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Quantum-mechanical (so-called ab initio) calculations have achieved considerable reliability in predicting physical and chemical properties and

phenomena. Due to their reliability they are becoming increasingly useful when designing new alloys or revealing the origin of phenomena in

existing materials, also because these calculations are able to accurately predict basic material properties without experimental input. Due to the

universal validity of fundamental quantum mechanics, not only ground-state properties, but also materials responses to external parameters can

reliably be determined. The focus of the present paper is on ab initio approaches to the elasticity of materials. First, the methodology to determine

single-crystalline elastic constants and polycrystalline moduli of ordered compounds as well as disordered alloys is introduced. In a second part,

the methodology is applied on a-Fe, with a main focus on (i) investigating the influence of magnetism on its elasticity and phase stability and (ii)

simulating extreme loading conditions that go up to the theoretical tensile strength limits and beyond.
Keywords: ab initio, elasticity, magnetism, stability, strength

Submitted on 10 November 2010, accepted on 19 November 2010
Introduction

Most materials properties can be traced back to the
behaviour of electrons that hold atoms together. An
important strategy of condensed matter theory is, therefore,
to calculate the electronic structure (ES) of solids, in order to
determine their physical and chemical properties. More
specifically, the laws of quantum mechanics and electro-
dynamics as expressed in the Schrödinger equation are used
to describe the interaction of electrons and atomic cores
precisely and without any experimental input parameters.
Such simulations, starting from identical principles and
building blocks, are called first principles methods or, using
the corresponding Latin term, ab initio methods.
A general solution of the quantum mechanical equations

for ES including all known interactions between the
electrons and atomic nuclei in solids is computationally
very demanding. That is why practical ES calculations in
solids were rather rare prior to the availability of large high-
speed computers. Even with increasing computational
resources, a series of approximations must be employed in
order to make a comprehensive solution for most non-trivial
systems feasible. In many cases, however, it is nowadays
possible not only to simulate certain experimental con-
ditions and set-ups with high accuracy, but also to design
new materials and to predict their properties before actually
casting them. The success of such a computational materials
science is to a large extent related to the development of
density functional theory (DFT) [1, 2], which was awarded a
86 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinh
Nobel Prize inChemistry in 1998 (Prof.W.Kohn). In case of
DFT calculations, highly precise solutions of the one-
electron Kohn-Sham equation for a solid are determined and
provide an understanding of matter at the atomic and
electronic scale with an unprecedented level of detail and
accuracy.
Importantly, ab initio calculations can also provide data

on the atomic scale that are inaccessible experimentally. For
example, the value of theoretical strength, as the upper limit
of attainable stresses in a material, is rather challenging to
measure due to the fact that most samples contain internal
defects leading to material’s failure well below its
theoretical strength. As an indirect consequence, such a
lack of experimental data for far-from-equilibrium states
leads to a limited applicability of semiempirical computa-
tional approaches that are fitted to measured data. In
contrast, ab initio calculations are reliable for heavily
strained conditions equally well as for the ground state, due
to the universal validity of the laws of quantum mechanics.
As a modern trend in materials science, results of

quantum-mechanical calculations have been combined with
other methods within various multi-disciplinary schemes
what significantly broadens their use well beyond the
atomistic level (for a combination with FEM simulations
see e.g. [3, 4]). In such multi-scale modelling of materials or
scale-hopping approaches, the role of ab initio calculations
ismostly two-fold: (i) to study the cases where the electronic
effects are crucial and must be treated from first principles
and (ii) to provide data for the generation of inter-atomic
eim www.steelresearch-journal.com
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potentials with an extended range of transferability (see e.g.
[5]). Let us note that there exists a vast amount of literature
devoted tomultiscalemodelling ofmaterials (recent reviews
may be found for example in [6–9]).
In this paper we focus on the determination of elastic

parameters of materials based on ab initio methods and
including approaches to single-crystalline elastic constants
and polycrystalline moduli of pure elements, ordered
compounds, as well as disordered alloys. In the case of bcc
ferromagnetic iron, the role of magnetism and different
magnetic states on its elasticity is analyzed and it is shown
that the magnetic state of iron and its elastic properties are
closely related to (i) the thermodynamic stability ofa-Fe, (ii)
its phase transformations as well as (iii) its response to
extreme loading conditions including uniaxial tensile
loading and isotropic triaxial loading.

Elastic Constants Calculations

The elastic behavior of a completely asymmetric material
is specified by 21 independent elastic constants. In case of
systems possessing a cubic symmetry (such as e.g. a-Fe),
however, only three elastic constants C11, C12, and C44, must
be determined from simulations of three independent
straining modes. When straining the lattice, the correspond-
ing changes of the total energy as a function of the applied
strain are calculated employing ab initio methods. A
straight-forward distortion is the isotropic volume change,
which allows the determination of the bulkmodulus B0 from
the fitting of the calculated energy-volume dependence to an
equation of state. Other commonly used distortions are
tetragonal and trigonal ones (for details see e.g. Chen et al.
[10] and Söderlind et al. [11]).
These three types of lattice strain (see Fig. 1) lead to total-

energy dependences which can be fitted to (i) an equation of
state (as, e.g., Murnaghan’s [12]) and to (ii) quadratic
functions in case of the volumetric changes and tetragonal/
trigonal strains, respectively. Employing the fitting, the bulk
modulus B0 and the three single crystal elastic constants can
be calculated:

B0 ¼ V
@2E

@V 2
¼ C11 þ 2C12ð Þ

3
;

@2U tet

@d2
¼ 3

2
ðC11�C12Þ;

@2U tri

@d2
¼ 4C44:

