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Abstract—A method is introduced for scaling Monte Carlo kinetics of the Potts model using rate theory.
The method is particularly designed for the kinetic and spatial scaling of multistate kinetic Potts models
using one or more sets of non-conserved structural or orientational state variables S; each of which can
assume a number of Q; degenerate ground states (Q or multistate Potts models) as commonly employed
for simulating recrystallization and curvature driven grain growth phenomena. The approach is based on
the equivalence of single-site state switches in the Potts model and grain boundary motion as described by
Turnbull’s classical rate theory mapped on a simulation lattice. According to this approach the switching
probabilities can be scaled by the ratio of the local and the maximum occurring values of the grain bound-
ary mobility and by the ratio of the local and the maximum occurring values of configurational and scalar
contributions to the driving force. The real time step elapsing during one Monte Carlo time step is scaled
by the maximum occurring grain boundary mobility, the maximum occurring driving force, and the lattice
parameter of the simulation grid. © 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Computer simulations which use time and space as
independent variables are useful tools for investi-
gating recrystallization and grain growth phenom-
ena.

Applying them to spatially homogeneous starting
microstructures allows one to examine analytical
approaches and complement them with respect to
topological aspects. Applying them to spatially non-
homogeneous starting microstructures allows one to
identify critical conditions and mechanisms that
entail kinetic and topological deviations from ana-
lytical predictions. The latter aspect is of particular
importance because non-homogeneous microstruc-
tures are the rule and not the exception in real ma-
terials.

Monte Carlo simulations based on the multistate
kinetic Potts model have dominated the field of dis-
crete recrystallization and grain growth predictions
since their first introduction into physical metal-
lurgy 15 years ago. Applications were devoted to
normal grain growth [1-8], nucleation and static
primary recrystallization [5—13], dynamic recrystalli-
zation [14, 15], abnormal grain growth [6-8, 16, 17],
and growth processes under the influence of particle
pinning [18-20].

The success of the Potts model can be attributed
to its enormous flexibility, its computational simpli-
city, and the comparably short calculation times.
An important shortcoming of the Potts model is the
absence of intrinsic microstructural scaling
measures.

The introduction of spatial and kinetic scaling
into the Potts model offers two major advantages.
First, it allows one to quantify space and time. This
aspect is of relevance when aiming at the simulation
of industrial processes, i.e. at the use of realistic
boundary conditions. Second, the quantitative in-
corporation of a wide spectrum of realistic or exper-
imental microstructure data, such as stored energy
or grain boundary mobility and energy data, can
only be realized on the basis of a common time and
space scale. For instance, the presence of grain
boundaries with different mobility but identical
driving force should lead to different switching rates
in the Potts model without spoiling the overall time
scale of the simulation. This aspect is of relevance
since experimental grain boundary mobility and
energy data are increasingly available [21-24].

The introduction of scaling into mesoscale Monte
Carlo simulations requires the combination of the
underlying Potts lattice model with some adequate
physical model of the situation to be investigated.
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This paper suggests a method to scale Monte Carlo
kinetics of the Potts model using rate theory. The
scaling method is based on the equivalence of
single-site state switches in the Potts model and
grain boundary motion as described by classical
rate theory mapped on a simulation lattice. The
method is particularly designed for Potts models
using a non-conserved structural state variable S
(e.g. crystal orientation) which can assume a dis-
crete number of Q degenerate ground states (Q or
multistate Potts model). The method enables one to
scale the switching probabilities by the ratio of the
local and the maximum occurring values of the
grain boundary mobility and by the ratio of the
local and the maximum occurring values of config-
urational and scalar contributions to the driving
force. The real time step elapsing during one Monte
Carlo time step is scaled by the maximum occurring
grain boundary mobility, the maximum occurring
driving force, and the lattice parameter of the simu-
lation lattice.

