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ABSTRACT
The paper introduces a scalable three-dimensional (3D) kinetic cellular
automaton model with a probabilistic switching rule for the spatial and crystal-
lographic prediction of mesoscale transformation phenomena that involve
orientational field variables and the motion of sharp interfaces, such as
encountered in the field of recrystallization. The automaton is discrete in time,
physical space and Euler orientation space. It is defined on a regular 3D cubic
lattice considering the first-, second- and third-neighbour shells for the calculation
of the local driving forces. The kinetic transformation rule is formulated as a
probabilistic analogue of the classical linearized symmetric Turnbull rate
equation for grain-boundary segment motion. It is used to calculate the
switching probability of each grid point as a function of its previous state and
the state of the neighbouring grid points. The actual decision about a switching
event is made by evaludting the local switching probability using 2 Monte Carlo
step. The transformation rule is scaled by the ratio of the local to the maximum
possible grain boundary mobility, the local crystallographic texture, and the ratio
.. of the local to the maximum occurring driving force. The time step of the
simulation is determined by the maximum occurring driving force, by the
-maximum occurring grain boundary mobility and by the spacing of the grid
points. The use of realistic or even experimental input data for the boundaries
allows one to make predictions on a feal time and space scale. The transformation
rule is scalable to any mesh size and to any spectrum of boundary mobility and
energy data. The state update of all grid points is made in synchrony. The model
predicts the Kinetics, the evolution of the grain size and topology, and the
evolution of the crystallographic texture during recrystallization.

- §1. BASIC MOTIVATION AND JUSTIFICATION OF A NEW MODEL
Three-dimensional (3D) time and space discretized simulations of materials
microstructures which track kinetics and energies in a local fashion are of interest
for two reasons. First, from a fundamental point of view it is desirable to understand
better the dynamics and the topology of microstructures that arise from the inter-
action of large numbers of lattice defects which are characterized by a wide spectrum
of intrinsic properties in spatially heterogeneous materials. For instance, in the field
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of recrystallization the influence of local grain boundary characteristics (mobility
and energy), local driving forces and local crystallographic textures on the final
microstructure is of particular interest. Second, from a practical pomt of view it is
necessary to predict microstructure parameters such as grain size or texture which
determine the mechanical and physical properties of real materials subjected to
industrial processes on a phenomenological although sound physical basis.

A number of excellent models for discretely simulating recrystallization and
grain growth phenomena have been suggested. They can be grouped as multistate
kinetic Potts Monte Carlo models (Srolovitz 1986, Anderson and Rollett 1990, Holm
et al. 1996), deterministic cellular automata (Hesselbarth and Gdébel 1991, Pezzee
and Dunand 1994, Marx et al. 1996, 1998), topological boundary dynamics and
front-tracking models (Frost and Thompson 1987, Frost et al. 1990, Humphreys
1992, 1997, Fradkov et al. 1994, Svoboda 1996), component models (Juul Jensen
1992, 1997) and Ginzburg-Landau- -type phase field kinetic models (Chen 1995, Fan
et al. 1997).

Complementary to these approaches this paper introduces a new scalable kinetic
probabilistic cellular automaton method with the aim of combining the computational
simplicity and scalability of a switching model with the physical stringency of a bound-
ary dynamics model (Raabe 1998a,b).-Its objective lies in providing a numerically
efficient and at the same time phenomenologically sound method of discretely simulat-
ing recrystallization phenomena in three dimensions. As far as computational aspects
are concerned, the approach is designed to minimize the calculation time and to reduce
the code complexity in terms of storage and algorithm. As far as microstructure physics
is concerned, it is designed to provide kinetics, texture and microstructure on a real
space and time scale on the basis of microtexture, grain-boundary characteristics and
local driving forces. The possible incorporation of realistic values particularly for
grain-boundary energies and mobilities deserves particular attention since such experi-
mental data are increasingly available (Gottstein et al. 1995, Shvindlerman ez al. 1995,
Adams et al. 1998, Molodov et al. 1998) enabling one to make quantitative predictions.
This paper gives an introduction to the method and presents apphcauons in the field of
primary static recrystallization.