(1)
Figure 1. Schematic visualization of three independent loading

modes (volumetric changes, tetragonal and trigonal strains, respec-

tively) applied to a body-centered cubic system in order to determine

the C11, C12, and C44 elastic constants.
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Here d is the strain (or distortion), E is the total energy, V
the volume, Utet is the strain energy density due to the
tetragonal strain, and Utri is the strain energy density due to
the trigonal strain.
The character of the total energy dependence on the strain

can be directly used to identify unstable phases: The total
energy E has a minimum for the unloaded ground state and
forms a convex curve for mechanically stable systems
(dE> 0) for all possible loading types. For mechanically
unstable states the total energy for at least one loading mode
has a concave character with the maximum for the unloaded
state (dE< 0).
Having the single-crystalline elastic constants Cij, or

elastic compliances Sij, estimates of polycrystalline moduli
can be derived using various homogenization schemes. The
upper (or Voigt [13]) bound and the lower (or Reuss [14])
bound of the polycrystalline modulus values are the
following:

BR ¼BV ¼B0;GR ¼ 5

4ðS11�S12Þ þ 3S44
;

GV ¼ C11�C12 þ 3C44

5
:

(2)

Here, BR and BV are the Reuss and Voigt bounds of bulk
modulus and GR and GV are the Reuss and Voigt bounds of
shear modulus. Additionally, the polycrystalline shear
modulus can be estimated using a self-consistent approach,
which usually provide results better than either Voigt or
Reuss solutions. The self-consistent approach derived by
Hershey [15] for texture-free aggregates with cubic
symmetry, simplifies to the following equation:

64G4
H þ 16ð4C11 þ 5C12ÞG3

H

þ 3ðC11 þ 2C12Þð5C11 þ 4C12Þ�8ð7C11�4C12ÞC44

� �

� G2
H�ð29C11�20C12ÞðC11 þ 2C12Þ

� C44GH�3ðC11 þ 2C12Þ2ðC11�C12ÞC44 ¼ 0:

(3)

Once the homogenized values of G and B are known, then
the Young’s modulus (Y) of an elastically isotropic
polycrystalline aggregate can be calculated:

Y ¼ 9B0G

3B0 þ G
: (4)

Here G denotes either GV, GR, or GH. In this way, for each
pure element or ordered compound with cubic symmetry,
the complete set of elastic constants can be determined (see,
e.g., [16–25]).
Compositional dependences of both elastic constants and

polycrystalline moduli can be obtained applying the above
mentioned methods for supercells with different constituent
concentrations. In this way elastic constants of chemically
ordered phases can nowadays be routinely calculated
(at least at T¼ 0K) using electronic structure methods.
The prediction of the elastic properties of low-symmetry
systems, such as random alloys is, however, less
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 87
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Figure 3. Bulk modulus (B0) of MoxNb1-x as a function of alloy com-

position x. Theoretical results obtained employing coherent phase

approximation (CPA) and special quasi-random structures (SQS) are

compared with experimental data [30].
straightforward. In particular, the faithful reproduction of
randomness in these structures poses a significant challenge.
A nall̈ve atomistic description of random alloys based on a
statistical distribution of atoms requires a considerable
configurational space and hence can only be achieved using
large supercells, which renders standard electronic structure
methods unfeasible. Instead, three alternative approxima-
tions are generally employed to mimic the disorder: the
coherent potential approximation (CPA), the concept of
special quasi-random structures (SQSs), and, to obtain the
temperature dependencies of material properties including
configurational entropy, the cluster expansion (CE)
approach turns out to be a valuable tool [26].
The CPA describes the random distribution of impurity

atoms (within a mean-field framework) by a concentration-
dependent effective potential which averages the scattering
properties of the ordered alloy constituents and reproduces
the electronic properties of the actual alloy when placed on
every matrix site [27]. In SQS randomness is introduced by
mimicking as closely as possible the most relevant nearest
neighbour pair and multisite correlation functions of an
infinite random alloy within a finite supercell [28] (an
example of SQS supercell is shown in Fig. 2).
In most cases, both approaches provide similar results, as

for instance demonstrated for the Mo-Nb system (Fig. 3).
Here, the CPA calculations have been performed within the
exact muffin-tin approximation (EMTO) [31], while the
SQS implementation via the correlation functions is
obtained with the alloy theoretical automated toolkit
(ATAT) [32, 33], which was used together with Vienna ab
initio software package (VASP) [34, 35]. More details on
these calculations can be found elsewhere [36, 37]. The bulk
modulus calculated with both CPA and SQS approaches
increases with increasing the Mo concentration x in
MoxNb1-x solid solution with an almost identical slope.
The comparison with experiment [30] demonstrates the
good performance of both CPA and SQSmethods. The SQS
usually yields better results for alloys with atomic size
mismatch, in which relaxation effects may be significant.
Figure 2. Example of a fcc-based 32-atomic special quasi-random

structure A25B75 containing eight 4-atomic elementary fcc cells with

the A atoms visualized as dark larger spheres and B atoms as

yellow smaller spheres [29].
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The CPA works well for coherent alloys consisting of
chemical species of similar size and has the advantage that
arbitrary alloy compositions are readily accessible without
any additional computational cost. It can be improved to the
locally self-consistent Green’s function (LSGF) method
[38], which allows to include even local environment
effects.
Whereas Fig. 3 indicates a rather linear dependence of the

bulk modulus as a function of chemical composition, this is
by no means a general feature of all elastic constants and
materials. In order to showan example of the non-linearity of
the compositional dependence of elastic constants of alloys
employing the SQS approach, the deviation of both single-
crystalline elastic constants and homogenized polycrystal-
line moduli are shown in Fig. 4 for the Ti-Al fcc solid
solution [29]. Specifically, for a given elastic constant
C(AxB1-x) the deviation from the linear behaviour
DC(AxB1-x) in percent is shown. The deviation is defined
as the difference between (i) the actual value C(AxB1-x) and
(ii) the value obtained from the linear interpolation
(x �C(A)þ (1-x) �C(B)) between the elastic constants of the
elemental end-members C(A) and C(B) forming the binary
system.
The visualized compositional trends of non-linear parts of

both single-crystalline elastic constants C11, C12, C44 and the
homogenizedYoung’smodulusY clearly show that the non-
linear parts can amount easily up to 40–50% of the actual
values and differ quantitatively when comparing different
elastic constants or elastic moduli. Further, it is noteworthy
that the non-linear features of the elastic constants do not
average outwhen performing the homogenization in order to
determine the polycrystalline moduli [17].
Due to the fact that the chemical trends exhibit rather

strong non-linear features and may thus not be easily
estimated from values tabulated for pure constituents, a
series of experiments for each concentration must be
performed or, alternatively, a series of quantum-mechanical
eim www.steelresearch-journal.com
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Figure 4. Compositional trends in the non-linear part of the elastic constantsDC11 (a),DC12 (b),DC44 (c), and polycrystalline Young’s modulusDY

(d) homogenized employing the Voigt scheme as a function of the composition x in the TixAl1-x fcc-based solid solutions (for details see [29]).
calculations is needed. The latter way, or an optimum
combination of both, can significantly reduce both costs and
time that are necessary to identify an alloy with desired
elastic properties (see the theory-guided materials design
discussed in Section 5).

