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Abstract

A brief summary of simulation techniques for recrystallization is given. The limitations of the Potts model and the
cellular automaton model as used in their standard forms for grain growth and recrystallization are noted. A new
approach based on a hybrid of the Potts model (MC) and the cellular automaton (CA) model is proposed in order to
obtain the desired limiting behavior for both curvature~driven and stored encrgy-driven grain boundary migra-

tion. @ 2001 Elsevier Science B.V, All rights reserved.
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1. Introduction

This paper gives a brief summary of mesoscopic
methods for simulation of recrystallization and
introduces a new approach for modeling the effects
curvature-driven and stored energy-driven migra-
tion of boundaries. The standard form of the
Monte Carlo (MC) model does not result in a
linear relationship between migration rate and
stored energy. On the other hand, the standard
form of the cellular automaton {CA) model used
for recrystallization does not allow for curvature
as a driving force for migration. The basis for the
new approach is the use of two different methods
for determining orientation changes at each site in
a lattice. The cheice of which method to apply at
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any point in time is governed by weighting the
probabilities for each type or reorientation at-
tempt according to the desired balance in driving
forces.

2. Summary of simulation methods

The need for computer simulation of recrystal-
lization is driven by two different considerations.
Onmne is the need to be able to make quantitative
predictions of the microstructure and properties of
materials as affected by annealing. Simulation can
be used to predict the average texture and grain
size which strongly affect mechanical behavior. An
equally important motivation for simulation,
however, is the need for improved understanding
of the recrystallization phenomenon that is highly
complex from a microstructural point of view. The
development of strong cube textures in fcc metals
or the Goss texture in silicon steels, neither of
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which is fully understood, illustrates the impor-
tance of being able to model the recrystallization
process in considerable detail. Indeed, since the
microstructural evolution process inherent in re-
crystallization depends on the grain boundary
properties which are sensitive to their crystallo-
graphic character then the importance of simula-
tion techniques that can model the full range of
boundary behavior is apparent.

Computer simulation of grain growth and re-
crystallization was strongly stimulated in the early
1980s by the realization that MC models could be
applied to problems of grain structure evolution.
By extension of the Ising model for domain
modeling of magnetic domains to the Potts model,
it was then possible to represent grains (domains)
by regions of similarly oriented (lattice) points [1].
The models have been used, for example, to in-
vestigate texture evolution during grain growth
and recrystallization, reinforced by parallel work
on analytical models [2,3]. A critical issue ad-
dressed by Humphreys and others [4-8] extension
of grain growth theory is that of coarsening of
subgrain networks in order to clarify under what
circumstances one expects to observe nucleation of
recrystallization. This view of nucleation as simply
non-uniform coarsening (i.e., abnormal subgrain
growth) is significant for its blurring of the dis-
tinction between continuous and discontinuous
recrystallization, at least for pure metals in which
recovery is rapid.

There are a number of current methods of
mesoscopic simulation for recrystallization. The
geometrical, method addresses primarily the final
microstructural state; it can be used to investigate
microstructural evolution, provided that one is
not concerned the effect of grain growth occur-
ring in parallel. Such models of recrystallization
were first elaborated by Mahin and Hanson [9]
and then, developed further by Frost and
Thompson [10]. Furu [11] and Juul Jensen [12]
have recently extended these models to predict
grain size and texture development during re-
crystallization.

The second method, based on network models,
is an efficient way to represent microstructural
evolution in discretized form [13-15]. These mod-
els are efficient because they abstract a key feature

of the grain structure, i.e., the vertices or triple
junctions between grain boundaries, and are
therefore, efficient because only the vertex motion
need be calculated, provided that local equilibrium
can be assumed at triple junctions. They have
some limitations when second phases must be
considered, however, see also the work of Frost
[16]. Humphreys [13] has applied the network
model to the nucleation process in recrystallization
by considering coarsening processes in subgrain
networks and also in cases where second phase
particles are present [17].

