Eq. (3.21)); however, in both grains the local velocity
gradients are allowed to deviate from L by the two shear relaxation modes illustrated
in Figure 7.3, which correspond to a movement of the shared interface within its
plane. For the particular case of interface orientation shown in Figure 7.3, such
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e3 = n

e2e1

Grain a

Grain b

Figure 7.3 Relaxation of an imposed defor-
mation (dotted outline) within a stack of two
(flat) grains as assumed by the LAMEL model
of Van Houtte (1982, 1988). Both grains share

a common interface normal to e3 and expe-
rience equal but opposite shear relaxations
normal to e3, thus moving the shared inter-
face in its plane. The image is a stereo pair.

deviation is given by

ΔL D
2X

rD1

Pγ r
rlxK

r
rlx D Pγ 1

rlx

0
@0 0 1

0 0 0
0 0 0

1
AC Pγ 2

rlx

0
@0 0 0

0 0 1
0 0 0

1
A

D
0
@0 0 Pγ 1

rlx
0 0 Pγ 2

rlx
0 0 0

1
A . (7.18)

In the special case of both grains having equal volume, the symmetric distribution
of the relaxation ΔL among them, that is,

La D L C ΔL D Wa C
N aX

αD1

Pγ α(mα ˝ nα)sym , (7.19a)

Lb D L � ΔL D Wb C
N bX

�D1

Pγ �(m� ˝ n�)sym , (7.19b)

ensures that the stack fulfills the imposed overall boundary condition. Since
grains a and b may deform differently owing to a nonzero relaxation, also different
slip systems α and � will become active and result in unequal lattice rotation rates
Wa and Wb .

To identify the active slip systems together with the amount of relaxation within
the stack, the system of Eqs. (7.19) has to be supplemented by an energetic assump-
tion, which is that of minimum plastic dissipation rate:

P D
N aX

αD1

τα Pγ α C
N bX

�D1

τ� Pγ � C
X
rD1

τ r
rlx

ˇ̌ Pγ r
rlx

ˇ̌ D min . (7.20)

In Eq. (7.20) τα,� denotes the resolved shear stress on the respective slip system
(see Eq. (6.5)) and τ r

rlx are suitably chosen penalty stresses for the corresponding
relaxation shears. Frequently, the penalty stress is ignored and set to zero.

A certain drawback of the original LAMEL model consists in its restriction to
deformation modes which are compatible with the presumed grain aspect ratio, for
example, pancake-like grains in rolling. This restriction is overcome by two recent
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models (Evers et al., 2002; Van Houtte et al., 2005) which focus on the boundary
layer between neighboring grains. Both models consider multiple relaxation sites
per grain. The relaxation is then applied along the grain perimeter with regard to
the local grain boundary with normal n.

The first one, called the ALAMEL model and introduced by Van Houtte et al.
(2005), symmetrically relaxes two local velocity gradient components across the
interface of the central grain and each of its neighboring grains such that

P
r Kr

rlx D
a ˝ n, with a ? n. Each individual grain pair is thus relaxed identically to the
LAMEL case of pancake grains discussed above. As a result, stress equilibrium at
the boundary is maintained except for the normal component (Van Houtte et al.,
2005).

The relaxation proposed by Evers et al. (2002) is slightly different, as they, firstly,
symmetrically relax the deformation gradient on both grains by ΔF D ˙a ˝ n, and,
secondly, determine the components of a by prescribing full stress equilibrium at
the grain boundary, which is in fact equivalent to a minimization of deformation
energy. A real grain structure can then be mimicked by enclosing each grain with
bicrystalline contacts toward its neighbors (as in the ALAMEL case). The distribu-
tion of interface orientations reflects the initial grain morphology and evolves with
it, thus separating preconditions on initial grain shape from the deformation mode
under consideration.

An extension of the monodirectional, thus anisotropic, two-grain stack consid-
ered in the above-mentioned LAMEL model to a tridirectional cluster of 2 � 2 � 2
hexahedral grains is due to Crumbach et al. (2001), based on former work by Wag-
ner (1994). In this scheme, termed grain interaction (GIA) model, relaxation of
strain components �i j 0 (i D 1, 2, 3 and j 0 the shortest cluster dimension) and
�i j 00 (i ¤ j 0 and j 00 the second-shortest cluster dimension) is performed in the
spirit of the LAMEL model, that is, via mutually compensating shear contributions
of two stacked grains, such that each two-grain stack fulfills the external boundary
conditions – and in consequence also the cluster as a whole. To maintain intergrain
compatibility – possibly violated by different relaxations in neighboring stacks – a
density of geometrically necessary dislocations is introduced, which forms the basis
for the evaluation of the last contribution (mismatch penalty energy) in Eq. (7.20).
The profound progress of the GIA approach is that it connects the intergrain misfit
penalty measure to material quantities such as the Burgers vector, shear modulus,
work-hardening behavior, and grain size. Owing to its tridirectional setup, the GIA
model formulation is compatible with arbitrary deformation modes and is, hence,
not necessarily confined to plane strain.

A recent generalization of the tridirectional grain cluster concept was suggested
by Eisenlohr et al. (2009); Tjahjanto, Eisenlohr, and Roters (2009, 2010) and termed
relaxed grain cluster (RGC). This generalization of the original GIA concept com-
prises mainly two aspects:

	 Deformation kinematics are formulated within a finite deformation framework
as compared with the framework of (symmetric) infinitesimal strain employed
(and violated by nonsymmetric relaxations) in the GIA model. Extension from
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Figure 7.4 Material point representation in
the relaxed grain cluster scheme. (a) Cluster
of p � q � r hexahedral grains at macroscale
material point. (b) Hexahedral grain g of di-

mensions d1, d2, d3. Interfaces are charac-
terized by outward normals ng

α , which are
aligned with the cluster axes. Each interface α
carries an attached relaxation vector ag

α .

the infinitesimal strain formulation to the finite deformation framework ade-
quately captures the large strains as well as rigid-body rotations which grains
may experience in, for instance, forming operations. Furthermore, mismatch
due to elastic deformations and rigid-body rotations are accounted for in this
formalism.

	 The local constitutive model at the grain level is separated from the macroscale
homogenization formulation. This allows the RGC scheme to be implemented
in conjunction with various microscale constitutive models, whereas the orig-
inal GIA formulation is limited to a single-crystal viscoplastic constitutive law,
that is, excluding all elastic effects.

The RGC scheme simplifies the situation at a macroscale material point by approx-
imating it as a cluster containing N D p � q � r hexahedral (and homogeneously
deforming) grains as shown in Figure 7.4a. Grain dimensions along the cluster ref-
erence frame e1, e2, e3 are denoted by d1, d2, d3, respectively, and are identical for all
grains. The interfaces α of each grain g are characterized by their outward-pointing
normals ng

α and follow the convention illustrated in Figure 7.4b with respect to the
cluster frame.

For each individual grain to be able to deviate from the average cluster deforma-
tion gradient, F, so-called relaxation vectors ag

α are attached to all interfaces of all
grains (see Figure 7.4b). They quantify the displacement of the corresponding in-
terface α relative to the overall deformation F, such that the individual deformation
gradient, Fg , experienced by a particular grain follows as

Fg D F C
3X

˙αD1

1
dα

�
ag

α ˝ ng
α
�

, (7.21)

that is, all six interface displacements contribute to the deviation of the local defor-
mation gradient from the macroscale one.
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Figure 7.5 Relaxation vectors on interior and
exterior interfaces of the grain cluster. (a) Ex-
emplary pair of grains g1 and g2, which are
neighbors along e1 and share a common in-
terface. Since the same interface is targeted,
the two respective relaxation vectors are set
equal ag1

1 D ag2
�1 for both grains. (b) Com-

bined relaxation of grains g1 and g2 due to

the relaxation vector shown in (a). (c) Periodic
boundary conditions require equal relaxation
vectors at opposite exterior interfaces. A van-
ishing relaxation vector for exterior interfaces
is most convenient and does not alter the
overall relaxation due to displacements of
all same-oriented interior interfaces between
them.

The relaxation vectors are subject to two constraints. First, for any two grains g1

and g2 the relaxation vectors assigned by either of them to their shared interface α
are set to be identical,

ag1
α D ag2

�α , (7.22)

as shown in Figure 7.5a for an exemplary grain pair with an interface normal
along e1. The contribution of such an individual relaxation vector to the grain de-
formation gradient (given by Eq. (7.21)) is illustrated in Figure 7.5b for the same
grain pair. Second, since the overall relaxation behavior is not altered by a con-
stant offset in all those relaxation vectors which belong to a row of interfaces that
is aligned with one of the crystal axes, we can (most conveniently) ensure period-
ic boundary conditions by setting the relaxation vectors on all exterior interfaces
to zero as shown in Figure 7.5c. With the above conditions in place, the deforma-
tion state of the cluster is determined once all independent11) relaxation vectors are
known.

11) A cluster of size p � q � r has in total (p � 1)qr C p (q � 1)r C p q(r � 1) interior interfaces at
which independent grain deformation relaxation can occur.
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Figure 7.6 Source of mismatch within the
grain cluster. Nonequal relaxation vectors on
neighboring and same-oriented interfaces
result in overlaps and gaps across perpendic-
ular interfaces sharing a trace with the former
two. (a) Grain pair exhibiting nonmatching

relaxation vectors (ag2
2 ¤ ag1

2 ) on neighbor-
ing interfaces having a common orientation
(n2). (b) Discontinuity in the gradients of dis-
placement and deformation across the shared
interface of the grain pair resulting from the
nonmatching relaxation shown in (a).

From Figure 7.5b we observe that the relaxation resulting from a relative displace-
ment of an interface maintains the tight connection between the two neighboring
grains. A different picture emerges when we consider the effect of two neighbor-
ing interfaces of the same orientation on which the respective relaxation vectors
differ. This is shown in Figure 7.6 and results in a discontinuity in the gradients of
displacement as well as deformation across the interface shared by both grains. To
quantify the magnitude of such overlaps and gaps, a measure, which is similar to
the surface dislocation tensor of Bilby (1955), is used:

Mg
α D � 1

2

�
ng

α � ΔFg
α

T
�T

or

in index notation
�
M g

α
�

i j D � 1
2

�
ng

α
�

k

�
ΔF g

α
�

i l � j k l , (7.23)

in which ΔFg
α denotes the jump in deformation gradient between grain g and the

neighboring grain sharing interface α.
On the basis of the mismatch measure, a (penalty) energy density, Rg

α , associat-
ed with interface α of grain g is introduced. An expression for the penalty energy
is rationalized by considering the density of dislocations which could accommo-
date such deformation mismatch. According to Nye (1953) and Bilby (1955), the
presence of a dislocation network can be uniquely translated into a tensorial rep-
resentation of deformation mismatch in the case of three-dimensional and two-
dimensional dislocation networks, respectively; however, the inverse is not true.
If the mismatch is known, then only a minimum content of geometrically neces-
sary dislocation density can be derived using various optimization procedures (see,
e.g., Arsenlis and Parks (1999)). In general, the larger the mismatch the more dislo-
cations are required to accommodate it. This would imply a linear relation between
mismatch and penalty energy; the latter could be identified with the line energy of
the dislocations in the accommodating network. However, since the accommoda-
tion by dislocations is unlikely to be perfect, there will additionally be redundant
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(statistically stored) dislocations present. Assuming that the number of these statis-
tically stored dislocations grows increasingly more rapidly with mismatch than the
geometrically necessary dislocation content suggests an overproportional growth of
penalty energy with increasing mismatch. To phenomenologically capture such an
overproportionality, a hyperbolic sine function is employed as the relation between
the magnitude,

kMg
αk D �

Mg
α � Mg

α
� 1

2 , (7.24)

of mismatch and the penalty energy density,

Rg
α D μ g

cα �α
sinh

�
cαkMg

αk� , (7.25)

where μ g denotes the equivalent shear modulus of grain g. The parameter cα deter-
mines the overproportionality of the penalty energy density with respect to the mag-
nitude of mismatch, that is, the larger cα , the more expensive additional mismatch
becomes. An interpretation of the parameter �α can be based on the simplification
of the accommodation dislocation network as individual (straight) dislocations and
utilizing the textbook (Hull and Bacon, 2001) expression of their line energy. Then,
�α turns out to be proportional to the grain dimension dα in the direction normal
to interface α and normalized by the length of Burgers vector b. Despite such sim-
plifications introduced to quantify the accommodating dislocation content and its
energy contribution, the value of �α is believed to reflect about the order of magni-
tude of dα/b.