§2. BASIC STRUCTURE OF THE PROBABILISTIC CELLULAR AUTOMATON

The model is designed as a 3D cellular automaton with a probabilistic transfor-
mation rule. This means that the switch of the state of a grid point is not performed
in a deterministic fashion, say, like in a Pascal triangle, but with a certain probabil-
ity. The basic transformation (switching) rule of the automaton consists of a prob-
abilistic analogue of the linearized symmetric rate equation for thermally activated
grain-boundary segment motion under the influence of free energy gradients as
introduced by Turnbull (1951). According to this rate equation the local switching
probability is for each grid point calculated using the local and maximum driving
force, the local texture, and the local and maximum boundary mobility. This first
step of the switching algorithm is strictly deterministic. The use of realistic boundary
mobility and energy data introduces a real space and time scale into the model. After
having calculated the switching probability the actual decision about the switch is
made using a Monte Carlo step. This second step of the switching algorithm is
probabilistic. It represents an importance or weighted sampling integration of the
probability function that is given by the Turnbull equation. Since all possible
switching probabilities that occur in one simulation are normalized with respect to
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the fastest moving boundary in the system, a broad var1ety of mobilities and energies
can be considered simultaneously. : -

The Turnbull equation is used in a scaled form so that an increase in the jump
width leads to a corresponding decrease in the attack frequency. Therefore, the
length scale of the grid (which equals the size of a lattice cell, mesh size or jump
width) can be freely chosen in accord with any characteristic initial microstructural
length scale without spoiling the overall time scale. All p0551ble cell switches are
considered in each time step. The state update is for all successfully switched cells
made in synchrony once during each simulation time step. _

The material properties are regarded as continuum field quantities. To apply the

_switching algorithms that characterize cellular automata the physical space (the sam-
ple) must be discretized into a regular array of equally shaped cells (figure 1(a)). The
time 7 and space X = (x;, X, x3) act as independent variables. The crystal grain orien-
tation g = g(1, @, ¢2), Where ¢, ¢ and ¢, are the three Euler angles, and mechanical,
interface or electromagnetic contributions to the Gibbs free energy G, are dependent
variables. The automaton is defined on a spatially discrete 3D cubic lattice considering
the first, second- and third-neighbour shells. Each discrete lattice cell is then character-
ized by an orientation .and a value for the stored free energy, for example by the
deformation energy in recrystallization simulations. Grains or subgrains are mapped
as regions of identical crystal orientation (figure 1(b)). The driving force may vary
inside grains and subgrains. The boundary mobility m is a function of the crystal
misorientation Ag (e.g. expressed in terms of rotation angle and rotation axis) and
the boundary plane inclination n. Both quantities are derived dependent variables.
Simulations require the incorporation of experimental or theoretical data for grain-
boundary mobilities and energies as functions of their crystallographic misorientation.

The new approach allows one to conduct fast discrete 3D simulations of the
evolution of grain microstructures in physical and crystallographic orientation space
on a realistic time and space scale. It considers the initial microstructure including
crystallographic textures, grain-boundary characteristics (energy and mobility) and
driving forces. The following sections provide a more detailed derivation of.the:
governing rate equation and its probabilistic analogue which serves as local trans-
formation rule, of the normalization: amd-of the switching scheme (Monte Carlo
step). Finally, some kinetic and topological results of recrystallmaﬂcn snnulatlons
will be discussed and compared with analytical predictions.

§3. TURNBULL'S RATE EQUATION OF BOUNDARY MOTION AS A STARTING POINT FOR
. DERIVING THE TRANSFORMATION RULE |
According to '_Turnbtill_ (1951) a phenomenological symmetric rate equation,
which describes grain-boundary motion in terms of isotropic single-atom diffusion
processes perpendicular through a homogeneous planar grain boundary segment
“under the influence of free energy gradients, can be written

. (AG+AGY/2\ [ (AG-AGY)/2\]
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Figure 1. (a) Basic set-up of the simulation grid. The sample is discretized into a regular

- array of equally shaped cells. Time ¢ and space X = (xy, x;, X3) are independent vari-

ables. Each cell is characterized by its crystal orientation g = g(, ¢, ©,), where ¢y, ¢

and ¢, are the Euler angles, and a stored energy value (for recrystallization simula-

tions). p indicates the stored dislocation density. The automaton is defined on a 3D

cubic lattice considering the first-, second- and third-neighbour shells. (b) Grains or

subgrains are mapped as regions of cells which have identical crystal orientations. The
driving force may vary inside grains.