The CA and MC methods discretize the mi-
crostructure on a regular grid. Both methods have
been successfully applied to recrystallization and
solidification. The CA method uses physically
based rules to determine the propagation rate of a
transformation (e.g., recrystallization, solidifica-
tion) from one cell to a neighbor [18-21]. The MC
method as derived from the Potts model (ie., a
multistate Ising model), has been applied to a wide
variety of problems in recrystallization [22-24].
The kinetic MC model simulates boundary motion
via an energy minimization procedure for deter-
mining a reorientation probability at each step.
Other methods that are suitable for recrystalliza-
tion simulation include the phase-field model [25]
and the finite element method [20,21].

3. Current status: limitations of the MC and CA
models

Neither the MC model nor the CA model in
their standard form is entirely satisfactory for
studying boundary migration under the combined
influence of two different driving forces. In grain
growth, the driving force derives from the curva-
ture of a boundary, [26] for which the MC model is
satisfactory. In primary recrystallization, the
driving force is the removal of stored dislocations
by the migration of the recrystallization front, for
which the CA model is satisfactory. In both cases,
we expect to find a linear relationship between
driving force and migration rate (velocity). The
actual behavior of the MC model does not give
this for stored energy as a driving force (except for
low driving force, see below), however, and the CA
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model does not allow for boundary curvature as a
driving force.

In the case of the grain growth model imple-
mented in the MC model, one writes a Hamilto-
nian for the system energy, E,

n

E =% Z ZJ(SI'S]')(I — ds.5,)5 (1)

where the inner sum is taken over the NN nearest
neighbors of site i (typically first and second
nearest neighbors), J is the Kronecker delta func-
tion, and J is the energy of a unit of boundary
between elements of indices S; and S;. To evolve
the structure, a site and a new index are chosen at
random. The element is reoriented to the new in-
dex with probability, Pyc, dependent on the
change in energy, AE, and the local properties of
the boundary.

Puc(S;, S;, AE, T)
J(S:,S;) M(S;,S))

AE <0,
_ Jmax Mmax ’
B J(Si7Sj) M(SHSJ)
T Mo exp(—AE/kT), AE >0,
(2)

where AE is the energy change for the reorienta-
tion attempt, including both configurational and
stored energy contributions (see Eq. (3), below), M
is the boundary mobility between elements of in-
dices S; and S;,Jmax and My, are the maximum
boundary energy and mobility, respectively, k is
the Boltzmann constant, and 7 is the lattice tem-
perature. After each reorientation attempt, the
time is incremented by 1/n Monte Carlo Steps
(MCS), and a new reorientation is attempted. For
a material with uniform boundary energy, the unit
boundary energy plays no role in determining the
transition probability. Only if a range of boundary
energies and/or mobilities is present in the system
is the transition probability decreased from the
reference value.

It is instructive to plot the transition probabil-
ities at zero temperature, Fig. 1, to illustrate that
the transition probability remains at one for zero
energy change. Discrete values of the energy
change are shown, based on a triangular lattice
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Fig. 1. Plot of transition probabilities for the Potts model as a
function of the energy change: note the unit probability for zero
energy change. The energy axis is in units of the interaction
strength (J) nominally for a triangular lattice in which the
maximum change is +6J.

and J = 1. This feature is critical to the grain
growth model because it means that kinks or steps
on the boundaries can execute random walks
along the boundaries. This, in effect, allows
changes in curvature to be communicated along a
boundary [27]. Modification of the transition
probability from the reference condition decreases
the probability linearly with either boundary en-
ergy and/or mobility [5].

The MC model has been used extensively to
model recrystallization in which case a stored en-
ergy term, H;, is added to the Hamiltonian.

n

1 NN ‘
E=32 ;J@S,-)(l o) T M 0)

At low stored energies, H <J, and finite lattice
temperature, a linear relationship between migra-
tion rate and driving force is recovered. The mi-
gration rate of a recrystallization front will be
proportional (in the absence of a net curvature) to
the difference in forward and backward reorien-
tation rates. That is to say, for sites where the only
change in energy is associated with removing or
adding stored energy, the migration rate, v, is
given by the following, where J =1, M =1, and
H<J.