Results Obtained for Iron

In this paper, we mostly apply the above described
methodology (and its extension to a broader range of lattice
distortions) to iron that is exhibiting a variety of magnetic
structures. Therefore, magnetic effects play a crucial role in
the phase stability of iron and iron-based systems. Body-
centered cubic (bcc) iron is ferromagnetic in its ground state
with the experimentally measured local atomic magnetic
moment around 2.1–2.2mB (so-called high-spin state). The
value and the arrangement of orientations of the local
magneticmoment of neighbouring Fe atoms are essential for
a variety of iron’s properties, including its elasticity or phase
transitions.
Structurally, iron can exist also in the face-centered cubic

(fcc) g phase (in, e.g., thin films or at elevated temperatures),
in the hexagonal e phase (under hydrostatic pressure) or in a
variety of tetragonal, trigonal, or orthorombic phases (in thin
films or locally at grain boundaries [39–41]). As summar-
ized below, these phase transitions are closely related to
the elasticity if the applied strains are extended beyond
the harmonic regime (quadratic law) for the total energy.
Within this context, certain changes of both the magnitude
of the local magnetic moment and/or transitions from
www.steelresearch-journal.com � 2011
ferromagnetic (FM) to various antiferromagnetic states
(AFM) can lead to the loss of stability and a phase
transformation.
Below, we first determine the single-crystalline elastic

constants and polycrystalline elastic moduli of ferromag-
netic high-spin state of bcc Fe. Second, we extend the range
of applied deformations to identify limits of iron stability
with respect to transformations that preserve the atomic
volume (tetragonal Bain’s path, Stoner-like excitations,
trigonal transformation, and finally the cubic-to-hexagonal
one) paying special attention to differences stemming from
different magnetic states. In order to examine their depend-
ence on hydrostatic pressures these transformation paths are
studied not only at the equilibrium volume of bcc FMFe, but
also at different volumes. Finally, we determine the
behaviour of iron under loading conditions that allows for
structural relaxations including volumetric changes, specif-
ically Poisson’s contraction during the tensile test along the
[001] and [111] directions, as well as triaxial loads.

Elastic constants of a-Fe. Unless explicitly specified,
the following results were obtained within density-functional
theory [1, 2] employing the generalized gradient approxi-
mation [42] as implemented in the Wien97 code [43].
Employing the above described methodology, the calculated
elastic constants and the homogenized polycrystalline
modulus of ferromagnetic bcc Fe are summarized in Tab. 1.
As can be seen from the comparison of theoretical and

experimental values given in Tab. 1, the agreement between
predicted ab initio andmeasured elastic parameters is within
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 89
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Table 1. Theoretically predicted and experimental [44] single-
crystalline elastic constants C11, C12, and C44 together with poly-
crystalline shear and Young’s moduli of a-Fe, G and Y, respectively.

C11 C12 C44 G Y

Theory 250 124 99 82.4 212

Exp. [34] 242 147 112 80.2 209

Figure 6. Schematicpicturesof threeselectedmagneticstatesof iron

including the non-magnetic (NM) state, ferromagnetic (FM) one, and

two anti-ferromagnetic states (AFM1 and AFM2). Different orienta-

tions of local magnetic moments are indicated by arrows.
�10%. The deviations stem mostly from approximations in
the exchange-correlation functional. For a detailed analysis
of how such errors affect homogenized elastic properties,
error propagation of different homogenization schemes has
been analyzed in Ref. [17].

Stability along tetragonal transformation path. After
analyzing ground-state elasticity of Fe, the small lattice
strains, which have been applied in order to determine the
values of single-crystalline elastic constants, can be
extended in order to identify limits of stability of the
ferromagnetic state of iron. To analyze the competition
between different magnetic states in different tetragonal
structures (see, e.g., [45–51]), the range of the tetragonal
lattice distortions associated with the C’¼½ (C11 – C12)
elastic constant (see Fig. 1 and Eq. (1)) is extended to follow
the so-called Bain’s transformation path connecting the bcc
and fcc structures via a martensitic transformation (Fig. 5).
Along the Bain’s path, the symmetry of the structures is

reduced to the tetragonal one, but the bcc and fcc structures
represent phases of higher symmetry along the path. When
studying the behaviour of the total energy along the
deformation paths, one usually assumes that the atomic
volume is constant. The Bain’s path can be then conven-
iently described by the ratio c/a of tetragonal-lattice
parameters (see Fig. 5), with c/a¼ 1 for the bcc phase and
c/a¼H2 for the fcc structure. For magnetic materials that
are considered in this section it is important to note that
certain arrangements of the magnetic moments can reduce
the symmetry even further (see Fig. 6).
The total-energy changes along the Bain’s path have been

calculated and are visualized as a function of the path
parameter c/a for eachmagnetic state in Fig. 7. The character
of the total-energy dependences significantly differs for
Figure 5. Schematic visualization of Bain’s transformation path

transforming the bcc phase into the fcc one or vice versa. The labels

‘‘c’’ and ‘‘a’’ indicate the length scales along the [001]bcc and [100]bcc

directions, respectively. The body-centered atom in the bcc cell is

indicated by a semi-filled circle to identify its position after the trans-

formation in the fcc cell.
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different magnetic states, specifically contrasting ferromag-
netic (FM) states and the other three states, the non-magnetic
(NM) and the two anti-ferromagnetic states (AFM1 and
AFM2). The curvatures of the total-energy dependencies for
the bcc structure determine the value of C’ elastic constants
of each individual magnetic state. The corresponding
magnetic moment (2.25 mB) is very close to the exper-
imentally detected values 2.1 – 2.2 mB.
Craievich and co-workers [52] have shown that some