where X is the interface velocity, vp the Debye frequency, Ay the jump width
through the interface, ¢ the intrinsic concentration of in-plane self diffusion carrier
defects (e.g. grain-boundary vacancies or shuffle sources), n the normal of the grain-
boundary segment, AG the Gibbs enthalpy of motion through in the interface, AG;
the Gibbs enthalpy associated with the transformation, p the negative gradient in
Gibbs enthalpy across the interface (driving force), £ the atomic volume, AS' the
entropy of formation, AH' the enthalpy of formation, AS™ the entropy of motion,
AH™ the enthalpy of motion, kg the Boltzmann constant and 7' the absolute
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temperature. The atomic volume is of the order of 5>, where b is the magnitude of the
Burgers vector. Bold symbols indicate vector quantltles The Debye frequency is
of the order of 10"*-10s™! and the jump width is of the order of the magmtude
of the Burgers vector Summarlzmg these terms leads to

2o (AS"+AS‘“)' ('ps)) ( AHf+AH“’)
X = nqu exp —_— sinh exp| —

kg kgT kg T
o écx - Asf +AS™ o AH' + AH™ )
which reproduces the well known phe'nofnenologi_;ial Turnbull expression
v~ nmeexnf - 22), |
X =nmp =nmyexp| —— | P, (3)
- i ' gl

where m is the mobility and Q, the activation energy of boundary motion.
Equations (1)—(3) provide a well known phenomenological kinetic picture, where
the atomistic processes associated with grain-boundary motion are statistically
described in terms of my = my(Ag,n) and Qy, = Q1 (Ag, n).

§4. PROBABILISTIC ANALOGUE OF TURNBULL’S RATE EQUATION
This section is concerned with the replacement of the deterministic rate equation
of boundary segment motion, equation (3), by a probabilistic analogue which can be
used for the calculation of switching probabilities. For this purpose, equation (3) can
be separated into a deterministic part, Xy, which depends weakly on temperature,
and a probabilistic part, w, which depends strongly on temperature:

.. kgTmy pQ Qgb
K=Xow=n—7 _kBTexp( %Wl ) (4)
where
'kBTmo
"7 9
and

It is worth noting that the probability factor w simply represents the product of the
linearized part (pf2)/(kgT) and the non-linearized part exp (—Qg,/(kgT)) of the
original Boltzmann terms, equations (1) and (2). Figure 2 shows the non-normalized
probability factor as a function of absolute temperature and driving force for an
average aluminium large-angle grain-boundary with an activation energy of the
mobility of Q,, = 1eV (equation (4)). The normalization procedure whlch shifts
the switching probabilities to larger values is explained in §6.

According to equation (4), non-vanishing switching probabilities can occur for
lattice cells which reveal neighbouring cells with different crystallographic orienta-
tions and a driving force which points in their direction. The local value of the
switching probability depends on the crystallographic character of the boundary
segment between such unlike cells.
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Figure 2. Plot of the non-normalized probability factor (pQ)/(kyT)exp (—Qgu/(kgT)) as a
function of absolute temperature and driving force for an average aluminium large-
angle grain boundary with an activation energy of the mobility of Q,, = 1eV. The
probability factor represents the linearized and the nonlinearized part of the
Boltzmann terms in equations (1) and (2).

§5. REFORMULATION OF THE SWITCHING PROBABILITY IN ACCORD WITH THE
LENGTH SCALE AND EIGENFREQUENCY OF THE SIMULATION GRID
The validity of the Turnbull rate equation for grain boundary motion is not
confined to the atomic scale but strictly fulfilled at any scale. This can be demon-
strated by the following estimation: The displacement frequency? I' normal to a
boundary segment with given Q,, is given by

_ b D

where A is the jump width. The number of atoms displaced per second then is NI’
when N 1s the number of atoms in the crystal plane bordering on the boundary. The
interface displacement per second then amounts to NI'/N. Since the jump width is
determined by the magnitude of the velocity, that is X = I')\, the displacement rate of
the grain boundary segment depends only on macroscopic phenomenological para-
meters.