The effective penalty energy density R associated with all interfacial incompat-
ibilities within the cluster is finally computed as the volumetric average over the
whole domain:

R D 1

V 0

NX
gD1

3X
˙αD1

V g
0 Rg

α . (7.26)

A second contribution to the cluster energy results from the work dissipated in
its deformation (see Eq. (3.38)). Let Pg be the first Piola–Kirchhoff stress tensor of
grain g, which is a function of the local deformation gradient Fg through the local
constitutive model, Pg D QPg (Fg). The resulting effective first Piola–Kirchhoff stress
tensor, denoted as P, is then again computed as the volumetric average of the local
stresses Pg as

P D 1

V 0

NX
gD1

V g
0 Pg . (7.27)

The constitutive energy (or work) density of grain g per unit volume in the reference
configuration at time t, denoted by W g , is given by

W g D
Z t

0
Pg(τ) � PFg(τ) dτ , (7.28)

where PFg is the rate of change of the deformation gradient of grain g. It is assumed
that the total work density of the cluster, W , can be obtained as the volumetric
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average of the work density of all grains as

W D 1

V 0

NX
gD1

V g
0 W g . (7.29)

The RGC model now postulates that the relaxation behavior of the overall clus-
ter – determined by the set of all relaxation vectors a D fag

αg – is such that for a
given F the total energy W C R is a minimum, that is,

Oa D min
˚W(a) C R(a)

�
. (7.30)

It has to be noted that W is, in general, a nonconvex function of the Fg , which
might lead to multiple local minima, prompting algorithmic difficulties in finding
the global minimum, and nonunique global minima. The convexity of the overall
energy density can, however, be enforced by the introduction of the penalty term
R. Thus, relying on a convex overall energy density, the solution of the energy
minimization problem in Eq. (7.30) corresponds to the stationary point

@
�W C R�

@a

ˇ̌̌
ˇ̌
Oa

D 0 . (7.31)

Equation (7.31) has to hold individually for each relaxation vector attached to an
(interior) interface out of the set Oa. Selecting an arbitrary interface, which is shared
between grains g1 and g2 and has a normal ng1

α and ng2
�α when referred to from the

two grains respectively, we find that Eq. (7.31) is equivalent to an equation of force
equilibrium (or balance of traction) at the shared interface:

@
�W C R�

@Fg1

@Fg1

@ag1
α

C @
�W C R�

@Fg2

@Fg2

@ag2
�α

D

(Pg1 C Rg1 )
ng1

α

dα
C (Pg2 C Rg2 )

ng2
�α

dα
D 0 . (7.32)

In Eq. (7.32) the terms Rg are shorthand for the derivative of the overall penalty
energy density R with respect to the grain deformation gradient Fg . It is a stresslike
penalty associated with the mismatch at all interfaces of grain g and can be obtained
as

Rg D @R
@Fg D

3X
˙�D1

μ g C μ g�

��

0
@ Mg

�
T

kMg
�k � ng

�

1
A

T

cosh
�

c�kMg
�k
�

, (7.33)

or in components

[R g ]i j D
3X

˙�D1

μ g C μ g�

��
cosh

�
c�kMg

�k
� 1

kMg
�k
h

M g
�

i
i k

h
ng

�

i
l
�k l j , (7.34)

with g� being the grain that shares interface � with grain g.
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In summary, the minimization of the total cluster energy WCR, which is equiv-
alent to establishing balance of traction (see Eq. (7.32)) at each interior interface,
yields all relaxation vectors. From those the partitioning of the overall deforma-
tion F into individual grain deformations Fg is determined by Eq. (7.21). The lo-
cal stress responses Pg , given by the corresponding (but independent) constitutive
laws QPg(Fg), are averaged according to Eq. (7.27) and compose the overall stress of
the cluster P(F).
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8
Numerical Aspects
of Crystal Plasticity Finite Element Method Implementations

8.1
General Remarks

As far as the finite element method is concerned, crystal plasticity finite element
(CPFE) approaches can be regarded as a class of constitutive material models;
therefore, they can be implemented directly into an finite element code when it
is available in source form. In the case of commercial finite element codes, CPFE
constitutive laws are implemented in the form of a user subroutine, for example,
HYPELA2 in MSC.Marc (Mar, 2007) or UMAT/VUMAT in Abaqus (Aba, 2007). De-
pending on whether the finite element code is implicit or explicit, the purpose of
a material model is onefold or twofold: (1) calculate the stress σ required to reach
the final deformation gradient (implicit and explicit); (2) calculate the Jacobi matrix
J D @σ/@E (implicit only, E is the symmetric strain tensor).

The stress calculation is usually implemented using a predictor–corrector
scheme. Figure 8.1 visualizes the setup of the clockwise loop of calculations to
be performed. In principle, one could start predicting any of the quantities in-
volved, follow the loop, and compare the resulting quantity with the predicted
one. Subsequently, the prediction would be updated using, for instance, a Newton–
Raphson scheme. Various implementations were suggested using the elastic defor-
mation gradient Fe (Sarma and Zacharia, 1999), the plastic deformation gradient
Fp (Maniatty, Dawson, and Lee, 1992), the second Piola–Kirchhoff stress S (Ka-
lidindi, Bronkhorst, and Anand, 1992), or the shear rates Pγ α (Peirce, Asaro, and
Needleman, 1983) as a starting point. Although they certainly all should lead to the
same results, there are two numerical aspects to consider: first, the inversion of the
Jacobi matrix occurring in the Newton–Raphson algorithm; second, the character
of the equations to be evaluated.

Regarding the first point, one has to realize that the dimension of the Jacobi ma-
trix is equal to the number of independent variables of the quantity that is used as
a predictor. These are nine variables for Fe, eight for Fp (owing to volume conserva-
tion), and six for S (owing to the symmetry of the stress tensor). However, if the Pγ α

are chosen, there are at least 12 variables (number of slip systems in face-centered
cubic crystals), but up to 48 (number of slip systems in body-centered cubic crys-
tals), or even more in the case of additional twinning. Inverting such large matrices

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32447-7
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S =
�
2

FT
e Fe − I

Fe = FF−1
p

Ḟp = Lp Fp

Lp = γ̇α mα ⊗ nα

γ̇α = f(S)

γ̇α

S

Fe

Fp Lp

Figure 8.1 Clockwise loop of calculations
during stress determination (S second Pio-
la–Kirchhoff stress, Pγ α shear rate, Lp plastic
velocity gradient, mα slip direction, nα slip

plane normal, Fp plastic deformation gradient,
Fe elastic deformation gradient,
C elasticity tensor, I identity matrix).

(i. e., 48 � 48) is computationally quite demanding, which is the reason why such
implementations spend effort on tracking the number of currently active slip sys-
tems (Cuitino and Ortiz, 1992).

The second point concerns the numerical convergence behavior of the overall
system. When an iteration is started from any quantity other than Pγ α , the proce-
dure involves calculating the slip rates from the stress. This is usually done using
a power law or an exponential law. The slope of these highly nonlinear functions
is rapidly increasing, that is, small variations in stress lead to increasingly larger
deviations in the strain rate. Therefore, for large deformations, where convergence
becomes a main issue, the iteration behavior of the stress loop becomes worse.
However, when starting from Pγ α , the inverse tendency applies, that is, stress vari-
ations with varying shear rates get smaller and smaller. This is why the second
approach promises a better numerical stability at large strains, however at the cost
of dealing with a large Jacobi matrix.

Calculating the Jacobi matrix for implicit finite element codes in the case of a
crystal plasticity constitutive model has generally to be done numerically by per-
turbing E (Kalidindi, Bronkhorst, and Anand, 1992), as a closed analytical form
exists only in special cases. This numerical evaluation includes six stress evalua-
tions, which makes it computationally expensive.



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c08 — 2010/7/23 — page 111 — le-tex

�

�

�

�

�

�

8.2 Explicit Versus Implicit Integration Methods 111

8.2
Explicit Versus Implicit Integration Methods

When discussing explicit versus implicit integration schemes, one has to distin-
guish between two aspects. Firstly, the finite element solver can follow an explicit
or implicit approach and, secondly, the material model can be iterated using ex-
plicit or implicit integration schemes. Concerning the first point, Harewood and
McHugh (2007) recently compared the efficiency of both methods when applying
crystal plasticity models to forming problems. As could be expected, to some ex-
tent the outcome of this comparison is problem-dependent. As a rule, the explicit
scheme generally seemed favorable when contact is involved. This is, however, not
special for the CPFE method but applies to any finite element method simulation
including contact.

Regarding the material model itself, that is, the material subroutine in the case
of commercial finite element solvers, anything from explicit to fully implicit in-
tegration methods is possible. The task of the material model is twofold. Firstly,
the stress necessary to achieve the prescribed deformation has to be determined.
Secondly, the material state has to be updated. In most codes, first the stress is de-
termined implicitly for a fixed state of the material and in a subsequent step the
material state is updated. In the case of a fully implicit implementation, the stress
has to be determined again until convergence is achieved, whereas in a semi-im-
plicit code the calculation is stopped after the state was updated. An advantage of
the fully implicit scheme is that it truly converges to the correct solution (if it con-
verges at all), whereas the explicit solution converges generally but not necessarily
to the correct solution. Since explicit schemes typically use very small time steps,
semi-implicit integration schemes should generally work satisfactorily with respect
to precision in that case, whereas they are at the same time faster than a fully im-
plicit scheme.

8.3
Element Types

CPFE constitutive models as introduced in Chapter 6 are formulated in a tenso-
rial way to account for material anisotropy; therefore, they are based on a three-
dimensional stress tensor. In terms of finite element design this means that crys-
tal plasticity works best for three-dimensional models and, when used for two-
dimensional models it is restricted to plane strain boundary conditions and does
not work for plane stress boundary conditions.

Most CPFE simulations use linear elements, that is, elements using linear in-
terpolation functions for the displacements. Therefore, these elements cannot de-
scribe strain gradients within one element. When the resolution of the finite el-
ement mesh is reasonably fine, this can be tolerated for single-phase materials.
However, when strong strain gradients occur, either owing to boundary conditions
or owing to the presence of multiple phases, linear elements are usually not suf-
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ficient to correctly capture these strong gradients. In such cases higher-order ele-
ments should be used.

In cases with advanced CPFE material models, such as introduced in Sec-
tion 6.1.3.2, that include strain gradients, the situation becomes more complicated.
The standard element formulations are only continuous in the displacements (C0-
continuous). This implies that strains can be calculated as displacement gradients,
but strain gradients might be undefined. To overcome this problem one has to use
enhanced element formulations as done by Evers, Brekelmans, and Geers (2004a)
and Arsenlis et al. (2004). However, the definition of boundary conditions becomes
rather complicated in the case of complex loadings for such element formulations.
Therefore, many authors still use standard elements for such simulations and de-
rive the necessary gradients from multielement patches as described, for example,
in Han et al. (2007).
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9
Microscopic and Mesoscopic Examples

9.1
Introduction to the Field of Crystal Plasticity Finite Element Experimental Validation

Crystal plasticity finite element (CPFE) simulations can be validated by experi-
ments in a detailed manner, with respect to both mechanical and microstructural
observable quantities, Figure 9.1. Measures of the former group can be monitored
in terms of forces, elastic stiffness (including springback effects), stresses, me-
chanical size effects, mechanical anisotropy, shape changes, hardness, strain paths,
strain rates, and strains including local strain maps obtained by digital image cor-
relation or speckle methods.

Quantities based upon microstructure observations can be mapped in terms of
crystallographic texture, grain shapes, dislocation substructures and densities, in-
ternal stresses, and surface roughness. Many such comparisons can be conducted
one-to-one and at different scales, Table 5.1. In addition to these well-established
methods, novel tomographic experiments allow one to compare CPFE predictions

Figure 9.1 The various theoretical approaches and microstructural observables in the field of
crystal plasticity modeling encountered at various scales.
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with real microstructures also in three dimensions, for instance, by synchrotron
orientation tomography (Larson et al., 2002; Nielsen et al., 2001) and electron
backscatter diffraction (EBSD) tomography (three-dimensional EBSD) (Bastos, Za-
efferer, and Raabe, 2008; Demir et al., 2009; Konrad, Zaefferer, and Raabe, 2006;
Zaafarani et al., 2008, 2006; Zaefferer, Wright, and Raabe, 2008). Other new tech-
niques to validate CPFE predictions are microscopic mechanical tests conducted
on micrometer- or nanometer-sized samples prepared by electrochemical or fo-
cused ion beam (FIB) methods (Dimiduk, Uchic, and Parthasarathy, 2005; Greer,
Oliver, and Nix, 2005; Kiener et al., 2006; Uchic et al., 2004). In this section we
review a selection of some literature examples which document applications of the
CPFE method from microscopic to macroscopic scales.

9.2
Stability and Grain Fragmentation in Aluminum under Plane Strain Deformation

It has been frequently observed that during plastic deformation initially uniform-
ly oriented grains can gradually build up large in-grain orientation scatter under
gradient-free boundary conditions (Beaudoin, Mecking, and Kocks, 1996). In this
section this phenomenon is investigated with the aim to understand how this phe-
nomenon depends on the crystal orientation, on neighbor grains, and on the ex-
ternal boundary conditions (e.g., friction) (Raabe et al., 2002c; Raabe, Zhao, and
Roters, 2002d, 2004b; Zhao, Mao, and Raabe, 2002).

It was found that the orientation stability (under plane strain loading) in alu-
minum (as an example of a face-centered cubic material with high stacking fault
energy) can fall into one of three basic categories. This can be demonstrated by
CPFE simulations and by classical homogenization theory. Basically, the tendency
for orientation stability can be expressed in terms of the divergence behavior of the
reorientation field (which is sometimes also referred to as flow field) for an orienta-
tion under a given load. The first group of orientations is stable and does not build
up substantial in-grain orientation scatter even for minor variations in the initial
orientation spread or in the boundary conditions (e.g., change in the friction coeffi-
cient). Typically, such orientations show a very symmetric arrangement of the active
slip systems. Their reorientation behavior is characterized by negative divergence
of their reorientation field (for a given load tensor). They are stable and not prone
to build up internal orientation scatter. The second group is extremely unstable
and builds up strong in-grain orientation scatter. These orientations show positive
divergence of the reorientation field. Crystals that fall into the third category reveal
very small divergence of their reorientation field, which means that they have the
same tendency for orientation changes as their neighborhood. A first-order classi-
fication for orientation stability, therefore, can be simply expressed in terms of the
reorientation divergence for a given orientation.

Substantial dependence of the formation of in-grain orientation scatter on the
neighbor grains or on details of the boundary conditions exists mainly for the ori-
entations of the second and third categories, Figures 9.2 and 9.3a–c.
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Figure 9.2 Accumulated misorientations in
gray-scale coding (light values indicate large
misorientations) for aluminum grains togeth-
er with f111g pole figures after 50% plane
strain deformation for different orientations.
The simulations used 12 slip systems. The

open squares in the pole figures show the
initial orientation (which was the same at all
integration points) and the black dots show
the orientations scatter after the deforma-
tion.

Figure 9.3 Orientation stability of the cube
orientation after 50% plane strain compres-
sion for different internal and external bound-
ary conditions. (a) Starting condition: exact
cube orientation without initial orientation
scatter, Coulomb friction coefficient 0.1.

(b) Starting condition: cube orientation with
2.5ı initial orientation scatter, Coulomb fric-
tion coefficient 0.1. (c) Starting condition:
initial cube orientation with 2.5ı initial ori-
entation scatter, Coulomb friction coefficient
0.3.

