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Abstract

The underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg
are investigated by transmission electron microscopy and density functional theory. Both methods show a significant decrease in the
intrinsic stacking fault I1 energy (I1 SFE) with the addition of Y. The influence of the SFE on the relative activation of different com-
peting deformation mechanisms (basal, prismatic, pyramidal slip) is discussed. From this analysis we suggest a key mechanism which
explains the transition from primary basal slip in hexagonal close-packed Mg to basal plus pyramidal slip in solid solution Mg–Y alloys.
This mechanism is characterized by enhanced nucleation of hc + ai dislocations where the intrinsic stacking fault I1 (ISF1) acts as het-
erogeneous source for hc + ai dislocations. Possible electronic and geometric reasons for the modification of the SFE by substitutional Y
atoms are identified and discussed.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Magnesium and its alloys are the lightest engineering
metallic materials. They have superior potential in the
fields of ultra-lightweight mobility and energy-related
applications (e.g. [1,2]).

While pure Mg and most commercial wrought magne-
sium alloys exhibit a low room-temperature ductility
(about 5% elongation for pure Mg) the addition of rare
earth elements in solid solution causes a significant increase
in ductility (e.g. [3–6]): Mg and single-phase solid-solution
Mg–Y alloys showed an increase in room-temperature duc-
tility by about 5 times, while maintaining comparable
strength and well-balanced work hardening, through the
addition of 3 wt.% Y [7]. In order to obtain deeper insight
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into the fundamental mechanisms responsible for this
solid-solution driven ductility enhancement, density func-
tional theory (DFT)-based methods provide a new tool
to quantitatively address possible effects of Y on plasticity
in these alloys [8–11]. Understanding the electronic, mag-
netic and geometric effects of solutes on crystalline metals
at the atomic scale opens a pathway from our current phe-
nomenological descriptive picture towards a more physics-
based predictive understanding of the thermodynamic and
kinetic properties of metallic materials (e.g. [8–12]). Such
an approach is particularly feasible when minor alloy
changes (such as in the case of solid solution Mg–Y) lead
to substantial improvements in the macroscopic behaviour.

Following this approach, we present here a complemen-
tary study via joint DFT- and transmission electron
microscopy (TEM)-based methods to understand the struc-
tural atomistic and electronic influence of Y on the
mechanical behaviour of Mg alloys.
rights reserved.
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Fig. 2. TEM bright-field and dark-field images showing a high amount of
stacking faults in 3% (left) and 5% (right) cold-deformed Mg–3 wt.% Y.

Fig. 1. Schematical drawing of the I1 stacking fault characterized by a
short double hcp (dhcp) ABCB stacking sequence separating two hcp
sequences ABABAB (on the far left, green: atoms in B layers and yellow:
atoms in A layers) BCBCBC (on the far right, green: atoms in B layers and
orange: atoms in C layers); hcp: hexagonal close-packed structure; dhcp:
double hexagonal close-packed structure. The transparent envelopes
around the cores have van der Waals radii; overlapping of two envelopes
indicates atomic bonding. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

3012 S. Sandlöbes et al. / Acta Materialia 60 (2012) 3011–3021
In a recent study we showed that the enhancement of the
mechanical properties of Mg–Y alloys is caused by a facil-
itated activation of additional deformation mechanisms
providing a hci-deformation component, i.e. an out-of-
basal-plane shear contribution [7]. Room-temperature
deformation of pure Mg is limited to mainly basal hai slip
and f10�12gh10�11i extension twinning [13,14], resulting in
strain localization, shear banding and premature failure of
the material [6,7]. It was observed that through alloying Y
into solid solution the activity of f10�1 1gh10�12i contrac-
tion [15] and f1 0�11gf10�12g secondary twinning [15] as
well as pyramidal hc + ai slip is much enhanced. It was sug-
gested [16] that secondary twins promote crack nucleation.
In contrast, the higher activation of hc + ai dislocations
enables the material to accommodate a higher total strain
through the higher number of available intrinsic deforma-
tion modes [7] and causes a more balanced work harden-
ing. In crystal kinematic terms this means that pyramidal
hc + ai slip offers five (or more) independent slip systems
fulfilling the von Mises condition for general grain defor-
mation compatibility [14], resulting in a more compatible
and hence homogeneous deformation [7,8,17]. It was
shown in Ref. [7] that neither grain refinement, precipita-
tion hardening, shear banding, decreased c/a ratio nor
changed Peierls potentials can be responsible for the higher
activity of hc + ai dislocation slip in Mg–Y [7]. It is there-
fore important to investigate whether and how the addition
of Y changes other materials characteristics that are critical
for the ductility, such as the stacking fault energies (SFEs).
A modified SFE would also affect the critical resolved shear
stresses (CRSSs) associated with competing shear mecha-
nisms, and hence would influence their relative contribu-
tions to the overall deformation.