The cellular automaton simulations are conducted on a spatial cubic grid with an
arbitrarily chosen mesh size A,. In a mesoscopic simulation the value of A, will
usually be much larger than the atomic spacing b. If a moving boundary segment
sweeps a cell, the grain thus grows (or shrinks) by }\.fn rather than b°. Since the net

T The displacement frequency I must not be confused with the attack frequency ». While
the attack frequency gives the number of all trial jumps per time interval, the displacement
frequency gives the number of all successful attempts per time interval.
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velocity of a boundary segment must be independent of the imposed value of A, an
increase in the jump width must lead to a corresponding decrease in the grid attack
frequency and vice versa. In other words, to obtain a scale-independent net velocity
of the grain boundary, the mesoscopic grid frequency must be chosen in such a way
as to ensure that the attempted switch of a cell of length A, occurs with a frequency
much below the atomic attack frequency which attempts to switch a cell of length b.
The prescribed scaling length A, turns equation (4) into

X = Xow = n( )W, S (e)
with |

_ kgTmy
o

where v can be regarded as the eigenfrequency of the chosen grid which is charac-
terized by the used scaling length Ay,. myg is the pre- exponenual factor of the
mobility.

§6 NORMALIZATION OF THE SWITCHING PROBABILITIES
The eigenfrequency v given in equation (6) represents the basic attack frequency
for one particular grain boundary with a constant mobility. However, in order to use
a wider spectrum of mobilities and driving forces in one simulation it is necessary to
normalize equation (6) by a common grid attack frequency v:

)'(=)'(0w=n)\mvo(—li)w:)?(o(fw)w=)?(0w, (7)
Y Yo
where

A_V__IE _ng __ myp _%'. o

Y e ksT eXp( kBT> = o eXp( ksl ) ®)

While x is determined by the grid size and the grid attack frequency, w is determined
by the temperature and the experimental input data (see next section).

An appropriate condition for deriving the value of the normalization or grid
-attack frequency v, can be identified by some straightforward statistical considera-
tions. It is physically plausible that the maximum occurring probability W™ in one

integration step, can never be larger than one, that is

max ,_max min _ ‘
W L o P exp( O ) 1 9)

A0 ksT

where m®* is the maximum occurring pre exponential factor of the mobility, p™

the maximum occurring driving force, 15" the minimum allowed grid attack fre-
quency and Qm‘“ the minimum occurring act1vat10n energy. Inserting w™* =1 into
equation (9) allows one to express the normahzatlon frequency as a funct1on of the
upper bound 1nput dataf. ' : :

tThe minimum occurring activation energy Qg’bjn must also be regarded as an upper
bound value, since it represents the fastest-growing boundary.
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§ 7. THE SWITCHING DECISION—RENORMALIZATION OF THE GRID ATTACK
FRBQUENCY AND EVALUATION OF THE SWITCHING PROBABILITY BY MONTE CARLO
INTEGRATION

The transformatlon rule derived from the linearized symmetric Turnbull equa-
tion defines the normalized switching probability of each grid point as a function of
its previous state and the state of the neighbouring grid points (equations (7) and
(8)). This section shows how the local switching probability is calculated and how the
actual decision about a switching event is for each grid point made using a welghted
random sampling Monte Carlo step.

The statistics associated with Monte Carlo integrations make it necessary to re-
evaluate equation (9) for the derivation of the value of the normalization frequency v.
The statistical variance o associated with random sampling integration is proportional
to 1/N'/2, where N is the number of trials. The probabilistic constraint for the normal-
ization frequency expressed by equation (9) can for the Monte Carlo integration there-
fore be increased by the statistical condition that the maximum possible switching
probability w™* should not only be equal to or smaller than one (equation (9)), but

b-¢ b-¢ min
1. calculate probability: w"* 0'( o ][P—] exp( 0 gm0 =)

max max k T
2. decide by use of MC step i

o!,0° 0%, p" | / 00" 05 p
(grain b) \X\ ;;(‘--.__‘ ’/ (grain a).

TR A . >

(grain c) \. . \

o aee a-c a-c . ,na_c __ /)ymin
1. calculate probability: w"" = o(& }[p—J exp(w o (e, - ) o )]
2. decide by use of MC step g ¢ _

Figure 3. According to equations (4) and (11), non-vanishing switching probabilities occur
for lattice cells which reveal neighbouring cells with a misorientation larger than 15°
(defining a mobile grain boundary between them) and a driving force which points in
their direction. The figure shows a cell of grain ¢ (symbolized by a full circle) which can
be switched by its neighbour cell in grain b (symbolized by a cross) or by its neighbour
cell in grain a (symbolized by a rotated full square). For simplicity, only nearest
neighbours are considered in this diagram. The simulation proceeds by calculating
the switching probability of cell ¢ ¢ due to cell b according to equation (11), wy , =
[(m§ °p°°)/ (my™ p™*) o exp [— (ng — Qgv ) /kgT), and the sw1tchmg probability of

cell ¢ due tl?_c cell a, w,_, = [(myp* ™)/ (mma"pm")]cre'xp[ (Qgb — Qg )/kpT], where