The plan of the paper is as follows. Section 2 is
devoted to classical Monte Carlo kinetics of the
multistate Potts model, reviewing in particular the
energy operator, the Monte Carlo algorithm, classi-
cal Monte Carlo kinetics, and previous scaling
approaches. Section 3 deals with classical rate the-
ory of grain boundary motion. These two ingredi-
ents are used in Section 4 to derive the scaling
method by formulating the equivalence of switches
in the Potts model and grain boundary motion as
quantified by rate theory.

2. MONTE CARLO KINETICS OF THE
MULTISTATE POTTS MODEL

2.1. The energy operator

The Hamiltonian commonly used in Potts models
[25] for simulating recrystallization and curvature
driven grain growth typically quantifies the inter-
facial energy between dissimilar neighbor sites and
the stored elastic energy [6-8, 11]

E = Ey + Eq

N nnn
i=1

= Z gz(l - ‘SS,S/) + Helf(Qu - Si) (1)
‘ =

where E,, is the energy proportional to the total
grain boundary energy in the system, E, the energy
proportional to the total elastic energy due to
stored dislocations in the system, N the number of
lattice sites, nnn the geometrically weighted number
of neighbor sites in the first, second, and third
neighbor shell, S the orientational state variable,
ds,s, the Kronecker symbol which assumes a value
of one if S; = S; and a value of zero if S; # S;, J an
energy proportional to the grain boundary energy,
and H, an energy proportional to the stored elastic
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energy. J and Hy are positive. Their respective pro-
portionality factors relating them to realistic ener-
gies scale the simulation with respect to thermal
fluctuations. The ratio between the two proportion-
ality factors determines the balance between curva-
ture driven grain growth and recrystallization [11].
The function f(Q, — S;) describes whether a site is
recrystallized or not. Further details about the oper-
ator are given in Ref. [11].

The use of a spectrum of orientational states,
each representing a discrete crystallographic orien-
tation, allows one to map domains as regions of
identical state, i.e. as crystal grains or subgrains.
Equation (1) distinguishes configurational contri-
butions to the energy, which are calculated as a
sum over the immediate neighborhood nnn, from
scalar contributions to the energy. This difference in
the calculation of the system energy is of import-
ance for the equivalence scaling procedure discussed
later in this article.

2.2. Monte Carlo algorithm

The basic setup of a Monte Carlo model for
simulating recrystallization and curvature driven
grain coarsening consists of a spatial grid where the
state of each lattice point is described in terms of a
value of the orientational state variable (generalized
spin) and a value of the scalar energy stored with
this point (e.g. elastic energy due to stored dislo-
cations). The configurational energy change is cal-
culated during a trial flip of the orientational state
variable by summing overall bonds between dissimi-
lar neighbor points before and after the switch.

After mapping some initial configuration of these
two state variables on a discrete spatial grid the
Monte Carlo algorithm works according to the fol-
lowing rules. In the first step, a lattice coordinate is
selected at random. In the second step, the values
of the two state variables at this site are switched.
In the third step, the total change in system energy
associated with this switch is calculated applying
equation (1) before and after the flip. In the fourth
step, the probability that the chosen spin will switch
is calculated using the Glauber transition function
[26] or the Metropolis transition function [27]. The
heat-bath method suggested by Glauber dynamics
uses

A 1
WGlZ(lJrexp{ka;—b;}) )

with AE = E, — E,, where E, is the new total
energy of the spin configuration after the trial
switch, E, the old total energy of the current spin
configuration before the trial switch, Wg the
Glauber switching probability, kg the Boltzmann
constant, and 7 the absolute temperature (Fig. 1).
The Metropolis method (Fig. 2) uses a switching
probability Wy according to
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Fig. 1. Single-site Glauber transition function. The dashed line indicates high temperature and the solid
line low temperature, equation (2).

exp{—ﬂ} if AE>0 3)

1 if AE<0

where AE = E, — E,. In the fifth step, a random
number ¢ is generated in the interval 0<¢ < 1. In
the sixth step, the switching decision is made, i.e.
the flip is accepted if ¢ is equal or below the calcu-
lated Glauber or Metropolis switching probability.
Otherwise the switch is rejected and the initial spin
configuration remains unchanged. Further details
about the Monte Carlo rules are given in the papers
cited in Section 1.