In principle, three basal stacking faults can form in hex-
agonal close-packed (hcp) Mg: two intrinsic faults I1

(stacking sequence . . .ABABCBCB. . .) and I2 (. . .ABCA-
CAC. . .) and an extrinsic fault E (. . .ABABCABAB . . .)
(e.g. [8]). Previous DFT calculations of these stacking
faults in pure Mg showed that the extrinsic fault (E) is ener-
getically not favourable. For both, I1 and I2, relatively high
SFEs (20–50 mJ m�2) were obtained [8,18,19]. This results
in corresponding equilibrium distance values of the partial
dislocations below 1.27–1.67 nm.

2. Experimental and theoretical methods

2.1. Experimental procedure

Pure Mg, Mg–1 wt.% Y and Mg–3 wt.% Y samples were
produced from 99.98% pure Mg and Y. The as-cast mate-
rial was solution annealed for 20 h at 450 �C and then hot-
rolled at 500 �C to a total thickness reduction of 50%. Hot
rolling was performed in several passes using a laboratory
rolling mill with a diameter of 200 mm, slow rolling speed
of 5 rpm and a constant reduction of thickness with true
strain u 6 0.2 per pass. Recrystallization annealing was
performed at 500 �C for 15 min under Ar atmosphere.
Observations were performed on samples at different
stages of processing. Specimens in Figs. 2–4 were 3%,
respectively 5% (engineering strain), cold rolled on a labo-
ratory mill with a roll diameter of 100 mm and a rolling
speed of 20 rpm. The thickness reduction per pass was con-
trolled to be u < 0.05. For the analysis of the stacking fault
energies (Figs. 5 and 6) fully recrystallized (15 min at
500 �C) and only slightly (<1.5% engineering strain) cold-
rolled specimen were used.

For TEM observations of the dislocation reactions in
Mg and Mg–Y alloys, disks 3 mm in diameter were cut
by wire erosion, and then thinned to 100 lm by mechanical
grinding followed by electropolishing until perforation
using a twin-jet polisher (Struers TenuPol-5). The electro-
lyte was a solution of 3 vol.% perchloric acid in absolute
ethanol. TEM observations were performed in a Philips
CM20 and a FEG JEOL 2200FS at an acceleration voltage
of 200 kV.

2.2. Simulation methodology

In this study, by employing DFT calculations [20,21],
the intrinsic stacking fault (ISF) energies have been deter-



Fig. 3. TEM bright-field images under different two-beam diffractions (see inlets for the diffraction vector), showing dislocation dissociation (indicated by
blue arrows) and cross-slip (indicated by red, dashed arrows) on the pyramidal plane in 3% (engineering strain) cold-rolled Mg–3 wt.% Y. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mined within the axial next-nearest-neighbour Ising (ANN-
NI) framework [22]. The ANNNI model provides an accu-
rate energetic approximation of the faulted crystal. It uses
as input energies of the defect-free bulk crystals in conjunc-
tion with different stacking sequences along one of the crys-
tallographic axes of the lattice. The approach has been
successfully applied to the study of stacking faults, e.g. in
austenitic stainless steels [23] and Fe–Mn alloys [24].