H H
0 X Prorward — Prackward = 1- eXp 4§ — 7 ~ 7 .

)
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The structure of a CA model is geometrically
very similar with either a triangular or square
lattice in two dimensions and either nearest
neighbors included in the environment (NN, or
von Neumann neighboring), or also next nearest
neighbors (NNN, or Moore neighboring). For
simulation of recrystallization, the switching rule is
simple: any unrecrystallized cell (site) that has a
recrystallized neighbor cell will switch to the ori-
entation of that neighbor. Scaling of boundary
migration rates is then achieved by relating the
ratio of the unit distance (lattice repeat) in the
model to the unit time step (maximum velocity in
the model) to a maximum migration rate for the
specified experiment. Note that the environment of
orientations around the site to be reoriented does
not affect the outcome of the individual reorien-
tation step. Also if a range of mobilities is present
in the system and/or a range of driving forces, then
the transition probability is scaled according to a
maximum value, following [20,21].

M(S;,S;) AH(S;, S))
P — p f ,
Mmax AHmax

()

where P is the switching probability, M is a mo-
bility that depends on the local boundary char-
acter and AH is the driving force (spatially
variable) which is the difference in stored energy
between site i and site j. Raabe also introduces an
upper limit on the switching probability that scales
with the number of trials such that the smaller the
statistical variance desired, the lower the upper
limit for the switching probability. The difference
between conventional CA and the probabilistic
CA models currently used is that in the latter
approach: (a) sites are reoriented sequentially;
(b) the location of the site to be reoriented is
chosen at random; (c) any given reorientation step
compares the transition probability to the output
of a random number generator (over the interval
0-1) in order to determine whether or not that
particular step is successful. Fig. 2 illustrates the
variation in probability with magnitude of the
change in energy associated with a given change in
orientation, with the maximum probability set at
unity. This allows for a linear scaling in boundary
migration rate with driving force. Note, however,

16

0.8

0.6
Pl’

0.4

0.2

Fig. 2. Plot of the variation in switching probability in the CA
model with a range of driving forces or mobilities present, each
of which is scaled by a maximum value. Note that the proba-
bility goes to zero at zero change in energy.

that no reorientation can occur if the energy
change is zero or positive in contrast to the MC
model.

Again, it is important to note that the frame-
work of the CA model can be adapted to model
curvature-driven grain growth provided that a
probabilistic local rule is used that reproduces the
switching probabilities of the MC model. Even the
simultaneous updating of all sites inherent in
the CA model can be accommodated by defining
sublattices and performing updates on each sub-
lattice in turn (see for example [28, p. 296]). A
square lattice requires two sublattices, a triangular
lattice requires three, a square lattice with Moore
neighboring requires four, and so on. The principle
for construction of the sublattices is that, all the
neighbors of a site must belong to a different
sublattice than that of the site itself. The issue re-
mains of how to write a rule for reorientation that
correctly combines both curvature and stored en-
ergy as driving forces for boundary motion. This
point can be illustrated by attempting to write a
switching probability for the combined effect of
curvature and stored energy driving forces in order
to obtain a linear relationship between migration
rate and driving pressure. Based on the particular
form presented here, Eq. (6a), the switching
probability yields the desired limiting behavior if
the grain boundary energy approaches zero, but
does not if the stored energy approaches zero be-
cause energy neutral switches would have zero
probability.
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P(S,.S;,AE,T)
AE(SHSJ) J(SZSJ)M(SIS]) AE<0
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AL S SIS v ap i), ago.
max

(6a)

The alternative to this switching probability is to
write an additive combination of the curvature and
stored energies as follows, where it is understood
that AE and J are dependent on the local boundary
properties and local variations in stored energy.

P(SthaAEyT)

(AE+J)max Mmax ’ h
)| (AE+T) | M(S,S;

(A(E+J)) [f/[ ) exp(—AE/kT), AE>O0.