2.3. Classical Monte Carlo kinetics

Monte Carlo kinetics are commonly quantified

by defining N trial flips, where N is the number of
lattice sites, as one Monte Carlo step, i.e.
n

Atye = ¥ ©))
where Afyc is the Monte Carlo time step and n the
number of trial switches. It is worth noting that this
measure does not have the unit of time [s] but the
unit of Monte Carlo steps [MCS].

At low temperatures, high degeneracy (high num-
ber of discrete possible states Q), and large average
grain sizes (measured in units of lattice points), the
probability of successfully switching an arbitrary
site to a new orientation is very small and the
Metropolis method becomes ineffective. For this
reason Sahni et al. [28] and later Hassold and Holm
[29] modified the continuous time method intro-
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Fig. 2. Single-site Metropolis transition function. The dashed line indicates high temperature and the
solid line low temperature, equation (3).
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duced earlier for the Ising model [30] for the Potts
model

Ae = =~ Doin(r) )

where A is the Monte Carlo time step in the
continuous time approach, Q the maximum number
of discrete orientational states (spins), T the average
time between succeeding attempted state flips on
the same lattice point (t is usually regarded as the
elementary Monte Carlo time unit), R a random
number between zero and one, and A4 the total sys-
tem activity which is defined by

N 0 N

A:Z fZZZﬂf/ (6)

i=1 j=1i=1

where IT; is the activity of lattice site 7, and m; the
probability of successfully flipping lattice site i to a
new orientation S;.

Further progress along this line was recently
made by Mehnert and Klimanek [31] who derived a
state-normalized version of the continuous time
simulation method which allows one to reformulate
Monte Carlo kinetics with a weaker dependence on
the total number of possible orientational states

C
< Aye

Alve = o — 1)

T
=—7In(®) 0

<. .
where Aty is the state-normalized Monte Carlo
time step in the continuous time approach.

2.4. Previous scaling approaches

The major question in this paper is whether and
how the above Monte Carlo time units [MCS] can
be related to the real time [s]. In this context Safran
et al. [32] suggested for atomic scale simulations to
set the time scale by multiplying the transition
probability with a basic attempt frequency I' = 7!
The authors assumed this attack frequency to have
an Arrhenius-type temperature dependencef, i.e.

F:%:exp{—k%}} ®)

where Q, is the activation energy associated with a
single atomic jump event coupling the simulation to
temperature. The Glauber transition probability
according to Safran et al. then amounts to

A -1
W%,:l"(l%—exp{—kB—b;}) . ©)

T Note that the original paper contains a misprint on p.
2695 concerning the sign of the argument of the exponen-
tial.
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The Metropolis transition probability according to
Safran et al. is

AE .
WS, = Fexp{—kB—T} if AE>0
r if AE<O.

(10)

Concerning mesoscale simulations of recrystalliza-
tion and curvature driven grain coarsening
Anderson et al. [1] and Srolovitz et al. [2] pointed
out that the boundary velocity determined by track-
ing successive spin flips in the Potts model yields
kinetics that are formally equivalent to the classical
rate theory of boundary motion. Following the sug-
gestion of Safran et al. [32], equation (8), the
authors state that the conversion of Monte Carlo
steps to real time has an implicit activation energy
factor, exp{—W,/(ksgT)}, which corresponds to the
atomic jump frequency.

Mehnert and Klimanek [31] recently suggested in
their paper on the state-normalization of the con-
tinuous time method that a conversion of Monte
Carlo time steps to real time should be feasible
using

W,
Azﬁczemvnexp{——éb} (11)

kgT

where Atﬁc is the state-normalized Monte Carlo
time step, Az the real time step, vp the Debye fre-
quency, 0 a factor which correlates the physical to
the model length scale, and Wy, the energy of acti-
vation for atom jumps from one grain surface
through the boundary to the surface of the neigh-
boring grain. This energy is usually termed the acti-
vation energy of grain boundary mobility.