For analyzing compositional trends in ISF energies, the
following definition of the ISF energy has been used [23]:

cISF ¼ EISF � E0

A
; ð1Þ

which is based on the energy difference between crystals
with and without an ISF defect, EISF and E0, respectively,
divided by the ISF area A. Within the ANNNI model, both
energies are expanded into a (theoretically infinite) series:

E ¼ �
X

n

X
i

J nSiSiþn; ð2Þ

assuming that the atomic layers i and i + n, characterized
by the corresponding spin-numbers Si and Si+n, interact
via interaction parameters Jn. Truncating the series after
the second term (the second-order approximation), the fol-
lowing expression of the first two interaction parameters is
obtained:

J 1 ¼
1

2
ðEhcp � EfccÞ; J 2 ¼

1

2
ðEdhcp � Efcc � J 1Þ; ð3Þ

where the energies of the face-centred cubic (fcc) (AB-
CABC stacking), hcp (ABAB stacking), and double-hcp
(dhcp) (ABACABAC) phases with the equilibrium volume
of the hcp phase are employed. Focusing on the intrinsic
stacking fault I1 (local dhcp stacking), the energy difference
between crystals with and without the stacking fault then
reads:

ESF1 � E0 � 4J 2 � 2J 1 ¼ 2ðEdhcp � EhcpÞ: ð4Þ
In this equation ESF1 is the I1 SFE, E0 is the energy of the
defect-free hcp crystal, Ehcp, and Edhcp are the total ener-
gies of hcp and dhcp, respectively. This means the I1 SFE
depends only on the energy difference between the hcp
and dhcp stacking sequences of Mg–Y crystals (see
Fig. 1). This procedure has the great advantage of avoiding
explicit DFT simulations of the stacking faults which are
numerically expensive. Instead, only the ideal hcp and dhcp



Fig. 5. TEM bright-field and weak-beam dark-field images under different two-beam diffractions (see inlets for the diffraction vector), showing I1 stacking
fault (SFI1) in <1.5% cold-deformed Mg–3wt.% Y; P1 and P2 are the partial dislocations bounding the stacking faults. Seven more two-beam conditions
were investigated to identify SFI1.

Fig. 6. TEM bright-field and weak-beam dark-field images under different
two-beam diffractions (see inlets for the diffraction vector), showing I1

stacking fault in fully recrystallized (15 min at 500 �C under Ar
atmosphere) Mg–1 wt.% Y; P1 and P2 are the partial dislocations
bounding the stacking faults.

Fig. 4. TEM bright-field and dark-field images under different two-beam diffractions (see inlets for the diffraction vector), showing the activity of different
perfect and partial dislocations with a hc + ai Burgers vector on pyramidal plane in 3% (engineering strain) cold-rolled Mg–3 wt.% Y; an intrinsic stacking
fault I2 (SFI2) is also visible.
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bulk crystals are needed as input that are computationally
inexpensive because defect-free single crystals can be repre-
sented by relatively small unit-cells (consisting of multiples
of 2 or 4 atoms for hcp or dhcp, respectively) that form a
single crystal by applying periodic boundary conditions.

In contrast, the explicit treatment requires calculating
rather large supercells containing the full stacking fault
geometry. Applying periodic boundary conditions in the
explicit case gives an infinite crystal containing an array
of periodically repeated stacking faults. Computational dif-
ficulties then stem from the fact that unless rather large
supercells are used, the stacking fault interacts with its
images. Such interactions between neighboring stacking
faults do not occur in reality and thus represent an unphys-
ical contribution to the total energy that needs to be elim-
inated by performing careful convergence checks with
respect to the supercell size.



Table 1
Supercell geometries, number of atoms in the supercell, simulated stoichiometries, and the corresponding Monkhorst–Pack k-point meshes used in the
DFT calculations.

hcp dhcp hcp dhcp hcp dhcp

at.% Y 6.25 6.25 3.125 3.125 0.926 0.926
Supercell 2 � 2 � 2 2 � 2 � 1 2 � 2 � 4 2 � 2 � 2 3 � 3 � 6 3 � 3 � 3
No. of atoms 16 16 32 32 108 108
Stoichiometry Mg15Y1 Mg15Y1 Mg31Y1 Mg31Y1 Mg107Y1 Mg107Y1

k-point mesh 18 � 18 � 12 18 � 18 � 12 18 � 18 � 6 18 � 18 � 6 12 � 12 � 4 12 � 12 � 4
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In this study the DFT calculations are performed using
the Vienna Ab initio Simulation Package (VASP) [25–27].
A plane-wave basis set with an energy cut-off of 400 eV
and projector augmented wave (PAW) potentials [23] have
been employed. For the exchange–correlation functional
the generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof parametrization (PBE) was used
[28].