9.3
Texture and Dislocation Density Evolution
in a Bent Single-Crystalline Copper Nanowire

This section presents an investigation of a bending test using experiments and
CPFE simulations. A 2-μm-long single-crystalline copper nanowire was produced
by FIB fabrication (Weber et al., 2008). The average cross section of the specimen
was 750 nm � 750 nm. The nanowire was bent in situ using a micromanipula-
tor. Characterization was done using scanning electron microscopy (SEM) and
EBSD. The experiment was compared with simulations conducted by a CPFE
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Figure 9.4 (a) Predicted density of the ge-
ometrically necessary dislocations during
nanowire bending in units of per square mi-
crometer. (b) Experimentally determined ge-
ometrically necessary dislocation density,
quantified in terms of the average local orien-
tation gradient determined via high-resolution
electron backscatter diffraction. (c) Subse-
quent scenes taken during bending. (d) Pole

figures of the bent nanowire obtained from
experiment and simulation. The predictions
were used to determine the exact boundary
conditions that occurred during testing. The
crosses indicate the initial orientation. CD:
cross direction; BD: bending direction; ND
normal direction; GND: geometrically nec-
essary dislocation. Bending took place in the
negative Y-direction; ND normal direction.

analysis using a dislocation-density-based constitutive hardening law (Ma and
Roters, 2004; Ma, Roters, and Raabe, 2006a; Zaafarani et al., 2008). The simu-
lations were required to study the influence of the boundary conditions on the
results since the boundary conditions can have a substantial influence on the
evolution of the texture during bending. The simulations and the experimental
results revealed good agreement in terms of texture evolution and elastic spring-
back as long as the boundary conditions were reflected accurately. The model
provides information about the microstructure evolution in terms of particular
material parameters such as the evolution of the dislocation density, Figure 9.4a–
d. Similar CPFE simulations on the deformation of pillars by microscale com-
pression tests were presented by Raabe, Ma, and Roters (2007a). The motivation
for selecting this example is to document the capability of the CPFE approach
to yield good texture predictions even at small scales where the constitutive law,
which is built on a statistical dislocation model (Ma and Roters, 2004; Ma, Rot-
ers, and Raabe, 2006a, 2007), reaches its limits owing to the small size of the
elements.
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9.4
Texture and Microstructure Underneath a Nanoindent in a Copper Single Crystal

This example is about the origin of deformation-induced orientation patterns be-
low nanoindents in a f111g-oriented copper single crystal. The experiments and the
simulations were conducted using a conical indenter with a spherical tip (Wang et
al., 2004; Zaafarani et al., 2006). The patterns were characterized by neighboring
crystalline zones with opposite rotation rates. The approach to analyze and under-
stand the phenomenon was as follows: First, the deformation-induced orientation
patterns were investigated in three dimensions using a high-resolution tomograph-
ic EBSD technique (Demir et al., 2009; Zaafarani et al., 2008). This method works
by a fully automated alternating serial sectioning and EBSD mapping procedure in
a SEM-FIB setup (three-dimensional EBSD) (Bastos, Zaefferer, and Raabe, 2008;
Konrad, Zaefferer, and Raabe, 2006; Zaefferer, Wright, and Raabe, 2008). Second,
the problem was modeled using a CPFE method which is based on a constitu-
tive model that uses dislocation densities as state variables (Ma and Roters, 2004;
Roters, Raabe, and Gottstein, 2000). It was found that the rotation patterns induced

Figure 9.5 Comparison of crystal rotation about the direction [112] in the sample reference
system underneath the indent at different sections between experiment and simulation (positive
values mean counterclockwise rotation) (Demir et al., 2009; Zaafarani et al., 2008, 2006).
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during indentation were well predicted by the CPFE model. The change of the crys-
tal rotation directions could be explained by the different slip system combinations
that were activated owing to the geometry of the indenter causing a gradual change
in the loading axis that evolved differently at different locations during indentation,
Figure 9.5.

9.5
Application of a Nonlocal Dislocation Model Including Geometrically Necessary
Dislocations to Simple Shear Tests of Aluminum Single Crystals

9.5.1
Comparisons of von Mises Strain Distributions

In this section experimental results are compared with simulations achieved using
a phenomenological viscoplastic local model as presented in Section 6.1.2 and the
nonlocal model presented in Section 6.1.3 in Figure 9.6. In the experiments the
maximum deformation is found in the lower-left corner of the single crystal and
extends diagonally across the crystal surface. Although this behavior is correctly
reproduced by the nonlocal model, the phenomenological viscoplastic model pre-
dicts the highest strains in the higher-left corner of the specimen. One can assume
that the better prediction yielded by the nonlocal model is mainly a consequence
of the physically based latent hardening law and the introduction of the geomet-
rically necessary dislocations (GNDs). This assumption is supported by the data
presented in Figure 9.7b, which reveals that substantial densities of GNDs are gen-
erated near sample borders. For better comparisons of the relative contributions of
the two types of dislocations, Figure 9.7b and c shows both the statistically stored
dislocation (SSD) and the GND distributions on the normal direction surface.

9.5.2
Size Dependence of the Nonlocal Model

The introduction of the GNDs renders the nonlocal model size-sensitive; there-
fore, the shear simulation is repeated for a set of three virtual specimens of dif-
ferent height-to-length ratios. For this purpose the height of the sheared sample is
changed to one half and one tenth of the original height, respectively. The resulting
shear stress–shear strain curves are shown in Figure 9.8.

Equations (6.33a), (6.33b), (6.18), and (6.19) reveal that the GNDs contribute to
the passing stress and to the multiplication term of the immobile dislocations. For
this reason one would expect higher predicted stresses for the thinnest sample
owing to the relative increase of zones which are mechanically affected by the pres-
ence of interfaces. This is indeed confirmed by Figure 9.8. From the middle row
in Figure 9.7 it becomes obvious how the relative size of the zone influenced by
the GND increases with the decreasing sample height. This increased GND entails
also an increase of the SSD as expected and shown in the bottom row in Figure 9.7.
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Figure 9.6 Comparison of the von Mises
equivalent strain on the surface of an alu-
minum single crystal (3.1 mm long, 2.0 mm
thick, and 2.2 mm high) for a simple shear
test. The left column shows experimental re-
sults obtained by strain measurements via
digital image correlation (DIC). The central

column shows results obtained by using a
conventional viscoplastic formulation. The
right column shows results obtained by us-
ing an enhanced nonlocal model (see Sec-
tion 6.1.3) which considers geometrically nec-
essary dislocations.

Additionally, the top row in Figure 9.7 also shows that the texture evolution of the
crystal is changed. This results in an intersection of the stress–strain curves for
H D H0 and H D H0/2 in Figure 9.8.

The strong influence of incorporating GNDs into the CPFE framework on the
predicted reorientation rates is due to the penalty function they impose. This
means that each reorientation step which introduces an orientation divergence
with respect to the neighborhood (Raabe, Zhao, and Mao, 2002b) is impeded
owing to the corresponding introduction of GNDs.

Figure 9.9 shows profiles of the two immobile dislocation densities (SSDs and
GNDs) across the specimen near the sample center for a shear deformation of
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Figure 9.7 Comparisons of dislocation densi-
ties and misorientation for different samples
after a 30% shear deformation. The heights of
the samples are H D H0, H D H0/2, and
H D H0/10 (all plots are scaled to the same

height for a better comparison), respective-
ly. GND: geometrically necessary dislocation
density, SSD: statistically stored dislocation
density.

about 30%. Although both dislocation densities are always of the same order of
magnitude, their ratio is clearly influenced by the relative sample height. For H D
H0 the SSD density is always higher than the GND density; however, this sit-
uation is gradually changed with decreasing relative sample height. Finally, for
H D H0/10 the GND density surpasses the SSD density near the edges of the
heavily sheared zone of the sample.
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Figure 9.8 Simulated shear stress–shear strain curves for samples with different height-to-
length ratios demonstrating the size sensitivity of the nonlocal dislocation model.

Figure 9.9 Comparison of statistically stored dislocation density (SSD) and the geometrically
necessary dislocation density (GND) for simulated shear tests of samples with different heights
after a 30% shear deformation (line scan near the sample center).

9.5.3
Conclusions

A simple shear experiment of an aluminum single crystal was used to validate
the nonlocal dislocation model. The predicted distribution of the local deformation
was found to be in better accordance with the experiment than for a conventional
viscoplastic phenomenological model. One can assume that the better prediction
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yielded by the new model is mainly a consequence of the introduction of the GNDs
and the physically based latent hardening law into the framework.

The size sensitivity of the model has been clearly demonstrated numerically for
samples of different heights. Besides the Hall–Petch hardening effect, also the tex-
ture evolution is found be be size-sensitive.

9.6
Application of a Grain Boundary Constitutive Model to Simple Shear Tests
of Aluminum Bicrystals with Different Misorientation

This example is about the use of the dislocation-based constitutive model to incor-
porate the mechanical interaction between mobile dislocations and grain bound-
aries into the CPFE framework. The grain boundary model which was presented in
detail in Section 6.1.3.3 was implemented in the commercial solver MSC.Marc200x
using the subroutine HYPELA2 (Mar, 2007). Details of the experimental setup,
finite element mesh, and boundary conditions are presented in Ma, Roters, and
Raabe (2006a,b). The new model is applied to the case of 50% (frictionless) sim-
ple shear deformation of three aluminum bicrystals with a low-, intermediate-, and
high-angle grain boundary, respectively, parallel to the shear plane. The simula-
tions are compared with the findings of experiments with respect to the von Mises
equivalent strain distributions and the crystallographic orientation distributions
(textures). Some of the constitutive parameters required in the dislocation mod-
el (which contains also nonlocal gradient terms) are fitted by using the stress–
strain response of the single-crystal simple shear test presented in the previous
section.

Figures 9.10–9.12 show the comparison of the von Mises strain patterns obtained
from the experiment (left column), from the simulation with a conventional vis-
coplastic constitutive law without an interface model (center column), and from
the simulation series which is based on the new set of constitutive laws as intro-
duced in Section 6.1.3.3 (right column). The figures show the von Mises equivalent
strain distributions for five subsequent stages of shear with a constant increase of
10% per load step.

The experimental data clearly reveal for all three bicrystals the strong microme-
chanical effect imposed by the presence of the respective grain boundary. Even for
the low-angle grain boundary (7.4ı) the shear experiment clearly shows an effect of
strain partitioning among the two crystals. With increasing grain boundary misori-
entation, the heterogeneous partitioning of the von Mises strain between the two
grains becomes even more pronounced.

Concerning the corresponding simulation results it is essential to note that the
use of the empirical viscoplastic (local) law (second rows in Figures 9.10–9.12) does
not adequately reproduce the influence of the grain boundaries on the distribution
of the accumulated von Mises strain. This applies, in particular, for the two bicrys-
tals which have a low- and intermediate-angle grain boundary, respectively. For
the bicrystal with the high-angle grain boundary, Figure 9.12, the empirical (local)
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Figure 9.10 Simple shear test of a bicrystal
(3.1 mm long, 2.0 mm thick, and 2.2 mm high)
with a low-angle grain boundary (7.4ı). Com-
parison of the von Mises strain patterns of the
experiment obtained by digital image correla-

tion (DIC, left column), from the simulation
with a conventional viscoplastic constitutive
law (center column), and from the simulation
which uses the new set of constitutive laws
(right column).

model is capable of predicting some – although not all – characteristics of the strain
partitioning between the two crystals. The partial success of the simulation with the
empirical viscoplastic hardening law in the case of the high-angle grain boundary
is attributed to the strong effect of the change in the Schmid factor across the in-
terface. This means that the kinematic effect which arises from distinct differences
in the slip system selection on either side of a grain boundary plays an essential
role in this case. We refer to this effect as kinematic hardening imposed by grain
boundaries.

Figure 9.13 shows the f111g pole figures for the three bicrystals as obtained from
the experiments and simulations using both a conventional local model and the
new nonlocal model (50% shear deformation). The experimental pole figures show



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c09 — 2010/7/23 — page 126 — le-tex

�

�

�

�

�

�

126 9 Microscopic and Mesoscopic Examples

Figure 9.11 Simple shear test of a bicrystal
(3.1 mm long, 2.0 mm thick, and 2.2 mm high)
with an intermediate-angle grain boundary
(15.9ı). Comparison of the von Mises strain
patterns of the experiment obtained by digital

image correlation (DIC, left column), from the
simulation with a conventional viscoplastic
constitutive law (center column), and from
the simulation which uses the new set of con-
stitutive laws (right column).

reorientation zones with a strong Z-rotation (around normal direction) which is
common to both crystals for all three bicrystal specimens. The scatter of the texture
in all samples is rather weak, that is, the reorientation took place rather homoge-
neously throughout the crystal when considering that the two original orientations
were not stable in all three cases under the load imposed. The scatter is due to
minor differences in the reorientation rates (similar rotation direction) which orig-
inate from local differences in the accumulated strain as is evident from the von
Mises strain diagrams shown before. The texture predictions which were obtained
by using the local viscoplastic constitutive model (Figure 9.13, pole figures d–f)
show a rather large orientation scatter in all three cases. The texture spread sub-
stantially exceeds the scatter observed in the experiments. The texture evolution
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Figure 9.12 Simple shear test of a bicrystal
(3.1 mm long, 2.0 mm thick, and 2.2 mm high)
with a high-angle grain boundary (33.2ı).
Comparison of the von Mises strain patterns
of the experiment obtained by digital image

correlation (DIC, left column), from the sim-
ulation with a conventional viscoplastic con-
stitutive law (center column), and from the
simulation which uses the new set of constitu-
tive laws (right column).

in the two abutting crystals is similar, that is, the bicrystal character of the pole
figures is lost. This observation matches the strain distributions predicted by the
viscoplastic constitutive model. The viscoplastic simulations do not show any in-
fluence of the grain boundary on the micromechanical behavior except for the case
of the high-angle grain boundary with 33.2ı misorientation where the kinematics
of the interface prevailed in terms of the change in the Schmid factor across the
boundary.