Equations (5) and (7), discussed in the previous
section, can also be regarded as scaling approaches.
Though not generating a real time scale they intro-
duce different Monte Carlo time weighting for sites
with different switching probability. This means
that a flip of a site with a small switching prob-
ability contributes a large portion to the Monte
Carlo time step and vice versa.

A qualitative step forward in differentiating
between switches associated with different mobilities
of the grain boundaries involved was made by
Holm et al. [33] [equation (8) in their paper]. For
considering the influence of grain boundary mobi-
lity on the switching probability Holm et al. used a
rule of the form

0 ifAE>0
Wﬁ:{m if AE<0

(12)
where m is the mobility assigned to the switched
site. It is important to note that this method intro-
duces a relative switching rate of different sites pro-
vided different mobilities were assigned to them,
rendering m into m;. In their paper Holm ef al. used
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different spatial mobility functions in order to simu-
late microstructures with gradients in the resulting
grain shape and size. A similar scaling method
based on mobility was earlier used by Rollett ez al.
for the simulation of abnormal grain growth [17]
[equation (4) in their paper].

3. PHENOMENOLOGICAL RATE THEORY OF
GRAIN BOUNDARY MOTION

Turnbull formulated a phenomenological rate
equation, which describes the motion of large angle
grain boundaries in terms of isotropic single-atom
diffusion processes perpendicular to a homogeneous
planar grain boundary segment under the influence
of free energy gradients

_ ) AG — AG,)2
X = nVD/LgbC exXpy — T
_ exp{ - 7AG _;;BATGI/Z }) (13)

where x is the interface velocity, vp the Debye fre-
quency, Agp the jump width through the interface, ¢
the intrinsic concentration of in-plane self-diffusion
carrier defects (e.g. grain boundary vacancies or
shuffle sources), n the normal to the grain boundary
segment, AG the Gibbs enthalpy of motion through
the interface, AG, the Gibbs enthalpy associated
with the transformation, kg the Boltzmann con-
stant, and 7T the absolute temperature [34].

Bold symbols indicate vector quantities. The
Debye frequency is of the order of 10'°-10"/s and
the jump width of the order of the magnitude of
the Burgers vector.

Replacing the Gibbs enthalpy of motion by the
corresponding enthalpy and entropy, expressing the
concentration of the in-plane defects in terms of
their thermal density, and expressing the Gibbs
enthalpy associated with the transformation by the
driving force and the activation volume leads to

. ) AS AH;
X = NVpAgp €Xp E exXpy — m

AH,, — TAS,, — (pQ/2
« (o] - 15n =792

AH,, — TAS,, Q/2
_exp{ — kBT+(p / )}) (14)

where p is the negative change in Gibbs enthalpy
per volume unit across the interface (driving force),
Q the atomic volume, AS; the entropy of formation,
AH; the enthalpy of formation, ASy, the entropy of
motion, and AH,, the enthalpy of motion. The
atomic volume is of the order of b3, where b is the
magnitude of the Burgers vector.

While ASf mainly quantifies the vibrational
entropy, AS, contains configurational and vi-
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brational portions. Summarizing these terms leads
to

A ASn ] . Q
X = nvpb exp{%}smh(%)
{ AHf+AHm}
X eXp) — ——————— (-

T (15)

Due to the small argument in the sinh, equation
(15) can be linearized

ASy + ASy, ﬁ
kg ks T

AH; + AH,,
kgT '

X & nvpb exp{

X exp{ - (16)
This approximation reproduces the well-known phe-
nomenological Turnbull expression

X =nmp=nniy xexp{—i—g;}p (17)

where m is the mobility, m, the pre-exponential fac-
tor, and Q,, the activation energy of grain bound-
ary mobility.