The I1 SFEs were calculated for (i) pure Mg and Y
employing four-atom cells with a 36 � 36 � 12 Monk-
horst–Pack k-point mesh, and (ii) Mg alloys containing
0.926, 3.125 and 6.25 at.% Y. The geometries of the
employed supercells and the corresponding Monkhorst–
Pack k-point meshes are summarized in Table 1.

The plane-wave basis set and the k-point meshes are
converged to an error bar of less than 1 meV atom�1 when
calculating SFEs. The product of the number of the
Monkhorst–Pack k-points and the number of atoms in
the supercells was kept constant and equal to 62208. Unless
explicitly stated, internal coordinates of atoms within the
supercells as well as the shape of the supercells were fully
optimized, i.e. the total energy was minimized with respect
to these degrees of freedom.

3. Results

3.1. Experimental results

TEM observations on 3% and respectively 5% (engineer-
ing strain, here and below) cold-rolled pure Mg, Mg–
1 wt.% Y and Mg–3 wt.% Y alloys reveal a high density
of stacking faults in the Mg–Y alloys (Fig. 2). However,
in pure Mg stacking faults were observed only inside twins,
known as partial stacking faults, which form during twin
nucleation and growth in hcp metals [29,30].

High dislocation activities including dislocation dissoci-
ation and cross-slip on pyramidal planes were observed in
3% cold-deformed Mg–3 wt.% Y (Fig. 3). As all disloca-
tions that appear under a diffraction vector g = 0 002 are
visible under g ¼ 10�10 as well, they are hc + ai disloca-
tions. Burgers vector analysis of these hc + ai dislocations
showed that perfect dislocations with Burgers vectors
1
3
½11�2�3� and 1

3
½�2 11�3� as well as different partial dislocations

with b ¼ 1
2
hcþ ai are formed in cold-deformed Mg–3 wt.%

Y (Fig. 4).
Detailed Burgers vector (b) and displacement vector (R)

analysis according to the g�b respectively g�R (g: diffraction
vector) invisibility criteria of these stacking faults were per-
formed and are examplary shown in Fig. 5 for Mg–3 wt.%
Y and in Fig. 6 for Mg–1 wt.% Y. In order to obtain accu-
rate data on SFEs the TEM analysis of the dislocation con-
figurations was performed on both slightly (<1.5% strain)
cold-rolled and fully recrystallized (15 min at 500 �C under
Ar atmosphere) Mg–Y samples. These investigations
revealed the existence of pyramidal dislocations, basal
and pyramidal dislocation dipoles, and stacking faults in
both alloys. The dissociation width of the stacking faults
in the recrystallized samples was in the same range as those
in the slightly deformed specimens (scatter of �25% in both
deformed and recrystallized specimen). For obtaining good
statistics in the analysis of dislocations and stacking faults
both materials (fully recrystallized and slightly deformed)
are considered. This applies to both investigated alloys,
Mg–1 wt.% Y and Mg–3 wt.% Y.

The analysis suggests that both types of intrinsic stack-
ing faults occur in Mg–1 wt.% Y and Mg–3 wt.% Y. The
corresponding SFEs are calculated based on the elastic
equilibrium dissociation width of the partial dislocations.
For this purpose we solve the Peach–Koehler equation
[31,32] and consider the elastic stresses sel_SF among the
partial dislocations:

sel SF ¼
c
b
: ð5Þ

The corresponding SFEs, indicated by c in the equation,
are calculated based on the experimentally observed disso-
ciation width of the partial dislocations [33–36]:

c ¼ Gb2

8pd
2� m
1� m

1� 2m
2� m

cos 2b

� �
: ð6Þ

Here G is the shear modulus, m the Poisson‘s ratio, b the
Burgers vector of the partials, b the angle between the par-
tials, and d the spacing of the partials. Here the values of
pure Mg (G = 16.5 GPa, m = 0.35, b = 1/6 [2�203], 1/6
[20�23]) were also used for the solid-solution Mg–Y
alloys.

In case of Mg–3 wt.% Y (Fig. 5) the experimentally
observed average I1 SFE, determined via Eq. (6) in con-
junction with the experimental spacing between the par-
tials, amounts to 1 ± 0.5 mJ m�2. For I2 (Fig. 4) the SFE
of Mg–3 wt.% Y amounts to 1.5 ± 0.5 mJ m�2.