The texture predictions obtained by the use of the coupled nonlocal dislocation
and grain boundary constitutive model (Figure 9.13, pole figures g–i) reveal much
smaller orientation scatter and smaller reorientation rates when compared with the
simulations obtained by the local phenomenological model (Figure 9.13, pole fig-
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Figure 9.13 Texture comparison for the sim-
ple shear tests conducted with three bicrys-
tals: (a, b, c) experimental textures; (d, e, f)
phenomenological local model; (g, h, i) dislo-
cation and grain boundary nonlocal model;

(a, d, g) bicrystal with low-angle grain bound-
ary (7.4ı); (b, e, h) bicrystal with intermediate-
angle grain boundary (15.9ı); (c, f, i) bicrystal
with high-angle grain boundary (33.2ı).

ures d–f). The simulated textures are in excellent agreement with the experimental
pole figures. We explain this smoothing effect on the texture evolution mainly in
terms of the influence of the GNDs which act twofold. First, their accumulation
in conjunction with the generation of orientation gradients introduces a direct me-
chanical resistance to the further deformation of the material points affected by
such gradients in terms of the increase in the overall local dislocation density. The
second aspect (coupled to the first one) is the resulting constitutive tendency of the
nonlocal model to reduce the difference in lattice rotation between neighboring
material points. This means that the implicit introduction of the GNDs imposes
a strong penalty or respectively drag force against lateral gradients in the reorien-
tation rates. The f111g pole figures (c and i) shown in Figure 9.13 reveal that the
projected orientation points cluster in the form of two groups, whereas in pole
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figure 9.13f this effect is less pronounced. This is attributed to the influence of
the grain boundary on the texture evolution, in particular to the anisotropy of the
modeled resistance of the grain boundaries for different slip systems. The influ-
ence of the nonlocal and of the grain boundary model on the overall reduction in
the rate at which the deformation textures evolve is a long-standing problem in
texture research, because many classical texture models (including the CPFE ap-
proach) suffer from the drawback that the predicted textures are often too sharp
and the predicted evolution rates are often too high when compared with experi-
mental findings.

The simulations and experiments show that the classical kinematic treatment of
grain boundaries which is automatically included in all CPFE models owing to the
change in the Schmid factor across the interfaces is not sufficient to adequately
reproduce the micromechanics associated with the presence of grain boundaries.

9.7
Evolution of Dislocation Density in a Crystal Plasticity Model

Arsenlis and Parks (2002) were among the first groups to account for the evolu-
tion of the defect density in a crystal plasticity implementation. Their approach to

Figure 9.14 Crystal plasticity finite element (CPFE) simulated and experimentally observed
orientation dependence of the stress–strain profile of aluminum single crystals during tensile
loading (Arsenlis and Parks, 2002).
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implement dislocation-based constitutive laws into a CPFE framework marked an
essential advance. The basics and further developments along these lines were pub-
lished in a sequence of works where the recent emphasis is placed on extracting
constitutive information, for instance, on strain hardening, from discrete disloca-
tion modeling (Arsenlis and Parks, 1999, 2002; Arsenlis et al., 2004; Arsenlis and
Tang, 2003). They suggested a constitutive formulation where dislocation density
variables gradually evolve from initial conditions according to a set of structure evo-
lution laws considering basic dislocation mechanics such as the continuity of dislo-
cation lines and Burgers vector conservation in a set of generic multiplication and
annihilation processes (Arsenlis and Parks, 2002). The density evolution equations
use three classes of internal variables, namely, the average dislocation mobility, the
average segment length, and the capture radii. The model is based on a set of 18
discrete dislocation densities comprising 12 edge and six screw components.

The model was implemented in a CPFE framework to study the multislip be-
havior of aluminum single crystals of different initial crystallographic orientation
under tensile loading, Figure 9.14. The results did not only yield reasonable me-
chanical stress–strain response for the differently oriented crystals, but also pro-
vided insight into the development of the dislocation structure responsible for the
respective plastic behavior observed. A similar approach in which conventional vis-
coplastic hardening rules were replaced by dislocation density evolution laws in-
cluding also GNDs was suggested by Ma and Roters (2004) and Ma, Roters, and
Raabe (2006a,b, 2007) (see also Section 6.1.3.2).

9.8
Three-Dimensional Aspects of Oligocrystal Plasticity

Zhao et al. (2008) conducted a study of plastic strain localization and deformation-
induced surface roughening in an aluminum polycrystal consisting of a small set of
coarse grains (oligocrystal). A dog-bone specimen was plastically deformed under
uniaxial tensile loading. During deformation, the history of strain localization, sur-
face roughening, microstructure, and in-grain fragmentation was recorded. Using
a CPFE model, they conducted corresponding one-to-one high-resolution simula-
tions, Figure 9.15. The study reveals that the grain topology and microtexture have
a significant influence on the origin of strain heterogeneity. Moreover, it suggests
that the final surface roughening profiles are related both to the macro strain local-
ization and to the intragrain interaction. Finally, slip lines observed on the surface
of the samples were used to probe the activation of slip systems in detail.

Particular attention in the analysis is placed on the ability of the CPFE model
to capture the fine details of the surface roughening effects, orientation-dependent
strain localization, and the pattern of activation of slip systems in the grains. It was
observed that the grain stretching over the whole width of the dog-bone specimen
was remarkably soft. The absence of dislocation barriers provided by grain bound-
aries promotes strain localization owing to a single isolated soft grain. Owing to
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Figure 9.15 Study by Zhao et al. (2008) on plastic strain localization and deformation-induced
surface roughening in a three-dimensional aluminum polycrystal consisting of a small assembly
of coarse grains (oligocrystal).

Figure 9.16 Simulation by Beaudoin, Meck-
ing, and Kocks (1996) of a cluster, which
initially consisted of eight S-oriented grains
(face-centered cubic). The results shown are

after a thickness reduction of 85%: (a) section
with stable S orientations; (b) section with
cube bands. The images are stretched by a
factor of ten in thickness (vertical) direction.

the significant thickness reduction, a severe surface roughening was particularly
observed in the soft region of the sample.

Similar studies on the mechanical heterogeneity and the texture evolution in
coarse-grained samples were presented by Beaudoin, Mecking, and Kocks (1996)
and Sachtleber, Zhao, and Raabe (2002). Common to these works is that they show,
depending on grain orientation, substantial in-grain orientation fragmentation and
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strain localization. Beaudoin, Mecking, and Kocks (1996) idealized in their study a
simple polycrystal as a three-dimensional arrangement of eight grains, each con-
sisting of many finite elements per crystal. Nonuniform deformation within indi-
vidual grains led to the development of domains that are separated by boundaries of
high misorientation. Also, localized shearing was seen to occur at the microscopic
grain scale. The authors also discussed the importance of such plastic and orien-
tation localization phenomena for recrystallization nucleation (see also the next
section). Particularly, the landmark paper of Beaudoin, Mecking, and Kocks (1996)
motivated further investigations on in-grain orientation scatter (grain fragmenta-
tion) and corresponding approaches to classify grains according to their kinematic
stability upon loading. The aim of these works was to systematically investigate
which types of grains (texture components) tend to build up large orientation gra-
dients under certain loading states (Raabe, Zhao, and Mao, 2002b; Raabe et al.,
2002c), Figure 9.16.

9.9
Simulation of Recrystallization Using Micromechanical Results of CPFE Simulations

CPFE models can be also used for the prediction of recrystallization phenome-
na. More specifically, this section presents methods for simulating primary stat-
ic recrystallization and related grain coarsening phenomena by combining CPFE
simulations with Monte Carlo, cellular automaton, or network models (Bate, 1999;
Loge et al., 2008; Raabe, 1999, 2002, 2007; Raabe and Becker, 2000; Zambaldi et al.,
2007). Such combined methods can predict microstructures and texture evolution
during thermomechanical treatment. The advantage of these approaches is that
they consider the material heterogeneity of the deformation microstructure and re-
crystallization phenomena as opposed to classical statistical approaches which are
based on the assumption of material homogeneity.

Bate (1999) assumed that the von Mises stress obtained from a CPFE bicrystal
model is linearly related to the substructure density in deformed metals that un-
dergo extensive dynamic recovery. From the CPFE results, he constructed a cell
structure and used it as input to a two-dimensional network model for recrystal-
lization simulation. Cell centers were included at random coordinates, with spe-
cific exclusion rules to ensure that the cell size was inversely proportional to the
local von Mises stress. Cell orientations were interpolated from the CPFE results
and the initial network was set up via Dirichlet tessellation. Figure 9.17a and b
shows two stages in the simulation. At an early stage of annealing, the essential
features of the deformed structure remain apparent. The crystallite size is larger,
and more high-angle grain boundaries emerge near the original grain boundary.
There are some high-angle boundaries associated with the deformation inhomo-
geneity in the upper grain. At the later stage, considerable strain-induced boundary
migration has occurred. Some of the new grains have orientations corresponding
to a cube texture rotated by 15ı about the extension direction (circled points in
Figure 9.17).
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Figure 9.17 (a) Results of Bate (1999) from
a two-dimensional network annealing model
with the initial representation of microstruc-
ture derived from a CPFE simulation. The
initial number of crystallites was 900. Only

grain boundaries with misorientations above
3ı are shown. Darker grains are near the cube
orientation. A snapshot at 400 remaining crys-
tallites is shown in (b). The resulting grain
orientations are given in the f001g pole figure.

Raabe (2001); Raabe and Becker (2000) used a method where the results of a
CPFE simulation served as a starting microstructure for a subsequent discrete
cellular automaton recrystallization simulation. The CPFE model simulated plane
strain compression of aluminum with a coarse columnar grain structure to a total
logarithmic strain of 0.434. The values of the state variables (dislocation density,
crystal orientation) given at the integration points of the finite element mesh were
mapped on the cellular automaton lattice. The original size of the specimen which
provided the input microstructure to the CPFE simulation gave a lattice point spac-
ing of 61.9 μm. The maximum driving force in the region arising from the stored
dislocation density was about 1 MPa. The annealing temperature was 800 K. High-
angle grain boundaries were characterized by an activation energy for the mobility
of 1.3 eV. Low-angle grain boundaries were assumed to be immobile.

The nucleation process during primary static recrystallization has been explained
for pure aluminum in terms of discontinuous subgrain growth. According to this
model, nucleation takes place in areas which reveal high misorientations among
neighboring subgrains and a high local driving force for curvature-driven discon-
tinuous subgrain coarsening. The present simulation approach works above the
subgrain scale, that is, it does not explicitly describe cell walls and subgrain coars-
ening phenomena such as the approach of Bate (1999). Instead, it incorporates nu-
cleation on a more phenomenological basis using the kinetic and thermodynamic
instability criteria known from classical recrystallization theory. Kinetic instability
means that nucleation leads to the formation of a mobile high-angle grain bound-
ary which can sweep the deformed matrix. Thermodynamic instability means that
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Figure 9.18 Two-dimensional simulation of
recrystallization in deformed aluminum on
the basis of CPFE data. Dislocation density in
terms of the driving force (left) and microtex-
ture (right) at an intermediate recrystalliza-
tion step for different nucleation conditions.
The texture is given in terms of the magni-
tude of the Rodriguez vector. The bright re-
gions on the left indicate recrystallization. The
maximum-occurring driving force is 1 MPa.

Black lines indicate grain boundaries above
15ı. Thinner gray indicate misorientations be-
tween 5 and 15ı. The simulation parameters
are 217 600 automaton cells and 800 K. THe
thermodynamic instability criterion is site-sat-
urated spontaneous nucleation in automaton
cells with at least 50% (a), 60% (b), and 70%
(c), respectively, of the maximum-occurring
dislocation density (threshold value).

the stored energy changes across the new high-angle grain boundary, which gives
a net driving force. Nucleation in this simulation is performed in accord with these
two criteria (Raabe, 2001), Figure 9.18. A similar approach of applying a cellular
automaton model to CPFE simulation data of a deformed superalloy for the pre-
diction of local recrystallization phenomena was used by Zambaldi et al. (2007),
Figure 9.19.

9.10
Simulations of Multiphase Transformation-Induced-Plasticity Steels

The mechanical behavior of a transformation-induced-plasticity (TRIP)-assisted
steel is simulated for a uniaxially loaded sample composed of a single austenitic
grain surrounded by a matrix of ferritic grains. The purpose of the present simula-
tion is to study the TRIP effect as a function of crystallographic orientations, that
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Figure 9.19 Comparison of evolving recrystal-
lization microstructures around an indent in a
nickel-based superalloy measured by electron
backscatter diffraction and simulated with a
cellular automaton. The Miller indices par-
allel to ND are shown using an inverse pole

figure color scheme. The coordinate system
indicates the orientation of the parent sin-
gle crystal. White lines in the experimental
results correspond to first-order annealing
twins; black lines coincide with high-angle
grain boundaries above 15ı.

is, the orientation of the austenitic and ferritic grains with respect to the applied
load as well as the orientation mismatch between neighboring grains.

In the present analysis, a cubic sample of size a3 (see Figure 9.20) that rep-
resents a single grain of austenite surrounded by a matrix of ferrite is consid-
ered. In the undeformed state, the polyhedral austenitic grain occupies approx-
imately 13% of the total volume of the sample. The sample is initially stress-
free and is subsequently subjected to a uniaxial tensile loading, which is pre-
scribed through the following boundary conditions: (1) the normal displacement
and the tangential traction on external faces 2, 3 and 5 are set to zero; (2) the
normal displacement on external face 1 is u1 D 1 � 10�4 at, with time inter-
val 0 < t � 2000 s, and the tangential traction is set to zero; (3) the remaining
faces (4 and 6) are traction-free. The boundary conditions applied correspond to
an axial straining rate of 1 � 10�4 s�1. The simulation is performed at a con-
stant temperature of 300 K. Model parameters for ferrite and austenite are taken
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Austenitic grain

Ferritic matrix

a

[100]-loaded
e1

e2
e3

[111]-loaded e1

e2 e3

Face 1 (u1 = 10-4at)
f1

f2

f3

Face 3 (u3 = 0)
Face 5 (u2 = 0)

Face 2 (u1 = 0)

Face 6
Face 4

f1

f1

Figure 9.20 A cubic sample representing a transformation-induced-plasticity (TRIP) steel mi-
crostructure that consists of one grain of austenite in a ferritic matrix under uniaxial tensile
loading.

from Tjahjanto, Turteltaub, and Suiker (2008). They are representative of a ferrite-
based matrix in typical multiphase TRIP steels and are calibrated from a TRIP
steel with an austenite carbon concentration of 1.4 wt%. In the simulations, four
TRIP steel microstructures with different austenitic and ferritic crystallograph-
ic orientations (textures) are considered, namely, the directions [100]A-[100]F (1),
[100]A-[111]F (2), [111]A-[100]F (3), and [111]A-[111]F (4) being parallel to the loading
direction.