~ and my - are the pre- exponentlal factors of the grain-boundary moblhnes between
the two pairs of cells, p* and p®© the local driving forces between them, Qg and ng
the activation energies of the grain boundary mobilities, m¥®* the maximum occurring
pre-exponential factor of the grain boundary mobility, p max the maximum occurring
driving force and Qg" the minimum occurring activation energy of grain boundary
mobility. After calculatmg the switching probability for each palr the actual decision
about a switch is made using a Monte Carlo step.
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that it should even be smaller than some maximum allowed statistical variance o, that is
W™ g . The appropriate normalization frequency for a set of given parameters and a
prescribed maximum statistical error can therefore be calculated according to

. | mmaxp_max - le.;n o
e - =),
iy oo (- &er) . 9

woeal ag mtrocluced in equation (8) 1nto 'k

local cal 1o . plocal i |
ﬁ}loeal _ m}}ocdl .ocal - roa \ = m})ocal p}ocel o = ng _ Qgtt;n (11)
| Amo o kT ) g P | kT

Equatmn (10) modifies the orlgmal expression for the local switching probability

using ™" as the gnd attack frequency (equatlon (10)) (ﬁgure 3). Equation (11) is the
central transformation equation of the method. It shows that the local switching
probability can for each grid point be easily expressed in terms of the local mobility
- m'°?, which depends on the local misorientation, the local driving pressure p'** and
the maximum allowed statistical variance ¢. The probability of the fastest occurring
boundary segment (characterized by r 1°°a_1- mm“, P = p™™* and Q""‘al Qo)
to realize a local transformation amounts to 0. The characterlstxc time constant of
the simulation Az is 1/,

The simulation proceeds by switching all cells according to their proper statistical
weight, that is by evaluating the individual local switching probabilities ol uging
the Monte Carlo algorithm. This means that for each grid point the calculated
transformation or switching probability (equation (11)) is compared with a ran-
domly generated number which lies between zero and unity. The switch is accepted
if the random number is equal to or smaller than the calculated transformation
probability. Otherwise the switch is rejected.

Figure 4 shows the linear relation between the time constant of the simulation

and the statistical variance of the Monte Carlo mtegratlon method. All successful
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Figure 4. Linear relation between the time constant At of the simulation and the statistical
variance o of the Monte Carlo integration method according to equation (10). The
characteristic time scale A7 of the simulation is 1/145™". The inset shows the linear .
relation for small time steps. - : »
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cell transformations are updated synchronously once per time interval Ar. Except for
the probabilistic evaluation of the single transformation steps, the approach is
entirely deterministic.

§8. APPLICATION OF THE METHOD TO THE SIMULATION OF PRIMARY STATIC
RECRYSTALLIZATION

Figures 5 (a), (b) and (¢) show simulated 3D microstructures of a recrystallizing
aluminum single crystal after 0.71s and 32.2vol.% recrystallized, after 1.41s and
78.1vol.% recrystallized, and after 2.11s and 99.9 vol.% recrystallized respectively.
The initial deformed single crystal had a uniform Goss orientation (011)[100] and a
dislocation density of 10" m 2. The driving force was due to the stored elastic
energy. The recovery and driving forces arising from local boundary curvature
were not considered. The simulation used site-saturated nucleation conditions,
that is the nucler were at ¢ = 0s statistically distributed in physical space and
orientation space. Euler space was discretized into a set of 936 single texture
components. The grid size was 10pum x 10 um x 10 um. The cell size was 0.1 pm.
All grain boundaries had the same mobility. The activation energy of the grain
boundary mobility was 1.3eV. The pre-exponential factor of the boundary mobility
was my = 6.2 X 10°m’ N 's ! The temperature was 800 K. The time constant of
the simulation was 0.35s. The experimental grain-boundary data were taken from
the work of Shvindlerman et al. (1995), Gottstein et al. (1997) and Molodov er al.
(1998). The Avrami and the Cahn-Hagel plots are given in figure 6.

x, [um]
10

0 Wi
X3 [uml]

(a)