energy extrema on constant-volume transformation paths
are dictated by symmetry. Namely, most of the structures
encountered along the transformation paths between some
higher-symmetry structures, for instance between bcc and
fcc at the Bain’s path, have a symmetry that is lower than
cubic. At those points of the transformation path where the
symmetry of the structure is higher, the derivative of the total
energy with respect to the parameter describing the path
must be zero. These are so-called symmetry-dictated
extrema. The extrema are clearly seen in Fig. 7 in case of
FM bcc Fe (minimum), NM and AFM1 bcc Fe (maxima), as
well as for the FM andNM fcc Fe (minima). TheAFM2 state
does not have the cubic symmetry for neither c/a¼ 1 nor for
c/a¼H2, and the total energy at these points has a finite
slope without any extremum.
Figure 7. Calculated total energy E (with respect to the energy of the

groundstateE0)alongtheBain’spath for thenon-magnetic (NM)state,

ferromagnetic (FM) state, and two anti-ferromagnetic states (AFM1

and AFM2). All results have been calculated for a constant volume

equal to the experimental volume of a–Fe.

eim www.steelresearch-journal.com
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Figure 8. Calculated contour-plots of the total energy E ofa–Fe (with

respect to theenergyof thegroundstateE0)asafunctionof thec/apath

parameter and the volume (relative with respect to the experimental

volume of a–Fe). The ground-state configuration is marked by a

cross. The contour lines are separating energies with a difference of

0.02 eV/atom.
However, other extrema which are not dictated by the
symmetry and reflect properties of the specific material (as,
e.g., the minimum of the AFM2 state) may occur.
Configurations which correspond to energy minima at the
transformation paths represent stable or metastable struc-
tures and may mimic atomic arrangements that could be
encountered when investigating thin films (see, e.g., [45])
and extended defects such as interfaces or dislocations.
The results visualized in Fig. 7 were obtained for states

with an atomic volume equal to the experimental value
detected for a–Fe. Similar dependencies can be calculated
also for other volumes and allow to check the stability of
different phases, e.g., under hydrostatic pressure. The results
are shown in Fig. 8 for a series of nine different volumes
ranging from 84% to 105% of the experimental atomic
volume of bcc FM Fe. Only the energies of state with the
lowest total energy (among the calculated ones) for a given
c/a ratio and volume are shown.
The thick lines in Fig. 8 indicate phase boundaries, which

separate regions with different magnetic states of Fe,
obtained by a total energy minimization with respect to c/a
ratio and atomic volume. Apart from the large region of the
FM bcc phase (c/a¼ 1.0), there are AFM2 and AFM1
regions in the neighbourhood of the fcc structure (c/a¼H2).
Note, that the lattice symmetry of fcc iron with the AFM1
and AFM2 spin ordering is tetragonal and, therefore, we do
not find any extremum of the total energy of these states
(dictated by symmetry) at c/a¼H2. The phase boundary
between the FM and AFM2 states can be considered as a
stability limit of the FM bcc Fe. Among others, the contour
plot presented in Fig. 8 allowed to predict magnetic states of
stable iron overlayers at (001) substrates with different
lattice parameters [42].
Since the curvature of the total-energy plots shown in

Fig. 7 determine the value of elastic constant C’, the change
of themagnetic state from the FM toAFM1 or NM in case of
www.steelresearch-journal.com � 2011
bcc Fe leads to a change from the mechanically stable FM
bcc state with C’> 0 to the mechanically unstable NM and
AFM1 states with C’< 0. In the AFM2 state the cubic
symmetry is broken even for c/a¼ 1 and the state is unstable
for both bcc and fcc structures. It can be therefore concluded,
that the type of magnetic state (ferromagnetic, antiferro-
magnetic or nonmagnetic) has a decisive influence on the
overall energetics of phases including their elasticity and
thermodynamic stability.

Stability with respect to Stoner-like excitations in bcc
FM Fe. For bcc Fe, the change of the magnetic state from
FM to NM, which implies a change from a mechanically
stable (C’> 0) to a mechanically unstable state (C’< 0)
region, has similarities to so-called Stoner excitations,
which are characterized by a reduction of the local magnetic
moment. In the following we analyze the gradual changes of
the mechanical stability of bcc FM Fe phase and identify a
threshold value of the local magnetic moment which
separates stable and unstable regions.
The changes can be analyzed based on the total energy

difference dE between the cubic (c/a¼ 1) bcc FM state and a
representative distorted state (here c/a¼ 1.05). An advant-
age provided by this approach is that the total energy
difference becomes numerically much more robust as
compared to the C’ elastic constant, particularly in the
vicinity of the threshold region which separates the
mechanically stable and unstable states. The calculated dE
maps are shown as a function of volume and the local
magnetic moment in Fig. 9. A positive value of dE
corresponds to mechanically stable state, while a negative
one indicates mechanically unstable region. The identified
threshold value of the local magnetic moment only weakly
depends on the volume, and is calculated to be within 1.2 –
1.3mB over the whole range of the considered volumes.

Stability along the trigonal transformation
path. Similar to the case of a tetragonal transformation
path, the bcc structure can be distorted trigonally (see Fig. 1)
beyond the region with a quadratic dependence of the total
energy on strain. This type of distortions is used to calculate
the C44 elastic constant. The so-called trigonal transform-
ation path connects all phases with cubic symmetry: bcc, fcc
and simple cubic (see Fig. 10). Within the path the bcc
structure is considered as trigonal with the ratio of c/a¼ 1,
where c is measured along the [111] direction and a along a
direction perpendicular to the [111] direction. If c/a 6¼ 1, the
structure becomes trigonal except for c/a¼ 2, when we
attain the simple cubic (sc) structure, and c/a¼ 4, which
corresponds to the fcc structure (see Fig. 10).
In accordance with the trigonal symmetry of the

structures, the different magnetic states which comply with
this symmetry can be studied (Fig. 11).
We have calculated the total energies for four different

magnetic states along the trigonal transformation path
(Fig. 12) assuming that the atomic volume is equal to the
experimental volume of a–Fe. The symmetry-dictated
extrema exist for all four studied states: for the bcc lattice
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 91
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Figure 9. Total energy difference dE between the energy of ferro-

magnetic bcc Fe and a state with 5% tetragonal distortion as a function

of the volume (relative to the experimental equilibrium value) and the

local magnetic moment. The energy is shown both as a surface and a

contour-plot projection on the basal plane with the contour-plot lines

separatedby10meV/atom.Thecalculationshavebeenperformedusing

the Vienna Ab-initio Simulation Package (VASP) code [34, 35, 53].