Figure 9.21 illustrates the effective stress–strain response (Figure 9.21a) and the
evolution of the austenitic volume fraction (Figure 9.21b) of TRIP steel samples
1–4. In general, samples 2 and 4 (with a [111]F-loaded ferritic matrix) show a high-
er axial stress response than samples 1 and 3 (with a [100]F-loaded ferritic ma-
trix), which indicates that ferrite loaded in the [111]F direction is stronger than that
loaded in the [100]F direction (an analysis of the Schmid stress suggests that [111]F-
loaded ferrite gives the highest stress response under uniaxial tensile loading). Fur-
thermore, samples containing a [111]A-loaded austenitic grain give a relatively high
initial yield stress in comparison with the corresponding samples with a [100]A-
loaded austenitic grain. As reported in Tjahjanto, Turteltaub, and Suiker (2008) and
Turteltaub and Suiker (2005, 2006c), [100]A-loaded austenite is in a more favorable
orientation for transformation. In other words, [100]A-loaded austenite transforms
at a low stress level, whereas transformation of the [111]A-loaded austenite occurs
at a relatively high stress level. This is in agreement with experimental observations
for TRIP steels (see, e.g., Kruijver et al. (2003); Oliver et al. (2002)). In addition, the
[100]A-loaded austenitic grain (in samples 1 and 2) transforms at a higher rate than
the austenitic grain loaded in the [111]A direction (samples 3 and 4), as depicted
in Figure 9.21b. At about 0.08 axial strain, the austenitic grain in samples 1 and
2 has been (almost) fully transformed into the harder martensitic phase. Conse-
quently, the axial stress response of samples 1 and 2 increases rapidly after about
0.08 axial strain. Furthermore, Figure 9.21b shows that transformation behavior in



�

� Franz~Roters, Philip~Eisenlohr, Thomas~R.~Bieler, and~Dierk~Raabe: Crystal Plasticity Finite Element Methods —
Chap. roters9419c09 — 2010/7/23 — page 137 — le-tex

�

�

�

�

�

�

9.11 Damage Nucleation Example 137

(2)

(1)

300

0

1500

1200

900

600

0 0.04 0.08 0.12 0.16

(1) [100]A-[100]F
(2) [100]A-[111]F
(3) [111]A-[100]F
(4) [111]A-[111]F

Logarithmic strain e11

_

C
au

ch
y 

st
re

ss
 T

11
 [M

Pa
]

_

(4)

(3)

0.20

(2)

(1)0.03

0

0.15

0.12

0.09

0.06

0 0.04 0.08 0.12 0.200.16
Logarithmic strain e11

_

A
us

te
ni

tic
 v

ol
um

e 
fr

ac
tio

n 
ξ A_

(4)
(3)

(1) [100]A-[100]F
(2) [100]A-[111]F
(3) [111]A-[100]F
(4) [111]A-[111]F

(a)

(b)

Figure 9.21 Axial stress response (a) and the evolution of austenitic volume fraction (b) as a
function of the axial logarithmic strain of TRIP steel samples consisting of an austenitic grain
embedded in a ferritic matrix.

the austenitic grain is dependent not only on the orientation of the austenitic grain
itself but also on the orientation of the surrounding ferritic matrix. The effect of
the mismatch between the orientation of the transforming austenitic grain and the
surrounding matrix can be quite significant (compare, e.g., samples 3 and 4).

9.11
Damage Nucleation Example

9.11.1
Introduction

Although the number of computational studies of microscale heterogeneous defor-
mation is increasing each year, the fraction of these that attempt to study damage
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nucleation using a CPFE foundation is still small. Clayton (2005) and Ashmawi and
Zikry (2003) sought ways to predict damage nucleation, but neither were correlated
directly with experimental measurements (a more recent work (Vogler and Clayton,
2008) indicates only vague agreement with modeled experiments). Ashmawi and
Zikry (2003) examined an unrealistic microstructure with cubic grains and thick
grain boundary elements used to evaluate slip transfer based upon cos θ cos � illus-
trated in Figure 6.18, which was used as a criterion for damage nucleation. Clayton
(2005) examined how a two-dimensional material model with cohesive zone bound-
ary elements fractured. In contrast, a recent study by Kumar et al. (2008) and Bieler
et al. (2009) examined the three-dimensional heterogeneous deformation that oc-
curred in a patch of microstructure where well-characterized damage nucleation
events were observed in an experimental study from which the fracture-initiation
parameter fip was developed (Simkin, Crimp, and Bieler, 2003). The fip (described
in Section 6.3.8) can be conveniently evaluated using information available in CPFE
models, and this example is used to illustrate the potential for the use of the CPFE
method for tracking the geometrical conditions that can identify high-probability
sites for crack nucleation.

An important experimental observation was that no obvious correlation was
found between microcrack nucleation sites and boundaries having high or low
values of geometrical slip transfer parameters (Figure 6.18). However, in determin-
ing the maximum or minimum value of the slip transfer parameters, one should
pay attention to the activity of the respective slip/twin systems, which is linked
to their resolved shear stress. Thus, boundaries with particularly low (or high)
values of a slip transfer parameter given by m0 D cos ψ cos �, which indicates the
degree of coplanarity and collinearity of slip planes and directions, respectively,
may not be relevant if the respective slip systems are not activated. As an improve-
ment, the fip includes components of the stress and the likelihood of activation
of specific slip systems, as well as a slip transfer term containing only cos �, the
term that assesses the collinearity of slip directions. Remarkably, evaluation of fip
variants using the slip plane coplanarity cos ψ or plane matching conditions at
the boundary cos θ were unable to predict vulnerable boundaries (Kumar et al.,
2008), which was the criterion used by Ashmawi and Zikry (2003). The signifi-
cance for slip collinearity was also observed in a recent study of fatigued copper
bicrystals, where the slip direction of dislocation pileups (which depend on the slip
system with the highest Schmid factor) was identified to be more significant than
slip planes, boundary plane normals, or boundary character in nucleating fatigue
cracks (Zhang and Wang, 2003). This corroboration suggests that a slip-vector-
based (rather than slip-plane-based) metric may provide a robust method to predict
damage nucleation.

9.11.2
Assessing Strains Related to a Fip

In the experimental work, the fip was evaluated with the global stress state, so the
effects of heterogeneous deformation on the local stress state were not considered
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when evaluating the fip. Even with this crude approximation, the fip has statistical
significance based upon appropriate statistical tools for small populations (Kumar
et al., 2008). CPFE modeling provides an estimate of local stress and strain states
at boundaries that can be used effectively to determine if the ability of the fip to
identify vulnerable boundaries can be sharpened.

Microcrack nucleation in TiAl is highly correlated with concentrated shear activ-
ity at or near grain boundaries resulting from mechanical twinning (Simkin et al.,
2007), which has a large intrinsic shear of 0.7 in this crystal structure (TiAl is face-
centered tetragonal with a c/a ratio of 1.02, which makes it close to face-centered
cubic in some respects). The specimen investigated was deformed in four-point
bending, to cause a relatively uniform uniaxial tension stress state in the middle
part of the specimen. In about 6 mm2, 11 microcracked boundaries were identi-
fied at gamma–gamma grain boundaries, and analyzed carefully to obtain crystal
orientations and observations of slip and mechanical twinning activity. Ten of the
11 microstructural patches showed that the microcracks resulted from the most
highly stressed twin system that caused highly concentrated shear displacements
in the boundary, Figure 6.19. The microstructure patch shown in Figure 9.22 (Biel-
er et al., 2009; Kumar et al., 2008) shows microcracks in the one outlier patch from
the trend where the third most highly stressed twin system in grain 14 caused the
microcracks (based upon the global stress state). The CPFE analysis was conducted
to determine if the information provided by CPFE models could provide additional
mechanistic or physical insight.

9.11.3
CPFE Model of TiAl Patch with Active Mechanical Twins

This patch was two-dimensionally meshed with common nodes along the bound-
ary (simulating type III transparent boundaries described above) to determine if
the local stress tensors were significantly different from the global stress state, or
if the grain geometry led to nonobvious deformation effects. The model was made
three-dimensional by expanding it into a five-element-thick stack with about 8000
elements, such that the grain boundaries were all perpendicular to the surface.
(A more accurate three-dimensional model was also built that included proper
grain boundary and annealing twin inclinations obtained from serial sectioning,
and it gave similar results to the projected two-dimensional model shown, but it
was less numerically stable and did not permit strains as large as in the experi-
ment.) The modeled microstructure was surrounded by a rim of elements to pro-
vide a constraint that represents the surrounding microstructure. Boundary condi-
tions were imposed with zero vertical displacement on the bottom edge and a ten-
sile face load on the top edge, with the front and back surfaces being unconstrained
(see Figure 9.22). While developing the mesh, computations were also made where
the z-displacement beneath the surface was constrained, and the patterns of defor-
mation were similar, but led to a lesser strain with the same loading history. In the
physical experiment the microstructure probably deformed with displacements be-
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Figure 9.22 Nucleation of a grain bound-
ary crack due to mode I opening strain at the
grain boundary owing to highly localized twin

shear and the local microstructural patch that
was modeled to assess the local stress and
strain states.
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neath the surface that were between these two convenient computational boundary
conditions.

The constitutive description of the material is based on a crystal plasticity formu-
lation using the multiplicative decomposition of the total deformation gradient that
takes the anisotropic elastic constants into account (Kalidindi and Anand, 1993;
Kalidindi, Bronkhorst, and Anand, 1992; Raabe et al., 2001; Sachtleber, Zhao, and
Raabe, 2002). A phenomenological flow stress for each slip system was identified
from tensile test experiments and adjusted for the plastic anisotropy of the tetrago-
nal L10 crystal structure of TiAl (Bieler et al., 2009). Dislocation slip and mechanical
twinning were incorporated as bidirectional and unidirectional slip systems, re-
spectively. Hence, mechanical twinning operated in a diffuse manner, rather than
as discretely spaced planes of intense shear that are apparent in the micrographs
in Figure 9.22 (Simkin et al., 2007). This material model was implemented as a us-
er material of type HYPELA2 into the commercial finite element method package
MSC.Marc.

Figure 9.23a shows the von Mises stress and the equivalent total strain after sim-
ulated loading to a strain of about 1.8 � 10�2. Most of the grain boundaries (iden-
tified with white lines) developed large stresses owing to the elastic anisotropy and
differential strain conditions from neighboring grains. The strains are more evenly
spread than the stresses, and the locations of high and low total strain are not di-
rectly related to the stress, indicating that complex relationships exist between local

Figure 9.23 Distribution of equivalent stress
and strain (a), evolution of shears on two twin
systems active where microcracks were ob-
served (b), and the three-dimensional spatial

distribution of shears on these two twin sys-
tems at a strain of about 1.8 � 10�2 on the
interfaces and surfaces of grain 14 (c).
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Figure 9.24 Using data extracted from the
CPFE simulation illustrated in Figure 9.23, the
first two terms in the fracture-initiation param-
eter (fip) for three grain boundaries having a

high normal tensile stress component evolve;
the fip of the boundary between grains 14 and
15 was the highest among the three bound-
aries at the end of the physical experiment.

stresses, strains, and grain geometry. Surprisingly, in the region where the micro-
crack nucleation was observed (indicated by ovals), the strains and stresses are in
the middle of the range of stress and strain that occurred throughout the modeled
region. This lack of correlation between local strain energy and damage nucleation
suggests that the fip analysis described above provides information about crack vul-
nerability that cannot be inferred from a simple maximum stress, strain, or strain
energy criterion.

In Figure 9.23b, the amount of shear on the most active slip systems in grain 14
near the microcracks is plotted as a function of loading step, and the spatial varia-
tion of shear on the two most active twin deformation systems is illustrated in the
three-dimensional extractions of grain 14 in Figure 9.23c. Up to a strain of about
5 � 10�3 engineering strain, a greater shear occurred on the twin system with the
larger global Schmid factor. After a strain of about 5 � 10�3, the shear on the twin
system with a lower global Schmid factor accelerated considerably, presumably ow-
ing to the need to maintain compatibility, eventually contributing more shear to the
total strain than the system with the higher Schmid factor, but only in the region
where cracks nucleated; that is, the secondary twin system became the primary
one locally, where microcracks were observed. This result is consistent with the the
ideas behind the fip, where the most active slip system at the boundary is the one
that should be used to evaluate the fip. Hence, the CPFE simulation revealed local
deformation activity consistent with the implications arising from the rest of the
experimental observations.

This computation shows that the fip must evolve as a result of changes in the
relative activation of slip systems, and hence in local strain history. This implies
that a dynamic fip could be developed. Figure 9.24 shows how the first two terms
in the fip evolve, using data extracted from the CPFE run, indicating that the fip
of the boundary between grains 14 and 15 was initially high, and remained high,
whereas the other two boundaries with a high normal tensile stress had lower fip
values. However, this calculation lacks the sum term, which should also evolve
according to the strain history. The formulation of a tensorial evolutionary fip is
under development.
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9.11.4
Issues Regarding Modeling Mechanical Twins in CPFE Models

At this point in time, CPFE approaches are not able to model the extremely planar
shear processes on discrete planes that develop with mechanical twinning. Never-
theless, the diffuse twin activation regions deform in a manner that is consistent
with the experimental observations, if the regions of high twin shear activity are
connected by planes aligned with crystallographic planes, such as that suggested
in Figure 9.23.

Clearly, the intense mechanical twin shears that occur in TiAl cause very sharp
shear displacements at grain boundaries (Figure 6.19). Other kinds of twins in oth-
er alloys have much smaller shear associated with them, such as the f10N12ghN1011i
twin system in titanium alloys, which have a shear strain of 0.17. Figure 9.25 illus-
trates a less common f11N21ghN1N126i twin that was activated in the midst of many of
the more common twins, where a microcrack developed at a global strain of only
about 0.02. Modeling this kind of damage nucleation is more challenging owing
to the activation of several kinds of twins, and innovative methods to incorporate
changes in the volume fractions taken up by particular orientations will need to be
developed, perhaps following the lead of methods to reorient the grain used in sta-
tistical modeling approaches such as those of Karaman et al. (2000a); Proust, Tome,
and Kaschner (2007). It remains to be seen if the simpler diffuse twin modeling ap-
proach will be sufficient to identify boundaries that are vulnerable to cracking.