Comparing the coefficients in equations (16) and
(17) yields

_ vaQeX
T kgl P

{ AS; + ASp, }
my

kg

Qu = AH; + AH,y,. (18)
Equations (13)—(18) provide a phenomenological
kinetic picture of grain boundary motion, where the
atomic processes associated with a particular grain
boundary are statistically described in terms of m =
mo(Ag, n) and Q,, = Qgp(Ag, n), where g is the ro-
tation matrix quantifying the misorientation across
the grain boundary and n the normal of the grain
boundary segment.

Considering the misorientation and the boundary
normal of each grain boundary segment occurring
in a microstructure simulation is of importance
because of the strong dependence of the grain
boundary mobility on these parameters. Since it is
difficult to quantify some of the physical parameters
in equation (18), particularly with respect to their
dependence on the misorientation, it is preferable to
use experimental rather than theoretical mobility
data wherever possible [21-24].

4. SCALING BY EQUIVALENCE

4.1. General formulation

The lattice site flips occurring in a Potts model
based on a Hamiltonian of the type shown in
equation (1) for curvature driven grain growth and
recrystallization implicitly mimic the motion of
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grain boundary segments. This means that the clas-
sical linearized symmetric rate theory for thermally
activated grain boundary motion under the influ-
ence of free energy gradients as outlined above,
equation (17), is an appropriate kinetic model for
expressing the equivalence of spin flips in the Potts
model and real grain boundary motion. Formally,
the equivalence can be expressed by

).(P = Xrate
n s =nm( pe + ps)
Al‘MCAl‘real N pe bs
)vP ng
_r — Z2 e+ py 19
Avchi = eXp{ T (pe+p)  (19)

where Xp is the boundary velocity in the Potts
model, X the boundary velocity according to rate
theory as given by equation (17), n the normal of
the grain boundary segment, p. configurational con-
tributions to the driving force (e.g. through bound-
ary curvature), ps scalar contributions to the driving
force (e.g. through the elastic energy associated
with stored dislocations or through an applied mag-
netic field), Atyc the kinetic Monte Carlo measure
in units of [MCS] as given by equation (4), Ap the
jump width or lattice parameter of the Potts model
in units of [m], and Af,., the real time step in units
of [s/MCS].

The separation of the configurational from the
scalar contributions to the total driving force is
necessary since the scaling introduced by equation
(19) must be formulated for a single-site switching
function of the type given by equation (2) or
equation (3) rather than for a coupled set of differ-
ential equations of motion.

Reformulating equation (19) leads to an ex-
pression for the real time elapsing during a number
of Atyic kinetic Monte Carlo time steps

,
Ap

Aty = ———
real A tMCn1p

}vP ng

= exXpy + —— . 20
Atyiemo( pe + ps) p{ ksT} (20)

This equation shows that the real time step can
only be expressed in units of [s/MCS]. For one
single Monte Carlo time step (Afyc = 1 MCS) the
real time step amounts to

Al‘real = A_P ° .
mp | MCS

This simple preliminary result is physically plausible
because it is obvious that a large prescribed lattice
spacing Ap requires a large time step to be swept by
a moving grain boundary while a fast boundary
needs a small time unit to sweep a given length /p.

21
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The inverse of this elementary time step can be
regarded as an attack frequency I@'jey = 1/Atea
which is for a given lattice with parameter Zp
characteristic of a particular grain boundary.

Since the time scale introduced in equation (21) is
thus dependent on the /ocal grain boundary velocity
at lattice point i, i.e.

: }vp S
i
Alreq = mipt [MCS] (22)

where m = m' is the local grain boundary mobility
at lattice point i and p = p' the local driving force
at lattice point 7, equations (20) and (21) are only
applicable to situations in which the driving force
and the mobility are the same everywhere in the
system. Such a restriction does only apply for a
very limited number of highly idealized cases, for
instance for primary static recrystallization in a per-
fect homogeneous single crystal with equal driving
force (neglecting the influence of curvature) and
equal grain boundary mobility throughout the
entire specimen.