As already found in Mg–3 wt.% Y, both intrinsic stack-
ing faults are also observed in Mg–1 wt.% Y (Fig. 6).
Although the dissociation width of the bounding partials
associated with the I1 stacking fault is reduced compared



Table 2
DFT-calculated I1 SFEs cSF1 (in mJ m�2) in elemental Mg and Y,
Mg107Y1, Mg31Y1, and Mg15Y1.

Mg Mg107Y1 Mg31Y1 Mg15Y1 Y

at.% Y 0 0.926 3.125 6.25 100
cSF1 (mJ m�2) 20 ± 1 19 ± 1 14 ± 1 8 ± 1 23 ± 1

Fig. 7. The ab initio determined I1 SFEs of Mg–Y alloys with different Y
concentrations (elemental Mg and Y, Mg107Y1, Mg31Y1, and Mg15Y1).
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to Mg–3 wt.% Y, it is still significantly lower than in pure
Mg (about 85–90% lower than the SFE of pure Mg).
According to Eq. (6) the I1 SFE for Mg–1 wt.% Y amounts
to 3 ± 0.7 mJ m�2.

3.2. Results of the ab initio DFT simulations

The ab initio determined I1 SFEs of Mg–Y alloys with
different Y concentrations (elemental Mg and Y, Mg107Y1,
Mg31Y1, and Mg15Y1) are summarized in Table 2 and
shown in Fig. 7. Considering the whole concentration range
from pure Mg to pure Y, the DFT calculations predict an
unexpected non-linear compositional dependence of the I1

SFEs cSF1 in Mg–Y alloys: despite the fact that both pure
elements, hcp Mg and hcp Y, have relatively high I1 SFEs,
small additions of Y into Mg result in a significant reduction
of the cSF1. Specifically, the I1 SFE of Y (23 ± 1 mJ m�2) is
even higher than the one of Mg (20 ± 1 mJ m�2), but the I1

SFEs, cSF1, for small additions of Y in hcp Mg (Mg15Y1 and
Mg31Y1 stoichiometries) nearly linearly decrease (to
14 ± 1 mJ m�2 in Mg31Y1 and 8 ± 1 mJ m�2 in Mg15Y1)
as a function of the Y concentration. The I1 SFEs, cSF1,
reduction for small Y concentrations is in qualitative agree-
ment with the experimental data, but the absolute numbers
are higher than those presented in the section above (for dis-
cussion see the following section).

4. Discussion

4.1. Introduction

Phenomenologically, the increase in ductility of solid
solution Mg–Y alloys is associated with significantly
increased activities of f10�11gh10�12i contraction twin-
ning, f10�11gf10�12g secondary twinning, and pyramidal
hc + ai dislocation slip [7]. While it has been suggested
(e.g. [16]) that secondary twins promote crack nucleation,
pyramidal dislocation slip is essential for the accommoda-
tion of strain along the hci-axis (e.g. [14,17]), resulting in a
more compatible deformation [37–41].

The TEM experiments and first-principles calculations
outlined above reveal that these higher non-basal shear
activities in Mg–Y are accompanied by a significantly
reduced I1 SFE (see Sections 3.1 and 3.2 above). The trend
of a reduced SFE in Mg–Y compared to pure Mg is in
qualitative agreement between experiment and simulation.
However, the experimental values are higher than the pre-
dicted ones. This discrepancy can be explained by, for
example, (i) the difference between local and global (nomi-
nal) Y concentration, (ii) Suzuki effects (difference in Y sol-
ubility in stacking faults), and partly also (iii) intrinsic
approximations within the employed computational
approach. In either case we assume that the modification
of the I1 SFE is the underlying reason for the enhanced
activity of pyramidal deformation mechanisms in Mg–Y
alloys, i.e. allowing for the activation of sources for hc + ai
dislocations. In the following sections we provide a more
detailed discussion of this mechanism.

4.2. Atomic-scale mechanisms affecting shear system

competition in Mg and Mg solid-solution alloys

Dislocations and dislocation-driven faults, i.e. planar
faults and deformation twins, in hcp metals are geometri-
cally rather complex. There are no simple symmetric
relations between the different slip systems on basal, prism
and pyramidal planes compared to, for example, fcc and
bcc metals where the activated slip-systems are more
symmetrically structured. With the availability of atomic-
scale simulation methods several theoretical studies of
dislocation core structures and dissociation behaviour in
hcp metals have been performed (e.g. [8–10,11,18–20,
42,47,48–51,53]). The main focus of these studies was the
analysis of basal dislocation cores and reactions.