(6b)

This approach, however, suffers from the defect
that the switching probability is not proportional
to the change in stored energy as the latter ap-
proaches zero because the prefactor is dominated
by the grain boundary energy term (J). In an ef-
fort to overcome the difficulties of combining the
two types of driving force in a single switching
probability model, a different approach has been
taken.

4. Hybrid algorithm

The new algorithm described here adopts both
types of evolution and combines them in a single
hybrid model. The essence of the hybrid model is to
interleave the two different types of reorientation
in time. Each sub-model obeys the appropriate
rules so that the correct limiting behavior is ob-
tained in the limit that the frequency of either type
approaches zero. Such a combination of switching
rules has been used to model, e.g., ferromagnetic
fluids [29] where it is useful to use spins can move
according to a lattice gas model but spin interac-
tions are governed by an Ising model, see p.293 et
seq. [28]. A ratio, I', between the frequency of CA

and MC reorientation attempts determines the
relative magnitudes of the grain boundary energy
compared with the stored energy. The MC reori-
entations are determined only by configurational
energy such that only the first term on the RHS of
Eq. (1) is used to determine AE. The effect of
stored energy is incorporated into the CA model.
For any given reorientation attempt, the choice of
which type to apply is governed by a random
number, R on the interval (0, 1): if the value of R is
less than I'/1 + I', a CA reorientation is attempted,
otherwise an MC reorientation attempt is made.
The crucial advantage of this algorithm is that the
motion of kinks on boundaries under energy-
neutral changes in orientation is preserved which
allows curvature driven motion to be modeled: the
proportionality of the migration rate of a bound-
ary to the stored energy difference across the
boundary is also correctly modeled. Note that in
the conventional MC model applied to recrystal-
lization, [22], any energy change less than zero
results in the same uniform switching probability
(barring local variations in mobility). Therefore,
variations in stored energy do not lead to any
appreciable variation in boundary migration rate,
although they do affect whether or not nucleation
can occur homogeneously or heterogeneously
[22,30].

5. Gibbs—Thomson

A useful test of the hybrid model is to investi-
gate the behavior of an isolated (island) grain
under the combined effects of curvature and stored
energy driving forces. When only curvature is
present, the grain will shrink by migration of all
boundary segments towards their center(s) of
curvature, i.e., the center of the grain. The curva-
ture is inversely proportional to the radius and so
the boundary velocity accelerates with time, lead-
ing to a characteristic constant rate of decrease of
area, A, with time [31]. If the effect of a stored
energy difference, AH, (higher stored energy out-
side the grain) is included, then d4/d¢ is as follows,
where M is a mobility as before, y is the grain
boundary energy and R is the radius of the 2D
island grain.
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% = —2nMy + 2nRMAH. (7)
Thus, if the grain boundary energy is small and the
stored energy difference is large, the grain will
grow. For a linear velocity-force relation, one ex-
pects to observe a constant velocity, v = MAp, and
therefore, an accelerating (parabolic) rate of
change of area. Furthermore, there should be a
balance between the two forces at a critical size
given by AH =y/R.ix (AH =y/2R in the stan-
dard, 3D case).

In this hybrid kinetic MC model, the critical
size can be estimated as follows for the smallest
possible grain of size equal to a single site. Such a
grain is surrounded by neighbors of a different
orientation such that a fraction 1/Q MC reorien-
tation attempts will result in absorption of the
unit-size grain into one of its neighbors. If the
grain is strain-free but all its neighbors have stored
energy i.e., are unrecrystallized then any CA re-
orientation attempt will succeed in adding another
site to the unit-size grain. Subsequent CA reori-
entations will continue to add more sites to the
grain so that it continues to grow. This suggests
that, in the limit where the critical grain size for
recrystallization is that of unit-size grains, the re-
orientation frequency ratio is approximately
I'=1/0 = 0.01. At larger sizes, however, the ratio
should be larger. The analogous equation to Eq. (7)
is therefore, the following, where « is effectively the
product of mobility and grain boundary energy (in
the MC model), u is the mobility of a boundary in
the CA model and I' is the reorientation ratio. The
mobility, u, is not a free parameter but is deter-
mined by the characteristics of the particular form
of MC model and CA model chosen.