Figure 9.25 Two types of twins were activated
at a grain boundary (GB) location where a mi-
crocrack was observed after a global strain of
about 0.02. The less common f11N21ghN1N126i

twin associated with the crack (marked T2)
has a large shear of 0.629, whereas the more
common f10N12ghN1011i T1 twins have a shear
of 0.171.
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This preliminary assessment of the effectiveness of the fip in relation to the
CPFE approach shows that the combined use of experimental analysis coupled with
CPFE modeling provides synergistic opportunities to explore and sharpen our un-
derstanding of damage nucleation. Given that encouraging results were obtained
using a moderately accurate two-dimensional representation of the microstruc-
ture (two-dimensional mesh extended into the third dimension), extending this
approach to accurate three-dimensional analysis will lead to a profoundly useful
tool for examining the development of heterogeneous strains that cause nanoscale

Figure 9.26 Stress–strain curves for polycrys-
tals with different average grain diameters
of 14, 33, and 220 μm. Open circles indi-
cate experimental data of Hansen (1979).
Dashed lines result from earlier finite ele-
ment calculations of Arsenlis and Parks (2000,
unpublished). Solid lines correspond to re-
sults of Evers et al. (2002), showing a closer
agreement with experimental data for the case

which adds statistically stored dislocation and
geometrically necessary dislocation densities
(b) to model the flow stress. (a) Flow stress
model adds individual strength contributions
from statistically stored dislocation and ge-
ometrically necessary dislocation content.
(b) Flow stress model is based on addition
of statistically stored dislocation density and
geometrically necessary dislocation density.
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damage nucleation that can be directly introduced into mesoscale microstructural
models, and thus efficiently bridge over a level of scale that has been difficult to
overcome (Hao et al., 2004).

9.12
The Grain Size Dependence in Polycrystal Models

Evers, Brekelmans, and Geers studied approaches to include the size-dependent
effects associated with interfaces and GNDs in CPFE and Taylor-type homogeniza-
tion frameworks (Evers, Brekelmans, and Geers, 2004a,b; Evers et al., 2002; Geers
and Kouznetsova, 2007). For instance in Evers et al. (2002), a local plastic strain
gradient-dependent crystal plasticity model was suggested which is capable of de-
scribing the grain-size-dependent mechanical response of polycrystals.

This approach consists in assigning GND populations to intragranular incom-
patible deformations that arise as a result of the existence of grain boundaries be-
tween abutting crystals. The polycrystal appears in this model as a statistical set
of bicrystal aggregates which altogether provide an orientation-dependent density
of misfit dislocations, which in turn provide extra hardening to the system. As the
intragranular heterogeneous deformation is related to the grain size, the amount
of GND-enhanced hardening grows as the crystal size drops, Figure 9.26a and b.

The conventional slip system hardening through SSDs is described by a system
of phenomenological equations that capture the influence of self-hardening and la-
tent hardening. The model provides a crystallographically and physically motivated
hardening dependence in polycrystals based on their grain size. The morphological
texture can be incorporated through the inclination and crystallographic distribu-
tion of the grain boundaries and their mutual weights.
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10
Macroscopic Examples

10.1
Using Elastic Constants from ab initio Simulations for Predicting Textures
and Texture-Dependent Elastic Properties of �-Titanium

This section presents applications of multiscale crystal plasticity finite element
(CPFE) simulations where the elastic constants are obtained by ab initio simu-
lations (density-functional theory) (Bockstedte et al., 1997) for the prediction of
textures and texture-dependent elastic properties. We apply this approach to Ti–Nb
binary biomaterial alloys that can be used for human implants. The two mod-
els we combine (ab initio, CPFE) work at very different length and time scales.
The strength of this combination for predicting certain polycrystal properties
lies in the fact that continuum-based theoretical models such as CPFE rely on a
number of ground-state properties (e.g., elastic tensor). The use of texture data
is in such cases (elasticity) is sufficient to predict realistic data also for complex
polycrystalline aggregates irrespective of their thermomechanical process his-
tory. A particular advantage of using finite-element-based methods rather than
an analytical or semi-analytical approach for obtaining the polycrystal stiffness
from corresponding ab initio single-crystal data is that it allows one to consid-
er any kind of crystallographic texture, including also intragrain or in-grain in-
teractions. Most homogenization methods for obtaining the elastic modulus of
a polycrystal, such as the Voigt (1889), Reuss (1929), Hill (1952), and Hershey
(1954) models, usually either neglect texture or assume highly simplified bound-
ary conditions. A further important aspect of using ab initio elastic results in
conjunction with crystal mechanical simulations is the fact that for the elastic
constants of single crystals (which are a necessary input to CPFE simulations)
experimental data are often lacking (Counts et al., 2008b; Ma et al., 2008). De-
tails about the ab initio calculations used in this section are given in Raabe et al.
(2007b).

The goal of the first example is to investigate the dependence of the rolling tex-
ture evolution of two �-Ti–Nb binary alloys on the elastic properties. For this pur-
pose we used different elastic constants in terms of the magnitude of the tensor
components and the elastic anisotropy. These elastic constants, which were ob-
tained from ab initio electronic structure calculations (Raabe et al., 2007b), served

Crystal Plasticity Finite Element Methods.
Franz Roters, Philip Eisenlohr, Thomas R. Bieler, and Dierk Raabe
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32447-7
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Figure 10.1 '2 D 45ı sections of the ori-
entation distribution functions obtained for
deformation texture simulations of two �-Ti–
Nb binary alloys at engineering thickness re-
ductions of 60 and 80% using two different

sets of elastic constants. Top row: Young’s
modulus surface diagram of Ti–19 atom%Nb
(left) and Ti–31 atom%Nb (right). The Zener
ratio is defined as AZ D 2C44/(C11 � C12).

as constitutive input variables in a CPFE simulation in conjunction with a vis-
coplastic hardening law (Ma et al., 2008).

�-Ti alloys have a body-centered cubic crystal lattice structure. At room tempera-
ture the structure can be stabilized by the addition of niobium or molybdenum. As
slip systems we used f110g, f112g, and f123g slip planes and h111i/2 Burgers vec-
tors (Raabe, 1995a,b). Two alloys were investigated, namely, Ti–19 atom%Nb and
Ti–31 atom%Nb. The elastic constants for Ti–19 atom%Nb as calculated by the ab
initio method were C11 D 131.2 GPa, C12 D 114.5 GPa, and C44 D 26.8 GPa.
The Zener anisotropy ratio, which is defined as A Z D 2C44/(C11 � C12), amounts
to 3.2. The predicted elastic constants for Ti–31 atom%Nb were C11 D 154.8 GPa,
C12 D 118.5 GPa, and C44 D 19.2 GPa, giving a Zener ratio of 1.1. The rolling
texture simulation was conducted using plane strain compression boundary condi-
tions and random initial texture. Figure 10.1 shows the predicted crystallographic
textures in terms of a set of '2 D 45ı sections through Euler space for the two cas-
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Figure 10.2 Crystal elasticity finite element
method (CEFEM) predictions of the distri-
bution of elastic equivalent stress and strain
values in three randomly textured polycrys-
talline �-Ti alloy aggregates each consisting of
200 grains and 32 � 32 � 32 finite elements.
Each polycrystalline aggregate is character-
ized by a specific elastic tensor which was

calculated using ab initio methods. The (near-
ly) isotropic case yields a very narrow distri-
bution of stresses and strains, whereas the
most anisotropic case leads to pronounced
local stress–strain fluctuations (and thus con-
centrations). The samples were subjected to
(purely elastic) tensile loading.

es. The results show that there is no pronounced relationship between slip system
selection and the magnitude and anisotropy of the elastic constants.

A second (elastic) example of using ab initio elastic stiffness constants in a CPFE
framework is shown in Figure 10.2. The two diagrams present the distribution of
the equivalent elastic stress and strain values in a randomly textured polycrystalline
aggregate consisting of 200 grains and 32 � 32 � 32 elements for three different
elastic tensors (magnitude, anisotropy) of three �-Ti alloys. The specimens were
subjected to a purely elastic unidirectional tensile load. The data show that an in-
crease in the elastic anisotropy (quantified here in terms of the Zener ratio A Z)
leads to a remarkable increase in the width of the distribution of both stress and
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strain. This means that local elastic loads (hot spots) among neighboring grains be-
come more frequent as the elastic anisotropy increases. This effect may play a role
in such diverse fields as internal stress evolution and stress corrosion cracking.

10.2
Simulation of Earing during Cup Drawing of Steel and Aluminum

Cup drawing is a standard material test for the characterization of material
anisotropy. In this section three application examples of the CPFE method to
deep drawing are presented. The first example is an AA3104 hot band with a pro-
nounced cube texture. In this, the through-thickness variation of texture is ignored,
that is, the same texture is used over the whole sheet. In contrast, the second ex-
ample shows how through-thickness texture gradients can be taken into account
using a ferritic 17 wt%Cr (X6Cr17, AISI 430) stainless steel as an example. Finally,
the third example demonstrates how CPFE simulations can be used to optimize
the earing behavior during cup drawing.

10.2.1
Earing Behavior of AA3104 Hot Band

The cup drawing simulation shown in this section is for AA3104 hot band. Fig-
ure 10.3a shows the experimental f111g pole figure of the material. It shows a
cube texture typical for hot-rolled aluminum alloys. Figure 10.3b shows the pole
figure recalculated from the texture component fit (Helming, 1996; Helming et
al., 1994; Raabe and Roters, 2004). Besides the random portion of the texture, only
one spherical component was used to fit this rather pronounced cube texture (Ta-
ble 10.1). Owing to the orthorhombic sample symmetry, the single orientation has

Figure 10.3 Experimental (a) and recalculated (b) f111g pole figure of the AA3104 hot band.
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Table 10.1 Texture components used for fitting the texture of the AA3104 hot band (Helming,
1996; Helming et al., 1994; Raabe and Roters, 2004).

Euler angles (ı) Scatter (ı) Intensity

'1 φ '2 bc I c

197.9 6.5 245.0 15.2 0.29

random – 0.71

Figure 10.4 Simulated and experimental earing profiles for the AA3104 hot band.

to be balanced by three additional symmetrically equivalent orientations to correct-
ly reproduce the response of the material in the CPFE calculations. The resulting
earing profile is shown in Figure 10.4 together with the experimentally measured
earing profile. There is a very good agreement between simulation and experiment.
Figure 10.5 shows the relative wall thickness distribution for the drawn cup (only
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Figure 10.5 Relative wall thickness of the drawn cup (brighter is thicker).

one quarter has been simulated owing to sample symmetry). It can be seen that
the bottom of the cup is thinner, whereas the upper part of its side is thicker than
the original sheet. The thickening is most pronounced in the valley of the earing
profile (i. e., at the 45ı position).

10.2.2
Effect of Texture Gradients on Earing Behavior of X6Cr17

The deep-drawing simulation in this section includes the through-thickness tex-
ture gradient of the starting hot band of a ferritic 17 wt%Cr (X6Cr17, AISI 430)
stainless steel (Fedosseev and Raabe, 1994; Raabe and Lücke, 1993). In the simu-
lation this is achieved by using three finite elements to mesh the blank thickness.
To take the texture gradient into account, the center element layer is assigned dif-
ferent texture components compared with the outer element layers (Figure 10.6).
For simulations without a through-thickness gradient the same set of components
is assigned to all three element layers. Table 10.2 shows the two sets of texture
components for the center layer (s D 0) and the subsurface layer (s D 0.8). The
simulation considers f110gh111i, f112gh111i, and f123gh111i slip systems (Raabe,
1995b). The results are compared with another finite element simulation based
on a Hill48 yield surface (Hill, 1948) calibrated using experimental r-values (r0 D
1.387, r45 D 0.817, r90 D 0.92) and with experimental data.
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Table 10.2 Texture components used for fitting the texture of ferritic 17 wt%Cr (X6Cr17, AISI
430) stainless steel (Helming, 1996; Helming et al., 1994; Raabe and Roters, 2004).

position Euler angles (ı) Scatter (ı) Intensity

'1 φ '2 bc I c

Center, s D 0

257.6 119.9 122.9 16.8 0.1684

238.9 83.1 81.6 20.1 0.1436
47.4 133.1 52.9 19.1 0.1176

137.0 62.0 32.6 15.3 0.0996
209.7 72.7 68.7 11.4 0.0420

125.5 57.2 44.0 16.5 0.0100

random – 0.4188
Subsurface, s D 0.8

262.3 96.9 20.6 20.9 0.2452

251.0 59.0 42.1 21.7 0.2224
121.7 84.6 6.2 16.0 0.1136

218.1 113.9 28.0 13.5 0.0820
155.1 45.5 42.3 13.0 0.0736

231.0 55.6 51.4 7.2 0.0104

random – 0.2528

Material was assigned
texture components of
the subsurface layer (s=0.8)

Material was assigned
texture components of
the center layer (s=0.0)

1/3

1/3

ND

TD
RD

Figure 10.6 Mapping of the through-thickness texture gradient in the finite element mesh of the
blank.

Figure 10.7 shows the predicted and the measured earing profiles in terms of
the relative ear height (normalized by the average height). The ear profile predicted
by the simulation with the texture components of only the center layer (s D 0.0)
reveals a shape with a broad maximum around 45ı. On the other hand, the profile
simulated with the texture of only the subsurface layer (s D 0.8) is characterized
by a broad minimum in the same region (45ı). The reason for this difference is
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Figure 10.7 Experimental and simulated earing profiles for ferritic 17 wt%Cr (X6Cr17, AISI 430)
stainless steel.

that the texture components fitted from each respective layer of the material repro-
duced different initial textures and, consequently, different anisotropy. The course
of the ear profile calculated by using only the texture components of the subsurface
layer, s D 0.8, can be presumably explained by the influence of the relatively weak
intensity of the f111gh112i component of the starting texture in this layer. The high
orientation density of the f111gh112i texture component in the initial texture of the
center layer (s D 0.0) is responsible for the ear shape with the strong peak at 45ı

observed for the simulation that was performed by using the texture components
of this layer. The results also show that the texture component CPFE simulation
which used the gradient texture (1/3 of the through-thickness volume occupied by
the center layer texture (s D 0.0) and 2/3 of the volume occupied by the sub-surface
layer texture (s D 0.8) where 1/3 accounts for the bottom and 1/3 for the top sur-
face region, respectively) fits the experimental data better than that obtained from
the Hill48 yield surface prediction.