Dislocation glide velocities of basal ½11�2 0� dislocations
on basal, prism and pyramidal planes in pure Mg were cal-
culated using molecular statics (MS) and molecular
dynamics (MD) [42]. The simulations indicated the split-
ting of basal edge dislocations on the basal plane with a
dissociation width of the partials of <2 nm in pure Mg.
Other first-principles [8,18–20,43] and experimental [44–
46] studies of the SFEs in pure Mg indicated relatively high
basal SFEs (theoretical, via DFT and MD predictions: 20–
50 mJ m�2, experimental, by TEM analysis: >50 mJ m�2)
with a maximum equilibrium splitting of the partials of
1.27–1.67 nm in the basal plane. These calculations [8,18–
20,42,43] on pure Mg are in agreement with our own cur-
rent theoretical and experimental results in pure Mg, show-
ing a relatively high SFE in pure Mg (SFE for Mg
predicted by our current DFT approach: 20 ± 1 mJ m�2).
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Experimentally, no I1 and I2 stacking faults were observed
in (recrystallized and slightly room-temperature deformed)
pure Mg. This suggests rare dislocation dissociation and
small spacings (61 nm) of the partial dislocations, which
is an indication for a high SFE.

A theoretical approach towards the ab initio-based pre-
diction of the elastoplastic bulk material properties was
performed in Refs. [9,48–51] by transferring elastic proper-
ties calculated from DFT into macroscopic crystal plastic-
ity simulations for polycrystalline binary bcc Mg–Li
(>30 at.% Li) and ternary Mg–Li–X alloys (where is X
one of 16 different elements, e.g. Al, Si, Zn, Cu). The result-
ing Ashby-type strength–ductility maps revealed an inverse
strength–ductility relation for the alloys studied. Impor-
tantly, different from this earlier study, our current experi-
mental results on Mg–Y show an increase in ductility
without a reduction in strength [7].

Another approach to extract DFT results and apply
them to predicting mechanical properties of Mg alloys
was reported in Ref. [10]. In this work DFT calculations
of the respective chemical and elastic size misfit parameters
of binary solid solution Mg–X alloys (where X is one of 29
solute elements) were performed. The corresponding influ-
ence of these variations in compositions on the b ¼ ½�21 10�
basal dislocations and the I2 SFE were discussed. These
results were then used as input to the solid-solution
strengthening model derived by Fleischer [52,53]. The
authors concluded that the poor room-temperature ductil-
ity of Mg is caused by the restriction to mainly basal dislo-
cation slip. The authors suggest that improving the cross-
slip probability of basal dislocations onto prismatic planes
in Mg would lead to an improvement in ductility. They
proposed the addition of elements that cause an increase
in the I2 SFE to increase the cross-slip probability of basal
dislocations.

In contrast, a decreased I2 SFE, as found in our TEM
observations, would cause (i) a lower cross-slip probability
for basal dislocations and (ii) a less mobile basal disloca-
tion structure. This might result in a relatively higher acti-
vation of non-basal deformation and, consequently,
strengthening. Additionally, our current theoretical and
experimental observations show a decreased I1 SFE in con-
junction with improved cross-slip on pyramidal planes, and
hence improved ductility.

In Ref. [54] ab initio calculations of the elastic moduli
and electronic bonding character of binary Mg–Al, Mg–
Zn and Mg–Y (7.143 at.%) were performed to evaluate
solid-solution strengthening in these systems. The authors
used the Cauchy pressure as an indicator of the bonding
character. As Mg–Y revealed the highest bond strengths
in the authors’ calculations, they concluded that Y might
enhance the brittleness of Mg. This is opposite to our
experimental results, where the addition of Y was found
to cause a significant increase in ductility.

Pyramidal hc + ai dislocation slip can accommodate
strain along the crystal c-axis and offers five or more inde-
pendent slip systems. Therefore the nucleation of pyrami-
dal hc + ai dislocations and their interactions are
essential for explaining the ductility of hcp Mg alloys. In
our current TEM experiments and in Ref. [7] we show that
solid-solution addition of Y causes frequent activation of
pyramidal hc + ai dislocations. As discussed in Ref. [7],
grain refinement, precipitation hardening, shear banding,
decreased c/a ratio and changed Peierls potentials cannot
be the underlying mechanism(s) causing the observed
higher activity of hc + ai dislocations in Mg–Y alloys.