da = —2no+ 2nRul. (8)
dr

Fig. 3 shows the area vs time for a single grain
of initial radius 20a for various choices of the ra-
tio, I', between MC and CA reorientations. The
simulations were performed on a 50 x 50 square
lattice with first and second nearest neighbors.
Note that for ratios close to the critical value any
fluctuation of the size will render the grain either
super- or sub-critical leading to either growth or
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Fig. 3. Plot of area of single grain vs time for various ratios of
reorientation frequencies, showing (linear) shrinkage for cur-
vature dominated migration and (parabolic) expansion for
stored energy migration. Each set of points has been fitted to a
second order polynomial for the purposes of extracting the rate
of change of area.

shrinkage. The results show the expected parabolic
accelerating growth when stored energy dominates
and linear shrinkage when curvature driving force
dominates.

The critical size above which a new grain is
stable (d4/d¢ > 0) can be estimated as follows. A
single grain shrinking under curvature driven mi-
gration does so at a constant rate of change (loss)
of area [1]. The magnitude of the rate is dependent
on the value of Q because of the definition of the
time step in the classical MC scheme. For Q = 100
used here and a square lattice, the rate is approx-
imately —0.1 a>MCS ™', where « is the size of each
cell and 1 MCS represents one reorientation step
for each cell. Choosing the grain boundary energy
to be one sets the mobility, « = 0.016. The ex-
pected boundary migration rate under stored
energy driving force, however, should be approx-
imately one cell per time step, i.e., £ = 1. There-
fore, for an isolated grain of size one, the
reorientation ratio should be of order I' = 0.04 for
the curvature and stored energy driving forces to
be in equilibrium. Testing the hybrid model at this
resolution is impractical of course because statis-
tical fluctuations will obscure the result of interest.
Therefore, it is more useful to examine larger ini-
tial sizes.

Fig. 3 shows the variation in area with time of
an island grain of size Ry = 20 for various stored
energies as expressed by the reorientation attempt
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ratio. Small values of I" allow the grain to shrink at
a constant rate whereas large values lead to para-
bolic growth. At intermediate values, the grain is
quasi-stationary although any fluctuation away
from the zero growth size will lead to either con-
tinuing shrinkage or growth. In other words, the
zero growth size is a metastable size. For this
particular choice of initial grain size, zero growth
occurs for I' ~0.002. By setting d4/ds=0 in
Eq. (8), this leads to an estimate of the mobility of
u~ 0.4, which is not too far from unity, as ex-
pected. By differentiating the time dependence of
the area one can obtain initial rates of change of
area. Fig. 4 plots the slope of the area vs time at
zero time for three different initial grain sizes and
reorientation ratios between 0 and 0.01 with sev-
eral trials for each set of parameter values. The
results show some scatter in the growth rate but
the growth rate appears to be linearly dependent
on the reorientation ratio.

The relation for the rate of area change above
predicts a linear dependence on initial radius with
a constant intercept corresponding to a fixed
shrinkage rate under the influence of curvature-
driven migration only. Eq. (8) suggests that the
contributions to the growth or shrinkage rate
should all scale by the initial size (at z = 0). Fig. 5
therefore, presents the results of scaling the reori-
entation ratio, I'seqa = ['Ro/20, for the results
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Fig. 4. Plot of initial rate of change of area of an island grain vs
the reorientation frequency ratio for three different initials sizes.
The larger the initial size of the grain, Ry, the smaller the stored
energy required to allow the grain to grow. The predicted
variation is approximately linear with stored energy and the
ratio (stored energy) corresponding to zero growth is linear in
the initial radius.