10.3
Simulation of Lankford Values

The Lankford value (also referred to as r value), that is, the ratio of lateral strains �22

and �33 for a tensile test in the 1-direction, is an important measure for the in-plane
anisotropy of sheet materials. It is also required for the calibration of anisotropic
yield models, for example, the frequently used Hill48 model (Hill, 1948). Experi-
mentally, the r value is usually measured for three directions only, namely, for 0ı,
45ı, and 90ı with respect to the rolling direction. Starting with an experimental-
ly measured texture, the CPFE approach can be used to predict r values for any
sheet orientation by simply rotating the initial texture by the respective angle. As
the material orientation is specified by Euler angles, the angle between the rolling
direction and the tensile direction can be easily adopted by modifying the angle
'1. Moreover, such predictions do not only provide the r value(s) for a given strain
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Figure 10.8 Comparison of simulated (lines) and experimental (symbols) values of the Lankford
value (or r value) for a DC04 deep-drawing steel at 20% strain. The two curves show the results
for different values of the strain rate sensitivity (see Eq. (6.8)).

(in engineering applications the r value is measured at 20% strain), but also yield
information on the development of the r value as a function of strain.

In the simulation the r value is then determined as �22/�33 for the center node of
the mesh. Figure 10.8 shows a comparison of simulated and experimental values of
the r value for a low-carbon automotive deep-drawing steel (DC04). Although only
three experimental points are available, the r value was calculated at steps of 5ı. It
should be mentioned that the magnitude of the orientation-dependent r value can
be systematically shifted with the choice of the strain rate sensitivity assigned to
individual slip systems. Since the slip system rate sensitivity need not necessarily
coincide with the macroscopic rate sensitivity of the sheet material, a fitting of the
strain rate sensitivity of the slip mechanism, which is difficult to determine directly
in an experiment, is conceivable from measured r values.

10.4
Virtual Material Testing for Sheet Stamping Simulations

10.4.1
Introduction

Predicting springback of complex industrial parts after stamping and (particular-
ly) trimming still lacks accuracy. The direct use of constitutive models involving
crystallographic slip for industrial forming simulations at the component scale is
currently not realistic, owing to the high computational costs. Nevertheless, these
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Table 10.3 Hardening parameters derived from calibration of the virtual specimen.

Parameter DC04 H320LA

h0 1293 5569
τs 48 101

a 7 3.5

complex models, which incorporate microstructure information such as slip sys-
tems and orientation distribution, can be incorporated at the lower scale in a two-
scale computational homogenization as outlined in Section 7.3.

In this section the calibration of empirical constitutive models (yield locus) used
at the component scale on the basis of virtual deformation tests of a representa-
tive volume element (RVE) is demonstrated. The constitutive response of the RVE
is modeled with the CFFE method and calibrated against a standard tensile test.
Owing to the large flexibility in boundary conditions applied to the RVE, it then be-
comes possible to mimic more complex strain paths, such as biaxial tensile, com-
pressive or shear tests, to extract the required parameters of the analytical material
description. This procedure is frequently termed virtual material testing and, provid-
ed the virtual specimen is sufficiently reliable, allows for testing along strain paths
that would be very expensive or even impossible to perform in reality. The appli-
cation of the CPFE method for the virtual testing is demonstrated for two ferritic
steel grades (DC04 and H320LA). The Vegter yield locus (Vegter et al., 2003) is used
as the analytical material model allowing for the simulation of a typical industrial
part in PAM-STAMP 2G.

10.4.2
Virtual Specimen

The virtual specimen employed in the present work consists of 10 � 10 � 10 differ-
ently oriented grains, each discretized by one finite element. This grain aggregate
is considered representative of the microstructure and associated texture, hence
serves as a RVE. The initial texture was discretized using the texture component
method (Raabe and Roters, 2004). The phenomenological model described in Sec-
tion 6.1.2 served as the constitutive law in which the hardening behavior of the
48 slip systems is assumed identical.

The virtual specimen was calibrated by determining the slip system hardening
parameters on the basis of uniaxial tensile test data along the rolling direction
(0ı see Figures 10.9a and 10.10a). This leads to the hardening parameters given
in Table 10.3. The quality of the model prediction was evaluated by comparing the
remaining experimental data (stress–strain response and r value of tensile tests
in different directions and tension–compression tests) with corresponding simula-
tions.
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Figure 10.9 Calibration basis and resulting
predictions of uniaxial stress–strain response
and strain evolution of the Lankford value for
DC04 steel. (a) Calibration data on nominal
stress (left) for uniaxial tension along 0ı. The

Lankford value (right) has no direct influence
on the calibration. (b) Prediction of nominal
stress and r value for uniaxial tension along
45ı. (c) Prediction of nominal stress and r val-
ue for uniaxial tension along 90ı .

Generally, predicted stress–strain responses for tensile loading under 45ı and
90ı agree well with the corresponding experiments (see Figures 10.9b and c
and 10.10b and c), with the exception of a slight underestimation (deviating less
than 10%) in the case of DC04 under 45ı (Figure 10.9b). However, the prediction
for r values is far from perfect. In particular, for the cold rolling steel DC04, the
simulated r values for 0ı and 90ı are strongly underestimated (Figure 10.9a and
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Figure 10.10 Calibration basis and resulting
predictions of uniaxial stress–strain response
and strain evolution of the Lankford value for
H320LA steel. (a) Calibration data on nominal
stress (left) for uniaxial tension along 0ı. The

Lankford value (right) has no direct influence
on the calibration. (b) Prediction of nominal
stress and r value for uniaxial tension along
45ı. (c) Prediction of nominal stress and r val-
ue for uniaxial tension along 90ı.

b). in the case of H320LA steel, the discrepancies are less severe as can be seen in
Figure 10.10.

A further validation of the calibration was done against a more complicated test
involving load reversal, that is, tension–compression. Figure 10.11a and b com-
pares experiment and simulation of unidirectional tension and reverse loading in-
to compression after about 0.08 strain. The predicted equivalent stress agrees quite
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Figure 10.11 (a, b) The reversal of the loading
direction from tension to compression results
in a lower equivalent stress compared with the
level observed under continued tensile load-

ing (Bauschinger effect). This effect is found
in real tension–compression tests (R) and is
well reproduced by the virtual specimen (V).

well and the observed Bauschinger effect (lower flow stress after change of loading
direction) is nicely reproduced. Compared with the simulation, the curve measured
after load reversal exhibits less strain hardening (even softening) after compres-
sive strains of about 0.05. This softening is caused by buckling of the specimen in
compression. An important point to notice is that the virtual specimen exhibits a
Bauschinger effect, even without kinematic hardening being explicitly incorported
into the constitutive law.

10.4.2.1 Influence of Finite Element Type
As discussed in Chapter 8, the approximation of displacement field gradients de-
pends on the polynomial degree of the finite element shape function (as well as
the integration scheme used). Therefore, simulations with four different element
types (linear and quadratic shape functions, reduced and full integration scheme)
were compared. The resulting stress–strain response, evolution of the r value, and
exemplary displacement fields are shown in Figure 10.12.

In view of the accuracy with respect to experimental results, the deviation be-
tween the four different element types regarding the stress–strain response as well
as the r-value evolution is minor. It can be noted that elements with a full inte-
gration scheme lead to a slightly higher tensile strength than those with reduced
integration. The RVE discretized by finite elements using reduced integration and
linear shape functions (Abaqus notation “C3D8R,” eight nodes) exhibits the largest
fluctuation in displacements. Although quadratic elements (and full integration)
can reproduce inhomogeneous deformation more accurately, the significant re-
duction in computation time with only small differences in the calculated tensile
strength justifies the use of “C3D8R” elements in all subsequently presented sim-
ulations.
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Figure 10.12 Stress–strain response and r values for different element types.

10.4.3
Stamping and Trimming Simulation

The material model as proposed by Vegter et al. (2003) and implemented in PAM-
STAMP 2G (PAM, 2004) is, essentially, a very flexible description of the yield locus
based on interpolation of experimental data by means of a cubic Bezier spline (Fig-
ure 10.13). The interpolation requires at least the following deformation tests:

	 A stack compression test with measurement of ovalization.
	 Three uniaxial tensile tests (0ı, 45ı, 90ı) with lateral strain measurement.
	 Three tensile tests with constrained lateral strain (plane strain, 0ı, 45ı, 90ı). In

contrast to real tests, the lateral stress can be identified in virtual tests.
	 Three shear tests, providing yield locus data in the lower-right quadrant for dif-

ferent principal stress directions with respect to the rolling direction.
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Figure 10.13 The Vegter yield locus (Vegter et al., 2003) derived from virtual test data. Corre-
sponding individual deformation tests are depicted on the right.

Table 10.4 Parameters for the Vegter yield locus (PAM-STAMP 2G (PAM, 2004)) obtained from
virtual deformation tests on H320LA.

Angle to rolling direction (ı)
Parameter 0 45 90

σ uniaxial 1 1.01 1.029

r uniaxial 0.624 0.798 0.950
σ-plane strain 1.1 1.14 1.16

α-plane strain 0.5 0.5 0.5
σ-pure shear 0.5615 0.5743 0.603

r biaxial 0.75 – –

σ biaxial 1.004 – –

All the parameters required (see Table 10.4) are determined from virtual deforma-
tion experiments at 1% accumulated shear deformation on the slip systems, which
corresponds to approximately 0.4% plastic strain.

With the above yield locus parameterization, stamping, trimming, and spring-
back of a car boot made of H320LA are simulated (Figure 10.14). For compari-
son, two additional simulations were carried out: one using a simple yield locus
(Hill48 (Hill, 1948)) fitted to tensile data from experiments and another in which
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Figure 10.14 Stamping part of a car boot. Photographs and visualized measured data. After
stamping and after trimming.

Figure 10.15 Shape deviation between measured and simulated geometry for different material
models and different types of test data for parameter fitting.

the Vegter parameterization relied on experimentally determined r values instead
of those resulting from the virtual deformation tests.

The differences between optically scanned and simulated geometries are illus-
trated in Figure 10.15. The maximum deviation of the simulation using purely vir-
tual test data (center row) is larger than that of the simple yield locus. If the r values
of the virtually fitted Vegter model are replaced by measured ones, the discrepancy
is reduced. However, the remaining disagreement is only marginally less than that
resulting from the Hill48 yield locus.

10.4.4
Conclusions

Springback simulation and compensation generate an increasing demand for
precise material models. Microstructural approaches such as texture-based crys-
tal plasticity, however, still require too many resources in terms of memory and
computational power for a direct simulation of industrial sheet metal forming;
therefore, more sophisticated empirical models are likely to emerge. The resulting
increased flexibility (and accuracy) of those models entails a higher experimen-
tal effort for parameter identification. In this context, virtual specimens with mi-
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crostructure-based constitutive laws may be used to move the effort from real-world
mechanical testing to computer simulation.

In this chapter a virtual specimen was used to demonstrate the process from
model calibration over virtual deformation tests to simulation of a real part. The
particular setting of the constitutive model and RVE setup still lacks the important
capability to predict the r values correctly. On the other hand, the satisfactory pre-
diction of the Bauschinger effect encourages further work. Shortcomings of the
presented virtual specimen could be addressed by

	 improving the texture sampling for better reproduction of the measured pole
figures by discrete grain orientations,

	 accounting for anisotropy of the grain shape, that is, use more than one element
per grain,

	 improving the calibration procedure, which should include the latent hardening
matrix.

Even with the given restrictions, it was shown that material parameters obtained
from texture data and tensile tests using the virtual test program can compete in
simulation quality with the full parameter set obtained experimentally.
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11
Outlook and Conclusions

The crystal plasticity finite element (CPFE) method is a powerful and comprehen-
sive theoretical approach for the inclusion of micromechanical models and con-
cepts in a unified theory of crystal plasticity including proper boundary condition
treatment capable of treating a wide range of mechanical problems in materials
science and engineering. The dyadic formulation of the constitutive laws within
the CPFE approach allows the user to map such different deformation mecha-
nisms as dislocation slip, martensite formation, twinning, grain boundary shear,
and deformation via shear banding (in glass) and, in part, also their interactions,
rendering the method a multimechanism and multiphysics approach. Its greatest
potential lies, therefore, in the mesoscopic (intergrain scale, grain-cluster scale) and
the microscopic (grain scale, intragrain scale) regime. It was further shown that the
CPFE method, when formulated in conjunction with an appropriate homogeniza-
tion scheme, is also suited to predict macroscopic mechanical behavior in metal
forming, tool design, and process engineering. The particular strength of the finite
element method lies in studying the influence of boundary conditions on mechan-
ical or microstructural predictions. This advantage renders the CPFE method an
ideal companion for the synergistic analysis of complex mechanical tests where a
detailed sensitivity check is of relevance for a proper interpretation of the experi-
mental observations. Another more practical advantage of the method is that it can
be used in conjunction with commercial or academic finite element solvers in the
form of user-defined material subroutines (the software of the authors is available
as freeware for noncommercial use upon request).

Besides these profound achievements of the CPFE approach, there are also some
critical gaps in the framework and in the experimental information that is required
to support further development. The open questions can be grouped into issues
of microstructure patterning, homogenization, physics and statistics behind con-
stitutive models, damage mechanics, multiscale approaches, numerical stability,
coupling to experiments, and alternative solution methods for crystal plasticity con-
stitutive models.

The first category (microstructure patterning) refers to the fact that during de-
formation defects in crystals tend to self-organize into patterns which often re-
veal hierarchical structure. Different types of lattice defects reveal, in part, different
deformation-induced pattern characteristics which often change in character and
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size scale as deformation proceeds (dislocation cells, subgrains, microbands, shear
bands, martensite lamellae, twin packages, faceting, rafting). Presently, there is no
adequate description of these processes within CPFE models linking the proper-
ties and dynamics of individual defects to a quantitative description of patterns in
a form suitable for inclusion in nonlocal continuum theories, although promising
energy minimization approaches have been discussed by Müller (1996), Ortiz and
Repetto (1999), Bhattacharya (2003), Aubry and Ortiz (2003), Conti, Hauret, and
Ortiz (2007), and Dmitrieva et al. (2009).