Figure 5. Simulated microstructures of a recystallizing aluminium single crystal: (a) 0.71 s,
32.2vol.% recrystallized volume fraction; (b) 1.41s, 78.1 vol.% recrystallized volume
fraction; (¢) 2.11s, 99.9 vol.% recrystallized volume fraction.
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Figure 6. Kinetics of the simulation shown in figure 5 (a) Aﬂzranii plot, recrystallized volume
fraction as a function of the annealing time; (b) Cahn—Hagel plot, interfacial area
between recrystallized and non-recrystallized material divided by the sample volume.
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Figure 7. Crystallographic orientation distribution functions for the microstructures shown
in figure 5: (@) texture after 0.71 s, 32.2 vol. % recrystallized volume fraction; (b) texture
after 1.41s, 78.1vol.% recrystallized volume fraction; (c¢) texture after 2.11s,
99 9 vol.% recrystallized volume fraction. Euler space for cubic crystal symmetry
and orthorhombic sample symmetry. Because of the random nucleation texture the
initial strong Goss orientation remains the dominant component until the late stages
of recrystallization. The orientation distribution functions were calculated using a
Gauss function for each texture component with the volume fractions and the Euler
angles given by the microstructure simulation.

Figure 7 presents the crystallographic orientation distribution functions for the
three microstructures shown in figure 5. Since the nuclei were randomly distributed
in orientation space and no special boundaries were considered, the initial Goss
texture remains the dominant component within a nearly random texture until the
late stages of recrystallization. The orientation distribution functions were calculated
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Figure 8. Kinetics for various 3D recrystallization simulations with site-saturated nucleation
conditions and identical mobilities for all grain boundaries: (a) classical Avrami
curves; (b) the corresponding logarithmic plots reveal Avrami exponents between
2.86 and 3.13 which is in very good accord with the analytical value of 3.0 for site-
saturated conditions.
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by using a Gauss function for each texture component with the volume fractions and
the Euler angles given by the microstructure simulation.

~ Figure 8 shows the kinetics for a number of 3D recrystallization simulations with
site-saturated nucleation conditions and identical mobilities for all grain boundaries.
The different curves correspond to different initial numbers of nuclei. The number of
nuclei varied between 9624 (pseudonucleation energy 3.2eV) and 165 (pseudo-
nucleation energy 6.0€V). The Avrami curves (figure 8 ()) all show a very classical
shape and the logarithmic plots (figure 8 (b)) reveal Avrami exponents between 2.86

1 f

. I Q(grqwth)==l.4 eV /
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Figure 9. Kinetics of two 3D recrystallization simulations ‘with identical site-saturated
nucleation conditions. In the first simulation, the activation energy of the grain-
boundary mobility was 1.4eV and, in the second, 1.5eV for all boundaries. The
pre-exponential factors of the boundary mobility were the same in both cases. The
temperature was 800 K. Both simulations reveal a deviation of less than 2% from the
ideal Avrami exponent of 3.0. Deviations from this value at the incipient stages of the
simulations are attributed to grid effects.
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and 3.13 which is in very good accord with the analytical value of 3.0 for site-
saturated conditions. The simulations with a very high initial density of nuclei
revealed a more pronounced deviation of the Avrami exponent to values around
2.7 in the incipient stages of recrystallization. This deviation from the analytical
behaviour can be attributed to grid effects.

Figure 9 shows the kinetics of two 3D recrystallization simulations with identical
site-saturated nucleation conditions. In the first simulation the activation energy of
the grain boundary mobility was 1.4eV and, in the second, 1.5V for all boundaries.
The pre-exponential factor of the boundary mobility was the same in both cases. The
temperature was 800 K. Both simulations reveal a deviation of less than 2% from the
ideal Avrami exponent of 3.0. Deviations from this value at the incipient stages of
the simulations are attributed to grid effects.