0.5,
0.4 f

03

=0

1

0.2 |

<dA/dt>

01Ff

of

01 > 1 L L L L |
0 0.002 0.004 00068 0008 0.01 0.012

Ratio - Scaled

Fig. 5. Initial rate of change of area of an island grain for three
different initial sizes, Ry. Each point represents the average for a
set of simulations under the same conditions (as shown in
Fig. 4). The reorientation ratio has been scaled, I" = I - R /20,
in accordance with Eq. (5).

shown in Fig. 4; each point represents an average
of the set of trials for a given initial size and re-
orientation ratio. All the points lie close to a single
straight line as expected although the trend is sub-
linear for large reorientation ratios.

Again, it is important to note that the concept
of a critical grain size is not new in this context.
Although it is not applicable to the standard form
of the CA model as typically used to simulate re-
crystallization, a critical size can be readily defined
in the standard form of the MC model as applied
to recrystallization model. Holm [32] has investi-
gated the range of critical sizes for various lattices
as follows. Note that the focus is on minimum size
required for an embryonic grain to survive and
grow into a new grain. Also, certain sizes and
shapes of embryonic grains have special properties
owing to anisotropy of the lattice. A similar ex-
ploration of the behavior standard MC model for
recrystallization for critical sizes could be per-
formed. For small values of H/J and with finite
lattice temperature, similar results may well be
obtained (Table 1).

6. Recrystallization Kinetics

In order to verify that the new hybrid model
simulates primary recrystallization correctly, the
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Table 1
Critical embryo sizes in the standard MC model for recrystal-
lization (Eq. (3)) [32]

Stored energy: boundary energy

Critical size
(lattice sites)

2D, triangular lattice

H/J <2 (very large)
2<HJI<4 2

A<H/J<6 1

H/J > 6 (any embryo grows)

2D, square lattice, with
second nearest neighbors

H/J <1 (very large)
I<H/J<2 3

2<H/J<8 1

H/J > 8 (any embryo grows)

3D, simple cubic lattice, with second
and third nearest neighbors

H/J <3 (very large)
3<H/I<S 5

5<H|]<8 3

8<H/J <26 1

H/J > 26 (any embryo grows)

behavior of a 2D system was modeled on a
100 x 100 square lattice with first and second
nearest neighbors as before. The reorientation ra-
tio, I', was varied and also the number of new
grains. The model was operated in normal grain
growth until a time of 1000 MCS had been accu-
mulated and then, the recrystallization simulation
was started by inserting new grains into the sys-
tem. The resulting microstructures, Fig. 6, show
the anticipated growth of new grains into a poly-
crystalline matrix that is also undergoing grain
growth. The area fraction recrystallized was plot-
ted in the usual double logarithmic plot, Fig. 7, for
two values of I' and three different densities of (site

t = 4000 (MCS) 5000

10

0.1

In(1-F)

0.01 L

0.001 L ' '
100 1000 10

Time

Fig. 7. IMAK plot of fraction recrystallized vs time for site
saturated nucleation with 20 embryos and a range of reorien-
tation ratios. Recrystallization proceeds less rapidly for smaller
reorientation ratios, i.e., lower stored energy. The slope of the
curves approaches two which is the classical value for spatially
random, site saturated nucleation and two dimensional growth.

saturated) embryos. The results indicate that the
expected Kolmogorov-Johnson—-Mehl-Avrami
kinetics for 2D growth under site-saturated nu-
cleation conditions are followed, Eq. (9). That is to
say, after an initial transient, a slope of two (=n)
is observed for plots of log(In(1 — F)) vs log(time).
The time for the preliminary grain growth stage
has been subtracted from the total time. Since each
embryonic grain is inserted into the microstructure
with nine sites, 1.e., a central site and its nearest
neighbors, not all new grains survived. The dis-
appearance of some new grains gives rise to a
transient at short times, particularly for the
smallest value of I'. This aspect of the results
suggests that the prior grain structure played a role
by supporting heterogencous nucleation [30].