In a heterogeneous material, equation (21) would
thus give a different characteristic time scale at
different lattice points. Such a non-normalized scal-
ing rule would be of no use. In order to adapt this
scaling method to systems with a non-homogeneous
distribution of driving force and mobility it is thus
useful to normalize the system to a common time
scale A/min,

Such a common time scale is identical to the
minimum time scale occurring in the system. It is
determined by the fastest moving grain boundary in
the array. According to equation (17) the fastest
possible grain boundary is characterized by maxi-
mum mobility m™* and maximum driving force

max

p™**, changing equation (21) into

A[min— )»p _ )»p
real — max ,max max max max
mmp mg P (pe + pPx)
Qmin (23)
X exp ot L8 i
kg T MCS
where my*™ is the pre-exponential factor and

‘;bi“ the activation energy associated with the
grain boundary with the highest mobility in the
system. Afyc was here set to one Monte Carlo
time step.

Before using this minimum occurring time step as
a common time basis for all possible cell flips the
corresponding  single-site  transition functions,
equations (2) and (3), must be normalized in accord
with this measure. This means that they must be
scaled by the ratio of the local and the maximum
occurring values of the grain boundary mobility
and driving force. The Glauber transition function
then changes to
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n mi pmax + pl AE -1
WGI = < max ) m(;x mqax (1 + €Xp{ k T
m P g B

24

where AE is E, — E,, equation (2), p?* the maxi-
mum configurational driving force, p™* the maxi-
mum scalar (i.e. magnetic or elastic) driving force,
and pi the local scalar driving force at lattice point
i.

It is important to note in equation (24) that the
mobility ratio (m'/m™) equally influences the for-
ward and the backward motion of a grain boundary
that may occur due to thermal fluctuation. This is
plausible since for instance a twin boundary with a
very small mobility can neither easily move accord-
ing to the driving force nor fluctuate against it. In
other words, the drag effect caused by low mobility
principally acts in both directions. The effect of a
mobility change according to equation (24) is
shown in Fig. 3 for the Glauber function.
Correspondingly, the Metropolis transition function
changes to

g —

P+

m' AE
- if AE> 0
(mmax > <pénax +p;nax >6Xp{ kB T} 1 >
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The effect of a mobility change according to
equation (25) is shown in Fig. 4 for the Metropolis
function.

Both scaled single-site transition functions predict
a non-vanishing switching probability,
(mpIa) /(m™X[ pmax 4 pmax]) - for cases where the sca-
lar driving forces are zero which is due to the ubi-
quitous presence of configurational driving forces.

Since the driving force term in equations (24) and
(25) has the constant maximum configurational
driving force and the local scalar driving force in
the numerator and the constant maximum total
(scalar and configurational) driving force in the de-
nominator the maximum possible transition prob-
ability is exactly equal to one provided the local
mobility is equal to the maximum mobility. The
only situation where the transition probability at a
lattice point is zero occurs when the local grain
boundary mobility m' is zero.

A comment must be made at this point about the
relation between the energy change AFE associated
with each trial switch, equation (1), and the real
driving forces that occur in the modified transition
functions, equations (24) and (25). Energy changes
given by the operator in equation (1) are not equiv-
alent but only proportional to the negative driving
forces (multiplied by the transformed volume unit).
This means that the energy term AE in the tran-
sition functions serves exclusively to quantify the
sensitivity of the system with respect to thermal
fluctuations. The use of a Boltzmann-type penalty
term for the evaluation of fluctuations can be
regarded as a mathematical method to overcome

i max i
( " ) L if AE<O0.
mde pgldx + p;ndx
(25)
1 L
high mobility, low temperature
0.8 r
2
=
806
2
a
o0
£ 04
=
L
% oo | low mobility, high temperature \‘\\
ot

-0.6 -0.4 -0.2

0 0.2

energy change eV

Fig. 3. Scaled single-site Glauber-type transition function for two different temperatures and grain

boundary mobilities. The dashed lines indicate high temperature and the solid lines low temperature.