Figure 10 shows two series of two-dimensional (2D) recrystallization simula-
tions with site saturated nucleation conditions. The first simulation (figure 10 (a))

Figure 10. Two series of 2D recrystallization simulations with site saturated nucleation
conditions. () Simulation with identical mobilities for all grain boundaries: (al) 3%
recrystallized; (a2) 22% recrystallized; (a3) 69% recrystallized; (a4) 94% recrystallized.
(b) Simulation using three different types of grain boundary, characterized by different
values of the activation energy of the grain-boundary mobility, namely 1.40eV,
1.45eV, and 1.50eV: (b1) 1% recrystallized; (b2) 17% recrystallized; (b3) 62% recrys-
tallized; (b4) 92% recrystallized.
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Figure 10.

assumed identical mobility for all grain boundaries which leads to the classical
Voronoif morphology. The second simulation (figure 10 (b)) used three different
types of grain-boundary, characterized by different values of the activation energy
of the grain-boundary mobility, namely 1.40, 1.45 and 1.50eV. A comparison of
both microstructures clearly shows the influence of the heterogeneity of grain-
boundary mobility on the final grain topology.

Figure 11 shows the effect of grain-boundary mobility on growth selection. While
in figure 11 (@) all boundaries had the same mobilities, in figure 11 (») one grain had a
higher mobility than the others (activation energy of 1.35eV instead of 1.40eV) and
consequently grew much more rapidly than the neighbouring grains, which finally
ceased to grow. The grains in this simulation all grew into a heavily deformed single
crystal. The influence of boundary curvature was not considered.

Figure 12 shows two subsequent 2D simulation sketches of recrystallizing alu-
minium. The upper figures depict the orientation images, that is each grey level
represents a different crystal orientation. The lower figures show the corresponding
stored dislocation densities. The white areas are recrystallized, that is their stored
dislocation content was dropped to zero. The predictions were obtained by applying
the probabilistic cellular automaton algorithm to crystal plasticity finite element

T A Voronoi structure is a Wigner—Seitz construction applied to a random array of points.



Scalable 3D cellular automaton 2355

——— temporal evolution

FOWINE
wcleation p—

—
-
w
-
=
=
.
=
-
=
—
=
-
—

7
:".
7
=
T
7

¢ growing
{ nucleation

s

{

Figure 11. 2D recrystallization simulations which demonstrate the effect of grain-boundary
mobility on growth selection (all nuclei in this simulation grew into a heavily deformed
single crystal): (@) All boundaries had the same mobility. The figure shows seven
subsequent stages of growth, indicated by (al)~a7). (b) One grain had a higher mobi-
lity than the others and grew much more rapidly than the neighbouring grains. The
figure shows seven subsequent stages of growth, indicated by (b1)-(57).

starting data (Raabe and Becker 1999). The combination of these methods enables
one to investigate the influence of local grain-boundary characteristics, local driving
forces, and local textures on the formation of microstructure and texture in hetero-
geneously strained polycrystalline samples. Those cells exhibiting the largest local
orientation gradients with respect to their neighbour cells and the largest accumu-
lated local shears were used as recrystallization nuclei. The predictions show that
recrystallization in a sample with spatially heterogeneous properties can lead to
substantial deviations from the Avrami kinetics, to grain clustering, and to partial
recovery of grains which have low driving forces, insufficient misorientations with
respect to the growing nuclei, or insufficient nucleation rates.
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(@)

Figure 12. 2D simulations of primary static recrystallization in deformed aluminium: (q)
sample after 12 min; (b) sample after 28 min. The upper pictures show the orientation
images, that is the microtexture. Each grey level represents a different crystal orienta-
tion. The lower pictures show the stored dislocation densities which are linearly related
to the local values of the accumulated shear. The white areas are recrystallized, that is
their stored dislocation content was dropped to zero. The predictions were made by
applying the probabilistic cellular automaton algorithm to crystal plasticity finite ele-
ment starting data (Raabe and Becker 1999). Those cells exhibiting the largest local
orientation gradients with respect to their neighbour cells and the largest accumulated
local shears served as nuclei. The simulation parameters were as follows: cell
size, 61.9pum; activation energy of grain-boundary mobility: 1.46eV for all
grain boundaries; pre-exponential factor of the grain-boundary mobility

my=6.2x 107° m‘iN"l 5! temperature, 800 K: time constant, 2.58s.

§9. CONCLUSIONS
This paper introduced a kinetic cellular automaton method with a probabilistic
switching rule for the spatial and crystallographic prediction of mesoscale transfor-
mation phenomena that involve orientational field variables and the motion of sharp
interfaces. The method is designed to combine the computational simplicity and
scalability of a switching model with the physical stringency of a boundary dynamics
model. The main results and conclusions are as follows.
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Basic method. The automaton is discrete in time, physical space and orientation
space, works on a regular 3D cubic lattice using the first-, second- and third-neigh-
bour shells for the calculation of the driving force, uses a probabilistic analogue of
the Turnbull rate equation to determine the switching probabilities and makes the
actual switching decision by use of a Monte Carlo step. The transformation rule
which is scaled by the local grain boundary mobility, the local crystallographic
texture and the local driving force is scalable to any mesh size and to any set of
boundary mobility and energy data. The state update of all grid points is made in
synchrony.