Figure 10. Schematic visualization of the trigonal transformation

path transforming the bcc phase into the simple cubic (sc) phase

and further into the fcc one. The ‘‘c’’ and ‘‘a’’ lattice parameters were

conveniently introduced in an analogy to the Bain’s path discussed

above (Fig. 5).

Figure 11. Schematic pictures of two selected antiferromagnetic

states (single-layer AFM1 and double-layer AFM2) for the bcc phase

studiedalong the trigonal transformationpath.Differentorientationsof

local magnetic moments are indicated by both different shading of

spheres representing the atoms and arrows.

Figure 12. Calculated dependencies of the total energy E (with

respect to the energy of the ground state E0) as a function of the c/a

path parameter along the trigonal transformation path.
(minima), the sc lattice (maxima), as well as minima for the
fcc lattice in case of FM and NM states. From the character
of these extremawe conclude that theC44 elastic constant for
all four magnetic states of the bcc lattice are positive, and
these states, therefore, are mechanically stable with respect
to the trigonal strains. The opposite behaviour is observed
for the sc lattice.
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The results for different volumes can be visualized as a
contour-plot of the total energy of the states that have the
lowest energy as a function of the c/a trigonal-path
parameter and volume (Fig. 13). The FM state is stable
with respect to this distortion in a much broader range of
volumes and deformations as compared to the tetragonal
deformations (Fig. 8). Studies of other elements or
compounds can be found in, e.g., [54–59].

Stability along bcc-hcp transformation path. In
conclusion of this section we analyse the bcc-hcp marten-
sitic transformation path (Fig. 14). The study was motivated
by the fact that bcc iron undergoes a phase transition to a
distorted hexagonal-closed-packed (hcp) phase at a pressure
of about 13GPa and this transition has been very intensively
studied both experimentally and theoretically [60–77].
Since the hcp–phase is not ferromagnetic and the structural
pressure-induced transformation is accompanied by a
transition of the magnetic state, four different magnetic
states (Fig. 15) were simulated in order to clarify the
influence of the magnetic degrees of freedom.
A bcc-hcp transformation path can be constructed as a

combination of a homogeneous deformation and a shuffling
of alternating close-packed atomic planes in opposite
eim www.steelresearch-journal.com
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Figure 13. Calculated contour-plot of the total energy E (with respect

to the energy of the ground state E0) as a function of the c/a path

parameter and the volume (relative with respect to the experimental

volume of a–Fe).The ground state is marked by a cross.

Figure 14. Schematics of the transformation pathconnecting thebcc

andhcpstructures.Thefour-atombasis isdistributedover two(110)bcc

planes that are continuously deformed and shufed to form two parallel

(0001)hcp atomic layers. In (a), two atoms (numbered as 1 and 4) are

located at the cube centers, the other two (numbered as 2 and 3) at the

cube corners (the atoms 2’ and 3’ are equivalent to atoms 2 and 3,

respectively).Thepositionsof the (0001)hcp planesalongthe (0001)hcp

direction inside the hcp unit cell are indicated by the parameter z equal

to either 1/4 or 3/4 (in units of the lattice parameter c).

Figure 15. Schematic view of the ferromagnetic and three different

anti-ferromagnetic arrangements discussed in the text. The light and

dark circles denote atoms with opposite spin orientations (up and

down), respectively. Left column shows the bcc-based congurations;

themiddlecolumnandtherightcolumndisplaythehcp-basedarrange-

ments along the (0001)hcp direction and from the side, respectively.

Ferromagnetic (FM), antiferromagnetic cubic-symmetry (AFC), ant-

ferromagnetic hexagonal (AFH), and antiferromagnetic non-cubic/

non-hexagonal (AFN) indicate different magnetic arrangements con-

sidered.
directions (see, e.g., Ref. [78] or Fig. 14). These two degrees
of freedom can be coupled to obtain a single (one) parameter
which fully describes this transformation path. The
www.steelresearch-journal.com � 2011
considered path is very similar to the recently proposed
path [79–81] that corresponds to linearly increasing strain in
two crystallographic directions (while preserving the
volume) and shuffling adjacent close-packed planes, with
the shuffling being linearly coupled to the magnitude of the
strain. Similar paths were proposed also by Craievich et al.
[82]. All of these one-parameter paths avoid high-energy
configurations that are encountered if (i) only a shuffling or
(ii) only a lattice deformation is applied, and are close to the
minimum energy paths at constant volume.
Along the bcc-hcp transformation path, described below

by the parameter p, we consider the bcc and hcp structures, as
well as the structures in-between, as orthorhombic with four
atoms in the unit cell. The path parameter p is rescaled such
that p¼ 1 corresponds to the bcc structure, similarly to the
cases of the tetragonal and trigonal paths. p¼H2 corre-
sponds to the hcp structure, similarly to the fcc structure
along the Bain’s transformation path.
In Fig. 16 we present the profiles of the total energy E of

the NM, FM, AFC, and AFN arrangements (see Fig. 15)
along the bcc-hcp transformation path, calculated with
constant atomic volume equal to that of experimental ground
state of FM bcc iron. Similarly, as in the case of the bcc–fcc
transformation path, the results allow to identify the total
energy extrema which are due to the existence of crystal
structures with the symmetry higher than orthorhombic. The
total energies of the FM and NM phases exhibit extrema for
both the bcc and the hcp structures, i.e., at p¼ 1 and p¼H2,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 93
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Figure 16. Changes of the total energies along the constant-volume

bcc-hcp transformation path calculated with respect to the ground-

state energyof ferromagnetic (FM) bcc iron E0 as a functionof the path

parameter p (see details in Ref. [78]). The energies of the FM, the non-

magnetic (NM), and the two antiferromagnetic states (AFC and AFN)

are presented. The results correspond to the experimental atomic

volume of bcc FM Fe.