The nucleation of hc + ai dislocations is the energeti-
cally critical step for plastic deformation of hcp metals
and not their mobility (e.g. [17,47]). Therefore, an increase
in the density of sources producing hc + ai dislocations will
lead to higher pyramidal dislocation activity, resulting in
an altogether higher ductility. Consequently, the addition
of Y seems to promote a source mechanism for the
observed hc + ai dislocations. This can be either explained
in terms of Y-induced point defects, i.e. substitutional Y
atoms, or Y-induced zonal defects, i.e. the observed I1

stacking fault. As this stacking fault itself provides sessile
defect structures on both, basal and pyramidal planes, we
assume that it acts as the hc + ai dislocation source itself.
The I1 stacking fault is formed by removing one A plane
(0001) followed by shearing along the [1 �1 0 0] direction.
Consequently the local basal stacking sequence changes
from ABABAB to ABABCBCB. I1 is a sessile defect and
cannot itself contribute to or be created via plastic defor-
mation. Rather, it must be formed by condensation of
vacancies on basal planes. Although the I1 stacking fault
is known as a basal stacking fault as it changes the basal
stacking sequence, it is not of purely basal character (see
e.g. Fig. 1). The I1 stacking fault is bound by Frank-type
pyramidal ½ hc + ai partial dislocations (1/6 [11�2 3],
e.g. 1/6 [2�203], 1/6 [20�23], or respectively 1/6
[02�23]) (e.g. [14,55,56]), i.e. the I1 stacking fault forms
defect structures on pyramidal planes.

In the light of the DFT predicted and experimentally
observed reduced SFEs we assume that the sessile I1 stack-
ing fault acts as the heterogeneous source for the observed
hc + ai dislocations. Due to the complex structure and non-
Schmid behavior (with respect to the expected Schmid-fac-
tors) of pyramidal dislocations (cores) in hcp metals, only
little is known about their nucleation. Yoo et al. [17,47]
proposed a nucleation model for hc + ai dislocations in
hcp metals in which the interaction of (mobile) hai and a
(sessile) hci dislocation creates sessile nodes. These nodes
are assumed to pin hc + ai dislocations, which in turn
may continuously emit further hc + ai dislocations. The
I1 stacking fault that we observed experimentally in this
work may act in a similar fashion as the sessile nodes
described in Refs. [17,47]: (i) it first forms a sessile pyrami-
dal defect (partial dislocation) and (ii) then acts as an
obstacle for other dislocations, i.e. it can pin hai and hci
dislocations.

Experimentally we observed the I1 stacking fault in the
non-deformed state, indicating a thermal activation. This
is in accordance with our DFT calculations showing locally



Fig. 8. Schematic figure of the energy–volume curves calculated for both
hcp and dhcp phases. The solid lines are fitted to the ab initio results using
Murnaghan’s equation of state [57]. The schematic sketch also illustrates
the meaning of the various energy/volume-related parameters used in the
ANNNI model.
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equal energies for the hcp (Mg) and dhcp (SFI1) stacking
sequences. After slight plastic deformation (3% engineering
strain) we observed high activity of pyramidal dislocations
in the Mg–1 wt.% Y and Mg–3 wt.% Y alloys. Besides split
pyramidal dislocations, perfect pyramidal dislocations and
their cross-slip on pyramidal planes were observed (Fig. 3).
This supports our assumption that (i) the nucleation of
hc + ai dislocations is causing the enhanced ductility, and
(ii) the observed I1 stacking fault acts as source for these
hc + ai dislocations. Cross-slip is a main carrier of ductility
in hcp metals as it allows dynamic recovery during defor-
mation. Thus, we conclude that the main difference
between the brittle pure Mg and the ductile Mg–Y is the
more easy nucleation of hc + ai dislocations in Y alloyed
Mg.

Understanding why Y causes the observed reduction of
the I1 SFE in Mg is only possible using quantum mechan-
ical calculations. In the following sections we provide a
detailed analysis of the geometric and electronic effects of
Y on the I1 SFE using DFT.