The second category (homogenization) refers to the process by which the prop-
erties of a certain aggregate volume are derived from the local properties of its con-
stituents by averaging over space and/or time. Homogenization is a most critical
aspect for successful applications of the CPFE method at the mesoscopic scale and
for macroscopic forming applications. It is clear that the microstructure and crys-
tallographic texture of large parts cannot be represented via grain-by-grain maps
(e.g., transferred from electron backscatter diffraction data onto a finite element
mesh). Instead, homogenized averages, which are formulated as separate sub-
models, must provide the mechanical response of a representative volume ele-
ment (Böhlke, Risy, and Bertram, 2005; Raabe et al., 2002a; Raabe and Roters, 2004;
Zhao et al., 2001). These submodels deal with complex deformation mechanisms
concerning the details of the interaction among competing deformation carriers,
grains, and phases at a simplified level. Typical approaches in this domain follow
Taylor–Bishop–Hill or self-consistent model assumptions. Recent developments
toward a more realistic treatment of local interactions in the field of multicrys-
tal homogenization are advanced grain-interaction Taylor–Bishop–Hill-type mod-
el variants as introduced by the groups of Gottstein (Crumbach et al., 2001), Van
Houtte (Van Houtte, Delannay, and Samajdar, 1999), and Eisenlohr (Eisenlohr et
al., 2009). Alternatively, homogenization can also be conducted in two subsequent
steps in the form of a hybrid approach. The first one consists of the assembly of
virtual polycrystalline (and, if required, multiphase) specimens and the subsequent
simulation of their integral response under load. The second step consists in feed-
ing these results into simpler constitutive laws (for instance, as fitting constants
into a yield surface polynomial) which do not require a CPFE model framework.
These techniques are, for instance, currently under development for engineering
applications in the automotive industry (Kraska et al., 2009) (see also Section 10.4).

The third category (physics and statistics) refers to open questions behind consti-
tutive CPFE model formulations. Some issues in this context involve the treatment
of nucleation and growth phenomena of twins and martensite lamellae. In this
field even some of the fundamental metallurgical mechanisms are not yet fully un-
derstood. Examples are nucleation models for deformation twins which are based
on cooperatively acting configurations of partial dislocations or the nucleation of
martensite plates at shear bands or existing interfaces. Also the degree of plastic
deformation of martensite in an austenitic environment is not yet well understood.
Methods need to be developed to efficiently model the formation of ultrathin twins,
twin packages, and repeated twinning (higher-order deformation twins). Another
issue is the constitutive formulation of misfit stresses around martensite lamellae.
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A further challenge associated with the consideration of multiple crystallographic
deformation mechanisms within the same volume element lies in the degree of
local homogenization that is required to tackle their interactions. This means that
for some cases only one type of deformation mechanism (e.g., dislocation slip) may
prevail, whereas in others a mix (e.g., dislocation slip and deformation twinning)
must be considered at the same integration point. The latter situation requires
definition of a submodel (homogenization model) that describes the interaction of
coexisting deformation mechanisms at the same field point. In addition to develop-
ing better modeling approaches for mechanistic details, modeling approaches for
alloy element effects will also be a strategic area of further research. Future efforts
in this direction must aim at capturing elementary chemical details in constitutive
laws. Most CPFE simulations which are compared with experimental data have,
for good reasons, been conducted on (commercially) pure metals or certain well-
characterized simple alloys. Future formulations should consider changes caused
by solid solution effects and coherent or incoherent precipitations (Zambaldi et al.,
2007) on a sound physical and systematic basis so that variations in the mechani-
cal response among similar alloys can be investigated. Incorporation strategies that
transfer the results of phase field modeling are promising to connect alloying and
microstructure evolution to assess mechanical response. Other open questions in
this field refer to the statistical limits of constitutive laws that typically anticipate
some average density of defects but not their discrete arrangement. For disloca-
tion-based constitutive formulations it may be important to consider in more de-
tail mechanical effects that possibly start to dominate at small scales such as slip
localization and slip burst events, dislocation source depletion, geometrically nec-
essary dislocations, surface source/sink effects, and grain boundary nucleation of
dislocations (Dmitrieva et al., 2009; Huang and Van Swygenhoven, 2009). Suitable
dislocation-based frameworks which could be modified to capture at least certain
aspects of these mechanisms were suggested by various groups, for example, Ar-
senlis and Parks (1999, 2002); Cheong and Busso (2004); Evers, Brekelmans, and
Geers (2004a,b); Evers et al. (2002); Li et al. (2009); Ma and Roters (2004); Ma, Rot-
ers, and Raabe (2006a,b). Similar questions exist for the effect of the grain boundary
structure on the mechanical response (Clark et al., 1992; Evers, Brekelmans, and
Geers, 2004b; Ma, Roters, and Raabe, 2006b,c; Shen, Wagoner, and Clark, 1986; Wei
and Anand, 2004; Wei, Su, and Anand, 2006; Zaefferer et al., 2003). The role of dif-
fusion in accommodating local strain concentrations particularly in the context of
creep and grain boundary sliding has only recently been attempted, but only in two
dimensions (Agarwal et al., 2007; Bower and Wininger, 2004). Finally, it must be
discussed how small the density of lattice defects may become within a certain ele-
ment without violating the statistics behind a constitutive law. The latter questions
are particularly relevant when applying the CPFE method to ultrafine structures
(small samples, small grain size, lamellar structures, wire drawn microstructures).

The fourth category (damage mechanics) deals with the overlap between crystal
plasticity and fracture phenomena. The CPFE method is well suited for the identi-
fication of critical local parameters which may lead to damage initiation. This ad-
vantage is obviously due to its ability to map realistic grain assemblies so that the
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effects of certain critical ingredients or configurations of such a given microstruc-
ture can be properly taken into account in a simulation. The main open question
in this field is the identification of the mechanical and microstructure criteria that
are responsible for local damage initiation. In some cases, such as in the pres-
ence of weak second phase interfaces or brittle inclusions, the location of damage
nucleation is rather trivial, but in other cases where damage occurs in otherwise
homogeneous single-phase polycrystals, more complex rules are required. Possi-
ble criteria that are currently being investigated by CPFE simulations are critical
local values for the accumulated amount of shear, deformation energy density, and
stress. Besides the comparison of corresponding simulations with experiments, it
would also make sense to derive adequate damage criteria, such as modified Grif-
fith models, which can help to establish a quantitative link between mechanical
quantities that the CPFE method provides and damage nucleation. Promising ap-
proaches along these lines were recently investigated by the group of Bieler (Bieler
et al., 2005a, 2009; Kumar et al., 2008) (see also Section 6.3).

The fifth main aspect comprises multiscale models in conjunction with the CPFE
method. Obviously, this is a broad term which needs to be refined. The term mul-
tiscale modeling refers to the integration of constitutive model ingredients which
stem from different time and/or length scales and, as a rule, from different sub-
models. In the case of the CPFE method, a most obvious need for multiscale ap-
proaches exists for those topics where current constitutive models have reached
their limits. A prominent example is the integration of dislocation interactions
which have been obtained from discrete dislocation dynamic codes into statistical
dislocation density-based laws used in CPFE models. This approach is currently be-
ing pursued by Arsenlis and Tang (2003). The direct use of results obtained from
atomic-scale simulations is still a great challenge since a huge discrepancy in space
and particularly in time scale exists between the atomistic and the crystal plasticity
scale. Recent progress along these lines has been reported in the field of damage
initiation where interactions between the microstructure scale and the atomic scale
play a dominant role (Buchheit, Wellman, and Battaile, 2005; Clayton and McDow-
ell, 2004; Curtin and Miller, 2003; Hao et al., 2003; Liu et al., 2004; Voyiadjis, Abu
Al-Rub, and Palazotto, 2004). For conventional dislocation motion it must be con-
sidered though that plasticity investigations via molecular dynamics simulations
usually describe high-rate loading situations owing to the tiny integration steps re-
quired by the method. The deformation rates in such cases are typically orders of
magnitude above realistic scales, so the transfer of such information must be done
with great care since the results cannot in all cases be used for low-rate deformation
constitutive models that typically prevail in CPFE simulations. Therefore, it may be
more pertinent for molecular dynamics simulations of plasticity to provide certain
constants or mechanisms for improved formulations of dislocation core structures,
mobility, non-Schmid behavior, dislocation reactions, damage initiation, and hard-
ening mechanisms. Other combinations are conceivable where a continuum-scale
finite element method is used for a proper boundary condition treatment around a
simulation regime that is treated by an atomistic method. Much progress may be
expected from including thermodynamic and kinetic quantities that are derived by
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Figure 11.1 Direct fast Fourier predictions
of an elastic problem based on the approach
of Lebensohn (2001); Lebensohn et al. (2008).
The results show the distribution of elastic
equivalent stress and strain in three random-
ly textured polycrystalline �-titanium alloy
aggregates each consisting of 200 grains and
32�32�32 Fourier points. Each polycrystalline
aggregate is characterized by a specific elastic
tensor which was calculated using ab initio
methods. The (nearly) isotropic case yields
practically no internal mechanical spread,

whereas the most anisotropic case leads to
pronounced local stress–strain concentra-
tions. The samples were subjected to tensile
loading. The results are similar to the corre-
sponding finite element predictions presented
in Figure 10.2. The differences between the
direct fast Fourier and the finite element re-
sults are attributed to the fact that the direct
fast Fourier predictions used periodic bound-
ary conditions, whereas the finite element
approach used a free surface.

ab initio simulations (Bockstedte et al., 1997; Counts et al., 2008b, 2009; Ma et al.,
2008; Raabe et al., 2007b). These quantities can be fractions of coexisting phases,
elastic constants (Counts et al., 2008b; Friak et al., 2008; Ma et al., 2008), or the de-
pendence of certain metallurgical properties on the chemical composition (Raabe
et al., 2007b). Although ab initio methods work at the electronic scale, that is, at
smaller integration steps than molecular dynamics simulations, many predictions
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obtained by them, such as thermodynamic quantities, can be directly linked to
mesoscopic CPFE constitutive laws. We expect that results from parameter-free
ab initio simulations obtained by using electron density functional approaches will
particularly provide basic insight and constants for constitutive problems which are
not accessible otherwise. Concerning the combination of the CPFE method with
macroscopic mechanical simulation approaches, a most promising development
might be the introduction of virtual laboratories, where expensive mechanical tests
can be replaced by mesoscopic CPFE simulations. A typical example is the replace-
ment of biaxial polycrystal tests as required for fitting yield surface formulations by
CPFE predictions (Kraska et al., 2009).

Numerical and software aspects associated with the CPFE method are the sixth
category of challenges. In this area the main issues are improved convergence be-
havior of the CPFE constitutive equations as well as a robust, modular, and paral-
lelized code architecture. A more practical advantage of the CPFE method in that
context is that it can be used in conjunction with commercial or academic finite ele-
ment solvers in the form of easy-to-use user-defined material subroutines. Various
groups (including the current authors) make their software available as freeware
for noncommercial use upon request.

The seventh category concerns the requirement of a more detailed comparison
between crystal plasticity predictions and the findings of corresponding experi-
ments. Modern characterization tools allow a detailed mechanical, metallurgical,
and crystallographic description of materials. The advantage of CPFE models is
that they predict not only one internal variable, but a set of variables that can be
effectively compared with the findings of corresponding experiments. Typical ex-
amples are crystallographic orientations, crack analysis, surface roughness, stress,
and strain, as well as gradient, patterning, and localization effects associated with
them (Table 5.1).

The last category concerns alternatives to the finite element method for solv-
ing crystal elasticity or crystal plasticity constitutive models. Some classical ap-
proaches were discussed in Chapter 7. For instance self-consistent and Taylor-
based models, including in part also higher-order grain interaction terms, can
serve for solving polycrystal mechanical problems without using finite elements, at
least under simplified boundary conditions (Berveiller and Zaoui, 1978; Crumbach
et al., 2001; Lebensohn and Tomé, 1993; Molinari, Canova, and Ahzi, 1987; Van
Houtte, Delannay, and Samajdar, 1999; Van Houtte et al., 2005). Direct fast Fouri-
er methods (Lebensohn, 2001) and Fourier-based spectral approaches (Kalidindi et
al., 2006a; Kalidindi, Duvvuru, and Knezevic, 2006b) are another important de-
velopment for integrating crystal elasticity and plasticity constitutive models. They
solve the equilibrium and compatibility constraints for anisotropic elastic or elas-
tic–plastic polycrystal and polyphase problems using fast Fourier transforms (Ka-
lidindi et al., 2006a; Kalidindi, Duvvuru, and Knezevic, 2006b; Lebensohn, 2001;
Lebensohn et al., 2008; Michel, Moulinec, and Suquet, 1999; Wu et al., 2007). The
discrete Fourier approach renders the governing set of differential equations into
a discrete algebraic problem which can be solved more quickly than the conven-
tional weak-form variational approach used by the finite element method. To use
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discrete series expansions, such spectral methods have to use a fixed grid and a
representative cell arrangement of the microstructure considered. Discrete Fourier
formulations imply periodicity of the modeled aggregate. Since the displacements
lead to state values between the fixed coordinates of the discrete Fourier setup,
interpolation functions must be used.

A purely elastic example of using different stiffness tensors in the direct fast
Fourier method of Lebensohn (2001); Lebensohn et al. (2008) is shown in Fig-
ure 11.1. The two graphs present the distribution of the equivalent elastic stress
and strain values in a randomly textured polycrystalline aggregate consisting of 200
grains and 32�32�32 Fourier points for three different elastic tensors (magnitude,
anisotropy) under a unidirectional tensile load. The entire aggregate remained in
the elastic regime during loading. The results are very similar to the corresponding
finite element predictions presented in Figure 10.2. The differences are attributed
to the fact that the direct fast Fourier predictions used periodic boundary condi-
tions, whereas the finite element approach used a free surface.
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virtual work
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