Figure 17. Calculated contour-plot of the total energy E (with respect

to theenergyof thegroundstateE0)asa functionof thepathparameter

pandthevolume(relativewithrespect to theexperimentalvolumeofa–

Fe). The minima of the ferromagnetic (FM) state and anti-ferromag-

netic state with cubic symmetry (AFC) are shown as a full cross and an

empty star, respectively.

respectively. The type of these extrema is, however,
opposite: a maximum for the FM states corresponds to a
minimum for the NM states and vice versa. The total energy
of the antiferromagnetic AFC phase exhibits a symmetry-
dictated extremum too, i.e., a maximum at p¼ 1. In contrast,
the other extremum (minimum at p¼ 1.49) is not dictated by
symmetry.
We also show that the transformation path can be divided

into regions with different stable magnetic states by
minimizing the total energy of the lattice. The FM state
has the lowest energy for p� 1.31, while the AFC state is
energetically themost stable for p> 1.31. Thus, the resulting
minimum total energy profile has a cusp at the point where
the FM and AFC curves cross. At p¼H2, the AFC phase
does not exhibit a higher symmetry in comparison to the
neighbouring structures along the transformation path and,
indeed, no extremum in the total energy of this phase is
observed here. The first derivative of the total energy with
respect to the path parameter is, therefore, nonzero.
Consequently, the hcp phasewith thismagnetic arrangement
is unstable with respect to the transformations along the
considered transformation path.
In order to obtain a comprehensive overview of the

structural transformation, as well as details of the competi-
tion between the different magnetic states, the total energy
dependence was calculated along the bcc-hcp transforma-
tion path for nine different volumes covering the range from
V/Vexp¼ 0.84 to V/Vexp¼ 1.05. The contour plots of the
total energies are shown in Fig. 17. Only the states with
the lowest total energy are depicted together with the phase
boundaries. The calculated ground-state corresponds to bcc
FM state at V/Vexp ¼0.985 and p¼ 1.
The total energy minimum of the AFC state is located at

the point V/Vexp¼ 0.909 (71.9 a.u.3/atom), p¼ 1.46, and is
not symmetry dictated. The corresponding total energy is
higher than that of the equilibrium FM bcc phase by
0.064 eV/atom. Again, phase boundaries separating stable
94 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinh
ferromagnetic (FM) states from regions with either the
nonmagnetic (NM) or the antiferromagnetic AFC-type
allow to identify the region of stability of the FM phase.
For recent studies of bcc-hcp transformation in Fe see e.g.,
[83, 84].

Tensile Test Simulations Up to the Tensile Strength and
Beyond

After examining the elasticity of iron and its behaviour
along volume conserving tetragonal, trigonal and bcc-hcp
transformation paths, we focus now on deformation
processes that do not conserve volume. This is e.g. the case
for tensile tests. Specifically, (i) the uniaxial tensile tests
along the [001] and [111] directions will be simulated
including Poisson’s contractions in directions perpendicular
to the loading direction, as well as (ii) triaxial loading
conditions. Due to the fact that the applicability of quantum-
mechanical approaches is not limited to states close to the
ground state, extreme loading conditions may be simulated
up to the materials strength limits and even beyond it. In this
way, the theoretical tensile strength, corresponding to the
fracture of an ideal, defect free crystal, can be determined.
The theoretical tensile strength is experimentally very
difficult to attain and the only materials in which it was
approached in the past are whiskers of very pure metals and
silicon [85–87], which are practically dislocation free.
However, recent developments in materials engineering,
such as the production of defect-free thin films and the
advancement of various nanostructured materials, have
stimulated interest in studies of the ideal strength which in
thesematerialsmay control both the onset of fracture and the
dislocation nucleation, as demonstrated by nanoindentation
experiments (see, e. g., Refs. [88–95]).
eim www.steelresearch-journal.com
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Theoretically, the ideal strength can again be investigated
using density functional theory. Importantly, each loading
mode has its own theoretical strength and as the values of
theoretical tensile strength for different loading types
represent the limits of materials stability, the lowest one is
the most relevant for the onset of dislocations motion. The
corresponding loading mode is the weakest link when
analyzing a complex distorted environment of dislocation
cores, grain boundaries, and other extended defect with
decisive impact on materials plasticity and strength. A few
selected examples of different loading conditions are
summarized below.

Uniaxial tensile test simulation. The first paper deal-
ing with ideal tensile strength calculated with the first
principles approachwas that of Esposito et al. [96],who used
unrelaxed structures for Cu. Later, Paxton et al. [97] and Xu
and Moriarty [98] calculated shear strength for unrelaxed
shear deformation. Probably the first ab initio simulation of a
tensile test, including the relaxation in perpendicular
direction to the loading axis, was performed by Price et al.
[99] for uniaxial loading of TiC along the [001] axis. Later,
systematic ab initio studies of theoretical strength and
stability in metals and intermetallic compounds under
extreme conditions were initiated in the group of M. Šob,
starting with the theoretical tensile strength for [001] and
[111] loading axes in tungsten (see Ref. [100]). Since then,
tensile tests were simulated for numerous crystalline
materials (see, e.g., [101–104]) and their theoretical tensile
strengthswere determined (for a review before the year 2005
see e.g. [105, 106]).
To simulate a uniaxial tensile test, we start by determining

the structure and total energy of the material in the ground
state. In the second step, we elongate the structure along the
loading axis by a fixed amount e3, what is equivalent to
applying a certain tensile stress s3. For each value of e3 we
minimize the total energy by relaxing the stresses s1 and s2
in the directions perpendicular to the loading axis. The stress
s3 is given by