Application. The method was used for 2D and 3D recrystallization simulations. It
properly reproduced typical microstructures, textures and Avrami kinetics which
were in very good accord with analytical predictions. Furthermore, the method
was combined with crystal plasticity finite element data to simulate recrystallization
in a heterogeneously strained material.

ACKNOWLEDGEMENTS
The author gratefully acknowledges the financial support by the Deutsche
Forschungsgemeinschaft through the Heisenberg program and the kind support
by the Department for Materials Science and Engineering of Carnegie-Mellon



2358 | Scalable 3D- cezzuzar'aummamn

University: The author_ls__grateful to H. Weiland, A D. Rollett, R. C. Becker F
Roters and...V. Marx for a number of stl mula 'ng_dlscussmns S

: tures (New Yorkt Mmc
CHEN L. Q., 1995, Scripta metall
FaN, D., Geng, C., and CHEN
meov, M E GLICKSMAN
2719.7 S : ;
Frost, H. J., and TI-IOMPSON C V., 1987 Acta merall 35 539 . '
Frost, H. J., THoMPSON, C. V., ancl WaLrtoNn, D. T., 1990 Acta metall 38, 1455
GOTTSTEIN G MoLopoy, D. A , CZUBAYKO, U dnd SHVINDLERMAN L S 1995 J. Pkys
- Paris, IV -Suppl. I, 5, c3—9 : _
HESSBLBARTH H.W., and GOBEL,I R., 1991, Acta metalf 39 2135
H{)LM E.A. ROLLETT ‘A.D., and SROLOVITZ D. 7., 1996, Proceedmgs of NATO Advanced
Sczence Institute on Computer Sunufatum in Materials Science, NATO Advanced
‘Science Insmtutes Series,  Series Et Applied Sciences, Vol;-_';-308 ed&ted by H. O
~ Kitchner, L. P. Kubin and V. Pontikis (Deventeri Kluwer), p. 373. , o
'I—IUMPHREYS TP 199_ 'Mater. Sci. Technol:, 8, 135; 1997, Acta metc -I-'i,:’45 4231
JUUL JENSEN D 1992"' Sc m me!ah’ 2’7 1551 1997 Report Rlsa—R 978 (EN), Matenais

; ,45'1115
;__:PALM.ER M and RAJAN}'

994, Acra merali 2,

11996, Proceedmgs of the ]Ith Imernatzonal
i Sﬂptember 1996 ed.lted byZ Lnang,

\ ; , iActa-mater; (to be pubhshed)

.MOLODOV,‘-"B-. A.-,: GOTTSTEIN Gy and SHVINDLERMAN L. S:;1998, Proceedings of the Third
International Conference on Grain Growth, Camegm—Mellon Umvermty, Pittsburgh,
Pennsylvania, June 1998 (to be published).

Pezzeg, C. E., and DUNAND, D. C., 1994, Acta metall., 42, 1509.

RAABE,D., 1998a Mater. Sci. Forwn 273-275, 169; 1998b, Proceedings of the Third Interna-
t:onal Conference on Grain Growth Carnegle—Mellon University, Plttsburgh Pennsyl-

_ vania, June 1998 (to be pubhshed) .

RAABE, D., and BECKER, R. C., 1999 (to be published).

SHV]NDLERMAN L.S., CZUBAYKO U., GOoTTsTEIN, G., and MoLopov, D. A 1995 Micro-
structural and Crystal!ogmphzc Aspects of Recrysrallzzanan Prooeedmgs of the 16th
Riso International Symposium on Materials Sciencet edited by N. Hansen, D. Juul
Jensen, Y. L. Liu and B. Ralph (Risg, Roskilde: Risg National Laboratory), p. 545.

SroLovITZ, D. J., 1986, Computer Simulation of Mzcrostructuml Evolution (Warrendale
Pennsylvamat Mctallurglcal Society of AIME).

SVOBODA, J., 1996, Scripta metall., 28, 1589.

TURNBULL, D 1951, Trans. AIME, 191, 661.