1 — F =exp—{ki"}. 9)

7

s

N,
8000 10,000

Fig. 6. Microstructural evolution during recrystallization for site saturated nucleation with 20 embryos and I' =4 x 1073,
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7. Scaling relationships

It is useful to examine scaling relationships be-
tween quantities such as time and length in the
simulations and their corresponding physical
quantities. This is most easily accomplished by
considering parallel expressions for the same
characteristic quantity. For length, the logical
choice is the critical radius at which a nucleus is
stable, i.e., d4/df=0 in Eq. (7). The physical
critical size is given by:

hysical Y
R = xg- (10)
The corresponding expression for the critical ra-
dius in the simulations in terms of the areal
shrinkage rate under curvature driven motion,
—2mo, the mobility in the CA model, p, and the
reorientation ratio, I', is given by:
model __ o

R = — | 11
crit. 'u[' ( )

Equating the critical radii yields the following ex-
pression for scaling lengths.

xphysical _ % Exmodel. (12)
o

Since the quantities & and p are intrinsic properties
of the Monte Carlo and CA models respectively,
the independent variable in the model is the re-
orientation ratio, I'. For a given material with
grain boundary energy, y, and stored energy, AH,
the larger the value chosen for I', the larger the
effective magnification in the model (because of
smaller R.;. in the model), or, alternatively, the
lower the spatial resolution of the model.

For velocity scaling, one can consider the mi-
gration rate of a boundary under a difference in
stored energy. In the physical case, the migration is
given by, where M is the boundary mobility.

pPsical — AMAH. (13)
In the model, the velocity is scaled by the fraction
of steps that are governed by the CA rule:

r

"I (14)

Umodel —

Again, we can equate velocities to obtain a scaling

relationship.

MAH 1+ T

—_— v
U r

Uphyswal _

model. ( 1 5)

Time scaling is then obtained as the length:velocity
ratio:

length r’
velocity M(AH)? 1+T

tphysical _

tmodcl . ( 1 6)

In order to obtain a scaling relationship for time in
the simulated recrystallization process for various
values of the reorientation ratio, however, it is
helpful to consider the KJMA relationship. Thus,
consider the time required for 50% recrystalliza-
tion in the case of site saturated, 2D growth. Re-
arrangement of the standard form, Eq. (9) above,
where [ is the nucleation density and G is the
growth rate,

F =1—exp{—IG*#}
gives the following expression for #5yy,

£y, = 1n0.5/IG. (17)
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01 i

-In(1-F)

0.01 |

0.001 NS
0.1 1 10

100 1000
Time x (T71+I")

Fig. 8. JIMAK plot of the fraction recrystallized vs normalized
time according to Eq. (15). All the data follow a master curve
describing recrystallization kinetics except for the smallest
value of I': in this case, the low (effective) stored energy means
that a significant fraction of the embryos do not survive
to become new grains thereby retarding recrystallization,
Eq. (13).
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This shows that recrystallization times scale as the
boundary velocities, Eq. (15), and not according to
the time scaling given in Eq. (16), i.e.,

r 1+r

tson(I") = 1+ 1

ts00,(I7). (18)

Fig. 8 shows the same set of data as in Fig. 7 but
with the times scaled according to Eq. (18). All the
data sets are scaled to the same curve except for
the smallest value of I', for which not all the em-
bryos survive to become new grains, thereby re-
ducing the effective value of the nucleation density,
1, in Eq. (17).

8. Summary

A new approach to mesoscopic simulation of
recrystallization has been described that models
the Gibbs—Thomson effect correctly. The simula-
tion incorporates two types of reorientation pro-
cess, one based on curvature-driven migration and
one based on stored-energy driving forces. By
allowing for two types of reorientation, it is pos-
sible to obtain the correct limiting behavior for
both types of driving force for migration. The
necessity for this arises from the non-local nature
of the effect of curvature in the MC model. The
kinetics of primary recrystallization for site-satu-
rated conditions are correctly modeled. The hy-
brid approach can be generalized to three
dimensions and should also be applicable to the
kinetics and microstructural evolution of phase
transformations.
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