The black lines indicate high mobility and the gray lines low mobility. The driving forces were constant,
equation (24).
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local energy minima that occur in Metropolis-type
Monte Carlo simulations. True thermal fluctuations
occur at an atomic scale. In the here suggested new
concept they are already included in Turnbull’s rate
formulation of grain boundary motion, equation
(13), which balances forward and backward jumps
of the atoms through the boundary. This means
that the true temperature dependence of recrystalli-
zation and grain growth dynamics lies in this frame-
work in the temperature dependence of grain
boundary motion which is fully accounted for by
the activation energy of grain boundary mobility,
equation (17).

Except for the use of thermal fluctuations, which
are a typical feature of all Metropolis-type Monte
Carlo methods, equations (19)—(25) reveal formal
correspondence to the time scale and the transition
functions derived for a probabilistic cellular auto-
maton which is based on directly mapping rate the-
ory on a simulation lattice [35].

4.2. Formulation for recrystallization and curvature
driven grain growth

It is conceivable that various contributions P},s
may add to the total local scalar driving force on a
grain boundary at lattice point 7, i.e. p{ =) pi..
When using such different scalar driving forces in
the scaled Monte Carlo algorithm, qualitative
differences between them must be considered. While
magnetic driving forces can occur on either side of

RAABE: SCALING MONTE CARLO KINETICS

a fluctuating grain boundary, the use of a scalar
driving force arising from elastic lattice distortions
caused by stored dislocations (pf=p) ) is not
admissible for the quantification of thermal fluctu-
ations since they may act against the sign of that
force. The reason for this asymmetry is that it
would violate the second law of thermodynamics if
the stored internal energy would increase through
the spontaneous accumulation of dislocations. In
other words, stored dislocations are removed by a
moving grain boundary but they cannot be formed
by a fluctuating interface, i.e. by a trial flip. In con-
trast, magnetic energy terms must be considered
both in the case of an energy increase and in the
case of an energy decrease.

For simulations of recrystallization and curvature
driven grain growth the Glauber switching function,
therefore, is

(

ml

mmax

pmax

C

> (melX +pmax
C S

)(erfiz)

- if AE>0

(

ml

max

Pl

I,nmax

I

P

)(ionf2E))

if AE<O.

(26)

The Metropolis transition function for this case is

1t ]
high mobility
0.8 \ 1
2 \
= \
) \
506 \ 1
2. \\ high mobility, high temperature
o0 low mobility \
£ 04 \ ]
5 A
.E \\ \\\
02 f s N _
S . . R
low mobility, low temperatufe DR NN
0 L e
-0.6 -0.4 -0.2 0 0.2 04 0.6

energy change eV

Fig. 4. Scaled single-site Metropolis-type transition function for two different temperatures and grain

boundary mobilities. The dashed lines indicate high temperature and the solid lines low temperature.

The black lines indicate high mobility and the gray lines low mobility. The driving forces were constant,
equation (25).
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Fig. 5. Scaled single-site Glauber-type switching probability as a function of the scalar driving force for

two different grain boundary mobilities. The dashed lines show the transition probability for configura-

tional driving forces and the solid lines for the total driving force. The black lines indicate high mobility

and the gray lines low mobility. The temperature was constant. The dashed line at W =1 represents

the maximum possible switching probability for cases with maximum grain boundary mobility and
maximum scalar driving force (p{™* = 6 MPa), equation (26).
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Fig. 6. Scaled single-site Metropolis-type switching probability as a function of the scalar driving force

for two different grain boundary mobilities. The dashed lines show the transition probability for config-

urational driving forces and the solid lines for the total driving force. The black lines indicate high

mobility and the gray lines low mobility. The temperature was constant. The dashed line at W =1 rep-

resents the maximum possible switching probability for cases with maximum grain boundary mobility
and maximum scalar driving force (p™* = 6 MPa), equation (27).
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Fig. 7. Scaled single-site Glauber-type transition function for pure curvature driven grain growth at
constant temperature for grain boundaries of different mobility. The transition probabilities are inde-
pendent of the driving force, equation (28).