s3 ¼
c

V

@E

@c
¼ 1

Ac0

@E

@e3
; (5)

where E is the total energy per computed unitcell or
supercell, V is the volume of the cell, c is the dimension of the
cell in the direction of loading,A (equal toV/c ratio) is the area
of the basis of the cell in the plane perpendicular to the
loading axis, and c0 is the value of c in the undeformed state.
The inflexion point in the dependence of the total energy

on the elongation yields the maximum of the tensile stress
during loading. If any other instability (violation of some
stability condition, soft phonon modes, magnetic spin
arrangement etc. [95, 107–116]) does not occur prior to
reaching this inflexion point, the maximum of the tensile
stress corresponds to the theoretical tensile strength, sth. In
principle, analysis of the phonon spectrum of a strained
crystal at each point of the deformation path is necessary and
sufficient to ascertain the stability of the investigated
www.steelresearch-journal.com � 2011
material. Such an analysis based on ab initio calculations
is, however, extremely demanding, and was performed only
for tensile tests in Al [117]. A detailed description of ab
initio calculations of theoretical tensile strength and a review
of recent results may be found in Refs. [118, 119]. Ab initio
calculations of theoretical tensile and shear strength are also
reviewed in e.g. Ref. [118].
In accordance with the methodology described above, we

performed the simulation of a tensile test in iron for uniaxial
loading along the [001] and [111] directions, respectively.
The corresponding total energies as functions of relative
elongation e are displayed in Fig. 18(a). It is seen from
Fig. 18(a) that the total energy profiles have a parabolic,
convex character in the neighborhood of the ferromagnetic,
symmetry-dictated, minimum which corresponds to the bcc
structure (ground state). With increasing value of e the
curves reach (due to non-linear effects) their inflexion points
(marked by vertical lines in Fig. 18(a)), which correspond to
the maximum stress in the material and become concave.
The actual values are summarized in Tab. 2.
The tensile stresses calculated according to the Eq. (5) are

shown in Fig. 18(c). The inflexion points on the total energy
profiles (Fig. 18(a)) correspond to maximum stresses
(Fig. 18(c)) which the material can accommodate if its
structure type does not change during the deformation. For
uniaxial tensile test along the [001] and [111] directions they
are equal to smax

½001� ¼ 12.7GPa (this value was reported in our
previous work (Refs. [120, 121])) and is similar to the values
of 14.2 and 12.6 GPa found in Refs. [111, 122], respectively,
and smax

½111� ¼ 27.3 GPa (Refs. [110, 121]). These values
represent the theoretical tensile strengths provided other
instabilities do not come forth before the inflexion point has
been reached.
The maxima on the total energy versus e dependence are

dictated by symmetry (Fig. 18(a)). They correspond to fcc
and simple cubic structures when simulating tensile tests
with loading along the [001] and [111] directions,
respectively. These maxima are denoted by arrows in
Fig. 18(a). Their presence indicates that the corresponding
dependence of the energy on elongation must level off,
which imposes certain limitations on themaximum stress. In
cases when there is no symmetry-dictatedmaximum (e.g., in
the uniaxial tensile test along the [001] direction of NiAl
with the B2 structure in the ground state [123]), the
maximum stress is usually higher.
Since the structural energy difference Esc�Ebcc is about

five times higher than the difference Efcc�Ebcc (755 meV/
atom compared to 155 meV/atom), the E versus e curve for
the [111] loading must rise much higher, albeit for larger
strains, than that for the [001] loading (see Fig. 18(a)).
Consequently, for the tensile test in the [111] direction the
inflexion point occurs at a higher strain and for a higher stress
than in the test with loading in the [001] direction. Thus,
similarly as for W [98], a marked anisotropy of ideal tensile
strengths for the [001] and [111] loading directions may be
understood in terms of the structural energy differences of
nearby higher-symmetry structures found along the defor-
mation path.
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Figure 18. (a) Total energy per atom relative to the energy of the equilibrium state, (b) relative atomic volume ratio with respect to the equilibrium

volume Veq, (c) calculated tensile stress in the material, and (d) magnetic moment per atom of ferromagnetic iron loaded uniaxially along the [001]

and [111] directions versus elongation e. The relative elongation e reflects the increase or decrease of the crystal dimension in the direction of

loading. The vertical thin lines show the states exhibiting maximum stress (i.e,. the theoretical tensile strength).
Relative changes of atomic volume and the dependences
of the magnetic moment of FM iron are shown as functions
of elongation in Fig. 18(b) and (d), respectively. In the
vicinity of the ground state structure the atomic volume
increases with increasing elongation, but it exhibits a more
complex behavior at larger deformations.

Triaxial (isotropic) loading simulation. We complete
the section with the triaxial loading simulations [124] in
which the strain e corresponds to a relative extension of the
bcc lattice parameter a. The volume of the unit cell is
isotropically expanded in all directions corresponding to the
application of negative hydrostatic pressure. The triaxial
stress is calculated as

s ¼ @E

@V
: (6)
Table 2. Theoretical tensile strengths of a-Fe for loading along the
[001] and [111] directions together with the value obtained from
triaxial loading conditions.

[001] [111] triaxial

Theoretical tensile
strength sth (GPa)

12.7 27.3 27.9

96 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinh
The corresponding total energies as functions of relative
elongation e are displayed in Fig. 19(a). The total energy
profiles have a parabolic, convex character in the vicinity
of the ground state volume. With increasing value of e the
total-energy curve reaches its inflexion point (marked by
vertical lines in Fig. 19(a)) and becomes concave. The
inflexion point for the isotropic triaxial loading occurs (most
likely incidentally) for nearly the same elongation of
e¼ 0.15 as in the case of the [001] tensile test. This
elongation corresponds to the bcc structure with the lattice
constant of 6.20 a.u.
The triaxial tensile stresses calculated according to Eq. (6)

are shown in Fig. 19(c). The inflexion point on the total
energy proles (Fig. 19(a)) corresponds to maximum stress of
smax¼ 27.9 GPa [101, 121] (see Fig. 19(c)). It should be
noted that the theoretical strength for hydrostatic loading is
nearly the same as that obtained for the loading in the [111]
direction, 27.3 GPa. At present, we do not have any plausible
explanation of this fact. In agreement with Herper et al. [49],
the magnetic moment shows monotonous increase with
increasing volume (Fig. 19(b)). (This is in contrast to the
behavior during the uniaxial tensile tests, where local
extrema at points corresponding to higher-symmetry
structures (maxima for fcc and simple cubic), as well as at
some other points along the transformation paths, exist.
eim www.steelresearch-journal.com
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Figure 19. (a) Total energy per atom relative to the energy of the equilibrium state, (b) magnetic moment per atom of ferromagnetic iron,