.,M _
i max AE

(m ) Pe exp{——} if AE > 0
},nmax ptcnax +prsnax kBT

m’ plcnax + ]7;) .
mmax prcnax +p§ﬂil)(

if AE<O.

27

These modified single-site transition functions pre-
dict a switching probability different from zero even
if all non-configurational local driving forces are
absent. The transition probability is then exclusively
due to configurational contributions. The driving
force term in equations (26) and (27) has the con-
stant maximum configurational driving force both
in the numerator and in the denominator. For the

case of energy decrease the driving force term ad-
ditionally contains the local scalar driving force in
the numerator and the maximum scalar driving
force in the denominator. This means that the
maximum possible transition probability in the
direction of the driving force is exactly equal to one
if the local mobility is equal to the maximum mobi-
lity (m' = m™) and if at the same time the local
scalar portion of the driving force is equal to its
maximum possible value (p), . = pI™).

The only situation where the transition prob-
ability becomes equal to zero occurs for a local
grain boundary which has zero mobility (m' = 0).
This is conceivable for small angle boundaries and
certain twin boundaries. Figures 5 and 6 show the
switching probability as a function of the local sca-
lar driving force stemming from stored dislocations

1 maximum mobility
> 0.8
=
£ 0.6
2
S
204
£
2
£ 02
0 minimum mobility

-0.6 -04 -0.2

0 0.2 0.4 0.6

energy change eV

Fig. 8. Scaled single-site Metropolis-type transition function for pure curvature driven grain growth at
constant temperature for grain boundaries of different mobility. The transition probabilities are inde-
pendent of the driving force, equation (29).
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pfjﬂs for the scaled Glauber transition function and
for the scaled Metropolis transition function
according to equations (26) and (27).

4.3. Formulation for pure curvature driven grain
growth

This section presents scaled versions of the above
introduced switching probability functions for pure
curvature driven grain growth simulations where no
scalar contributions to the driving force occur.

The corresponding single-site switching functions
can be derived from equations (26) and (27) by
simply dropping the terms for the scalar driving
force (Figs 7 and 8). The Glauber function then
reduces to

i -1
Wa = (W;:M)(l +exp=kAB—l;=> . (28)

The Metropolis transition function for this case
reduces to

m' AE .
§ <W)exp{ T if AE>0
Wy =
i
()
Equations (28) and (29) show that scaling for pure
grain growth simulations can be obtained by simply
multiplying the original single-site switching func-
tions, equations (2) and (3), by the ratio of the local
and the maximum values of the grain boundary
mobility.
Monte Carlo simulations on the basis of the
scaled Metropolis transition function for curvature

driven grain growth, equation (29), have recently
been conducted by Rollett [36, 37].

(29)
if AE<O0.

5. CONCLUSIONS

The paper introduced a method for scaling
Monte Carlo kinetics of the Potts model using
Turnbull’s rate theory of grain boundary motion.
The method is designed for the kinetic and
spatial scaling of multistate Potts models using
one or more sets of non-conserved discrete struc-
tural or orientational state variables as employed
for simulating recrystallization and curvature dri-
ven grain growth phenomena.

The scaling is based on the equivalence of single-
site state switches in the Potts model and grain
boundary motion as described by rate theory
mapped on a simulation lattice.

According to this method the switching probabil-
ities can be scaled by the ratio of the local and the
maximum occurring values of the grain boundary
mobility and by the ratio of the local and the maxi-
mum occurring values of configurational and scalar

1627

contributions to the driving force. The real time
step elapsing during one Monte Carlo time step is
scaled by the maximum occurring grain boundary
mobility, the maximum occurring driving force, and
the lattice parameter of the simulation grid.

Various scaled Glauber- and Metropolis-type
transition functions were derived and discussed with
respect to applications in the fields of recrystalliza-
tion and grain growth Monte Carlo simulations.
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