(c) calculated triaxial tensile stress in the bcc ferromagnetic Fe.
Analyzing all three different loading conditions and
corresponding theoretical tensile strengths we conclude,
that, unless another process with a yet lower strength is
active, the theoretical tensile strength for uniaxial loading
along the [001] direction is the upper limit of attainable
stresses in ferromagnetic bcc Fe. This value can be
compared with those determined for a variety of other
materials for which similar analysis was recently performed
for pure elements [125–138], intermetallics [139–146], or,
e.g., graphene layers [147], under uniaxial loading con-
ditions, biaxial loads [148, 149], hydrostatic pressures [150,
151], or grain boundaries [152].

Summary and Outlook

In this paper, quantum-mechanical calculations were
applied to elemental ferromagnetic bcc Fe, specifically for
the determination of its ground-state elastic constants and
polycrystalline moduli. A detailed study of its magnetism
including Stoner-like excitations and influence of different
magnetic states on tetragonal, trigonal and bcc-hcp trans-
formation paths that resulted in the identification of the
stability limits of the FM state with respect to different phase
transformations was presented. The study has been com-
plemented with simulations of iron’s response to extreme
loading conditions such as uniaxial and triaxial tensile tests
www.steelresearch-journal.com � 2011
in order to identify theoretical tensile strengths of a-Fe. We
note that these calculations are not limited to pure elements
or existing materials and may thus also provide data on the
atomic scale that are inaccessible experimentally. This is
related to the fact that not only the ground-state properties,
but also materials response to extreme loading conditions
can reliably be determined.
More generally, ab initio approaches to the elasticity of

materials can be used within a theory-guided materials
design of alloys and composites with properties dictated by a
specific (industrial) need. The theory-guided materials
design allows prediction of selected materials properties
(such as elastic constants or moduli) of new materials
without actually synthesizing them. According to this
philosophy, themost promising phase(s) and composition(s)
are selected and the samples are synthesized and tested only
for these theoretically pre-selected materials. Such a
combined, theoretical and experimental, approach leads to
an optimized materials design within significantly shorter
time and at reduced costs when compared to the conven-
tional, solely experimental, materials development.
We complete the paper with an example of such a

materials design aiming at specific elastic properties of
alloys. In contrast to many top-down approaches that start
from the macroscopic scale and continue downscale, a
quantum-mechanics-based bottom-up approach is chosen
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 97
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Figure 20. Schematic overview of our multi-scale and multi-discipli-

nary strategy combining (i) thermodynamic phase-stability and (ii)

single-crystalline elasticity data obtained at atomic level by first-prin-

ciples calculations with self-consistent homogenization techniques in

order to bridge scale differences.
here to identify more rapidly both suited compositions with
regard to the thermodynamic stabilization of the desired
phase aswell as to scrutinize some of the basic structural and
mechanical features of possible alloy candidates (see
Fig. 20).
First, the thermodynamic stability for a variety of phases is

determined in order to identify the stable one(s) as well as
their volumetric ratio in a multi-phase alloy if necessary.
Together with the thermodynamic stability of phases, the
mechanical stability is tested by computing single-crystal-
line elastic constants. Second, polycrystalline elastic moduli
and other engineering parameters measurable at macroscale
were predicted employing linear-elasticity homogenization
techniques that allow scale-bridging between atomistic and
macroscopic levels.
Starting from an initial composition and based on the

residuum/deviation of the properties on the macroscale a
new atomic composition is suggested and studied. This cycle
is repeated until the desired properties are obtained.
Following this strategy, an alloy composition with desired
properties is obtained. Of course, if the properties are not
accessible by any chemical composition, new phases/
compositions or properties have to be identified.
Such a theory-guided materials design has successfully

been applied to a wide range of materials (see for example
Refs. [71–78]). When aiming at materials with specific
elastic properties, a few recent cases can be mentioned, (i)
the development of new Ti-based biocompatible Ti-Nb and
Ti-Mo alloys intended for medical application (implant
materials), (ii) ultra light-weight Mg-Li alloys, and (iii)
elasticity tuning of the so-called MAX phases (ternary
nanolaminated transition metal carbides or nitrides) [153–
155]. In the case of Ti alloys, an alloy composition providing
significantly reduced Young’s modulus (matching that of
human bone) was searched for. The study was carried out to
prevent negative stress-shielding effect that is observed in
implants that are too stiff as compared with the bone [156].
98 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinh
In the case of Mg-Li alloys, an optimum alloy was sought
for that represents a compromise between two conflicting
criteria (i) specific Young’s modulus as a measure of
strength, and (ii) the bulk over shear modulus ratio as an
approximate indicator [157] of either brittle or ductile
behavior (see e.g. [16–25]). Importantly, the on-going
developments in both quantum-mechanical methods and
atomistic and/or continuum approaches to modeling of
materials properties show many promising trends towards
further extension of the above mentioned multi-scale and
multi-disciplinary schemes beyond the elasticity of materi-
als into the field of their complex plasticity behavior (see,
e.g., [158–160]) and/or finite temperatures via taking into
account e.g. vibronic degrees of freedom (see for exam-
ple[161–165]) or magnetic excitations (see e.g. [166–178]).
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Condens. Matter 10 (1998) 5081; 10 (1998) 5113.
[49] H. C. Herper, E. Hoffmann, P. Entel: Phys. Rev. B 60 (1999) 3839.
[50] S. L. Qiu, P. M. Marcus, H. Ma: J. Appl. Phys. 87 (2000) 5932.
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