4.3. Individual energy contributions affecting stacking fault
energy modification

Pyramidal dislocation cores as well as dislocation reac-
tions involving non-basal planes are non-planar involving
several planes with rather complex atomic configurations
(e.g. [8,11]). This inherent structural complexity renders
their exact DFT analysis computationally demanding.
Therefore, we employ the second-order ANNNI model
that approximates the I1 SFE to be proportional to the
total energy difference between the dhcp (stacking of the
SFI1) and hcp (defect-free Mg stacking) stacking sequences
at the equilibrium volume of the hcp phase as outlined
above (see Eq. (4)).

The detailed analysis of these two stacking sequences
and their dependence on alloy composition is of impor-
tance in this context as they determine the I1 SFE value
that finally matters for the activation of non-basal slip con-
tributions. Furthermore, analyzing the ab initio data can
uniquely provide a comprehensive insight into the funda-
mental mechanisms (i.e. volumetric aspects of solid solu-
tion or electronic-structure properties) behind the
reduction of the I1 SFE as a function of the Y content.
Identification of these volumetric and electronic effects of
Y on the SFEs in Mg might provide criteria for the selec-
tion of further alloying elements with similar effect on the
mechanical properties, particularly on ductility.

For this purpose, the total energy differences between
the hcp (defect-free Mg) and dhcp (SFI1 stacking) stacking
sequences is decomposed into their strain-free and elastic-
strain-dependent contributions (see Fig. 8). These portions
are then individually investigated. In Table 3 the calculated
thermodynamic, structural and elastic properties of pure
Mg, pure Y and Mg–Y alloys are summarized.

The calculated ðEdhcp � Eeq
hcpÞ energy differences (see the

second row of Table 3, Fig. 9a) consist of two parts. The
first part is the strain-free total energy difference
ðEeq

dhcp � Eeq
hcpÞ between both stacking types (hcp and dhcp)

at their respective equilibrium volumes (see the third row
in Table 3 for values and Fig. 8 for an explanation of the
used terminology). Here Edhcp is the energy of the dhcp
stacking, Eeq

hcp is the energy of the hcp stacking sequence
at its equilibrium volume, and Eeq

dhcp is the energy of the
dhcp stacking at its equilibrium volume (see schematic
Fig. 8 for explanation). The second part is the strain energy
contribution to the total energy of the dhcp stacking, i.e.
the I1 stacking fault. The strain energy contribution arises
due to the fact that the dhcp-like stacking fault I1 locally
adopts the equilibrium in-plane geometry of the hcp
defect-free matrix that is surrounding it.

Since the results for the c/a ratio for hcp and dhcp stack-
ing sequences are essentially identical for all calculated
Mg–Y alloys, except for elemental Y (see Table 3 and
Fig. 9b), the out-of-plane relaxations should not influence
the interlayer distance within the ISF. This means that if
the dhcp phase adopts the equilibrium volume and lattice
parameters of the hcp matrix (c/a ratio hcp = ½ c/a dhcp),
the lattice strain induced in the matrix by the stacking fault
is minimized. As this strain contributes to the formation
energy of the stacking fault, i.e. the SFE, the SFE is
reduced as well.

The strain-free (electronic) energy difference between
hcp and dhcp stackings decreases with increasing Y content
from 5.7 meV atom�1 in elemental hcp Mg to
3.9 meV atom�1 in Mg31Y1 and 2.4 meV atom�1 in
Mg15Y1. This is rather unexpected considering the fact that
the strain-free energy difference between hcp and dhcp
stacking is in pure hcp Y even higher (8.4 meV atom�1)
than that predicted in pure hcp Mg. The computed reduc-
tion of the strain-free energy difference is likely caused by
complex interactions between Mg and Y that also result
in a non-trivial Mg–Y phase diagram exhibiting a number
of structurally complex stoichiometric compounds.



Table 3
DFT-calculated parameters of the hcp and dhcp phases: total energy (E) differences between the hcp and dhcp states with the volume equal to the
equilibrium volume of the hcp phase, the equilibrium atomic volumes V (in Å3 atom�1), the bulk moduli B (in GPa) together with the lattice parameter (c/
a) ratio of elemental Mg and Y, Mg107Y1, Mg31Y1, and Mg15Y1. The energy difference in brackets for Y indicates the value without the volumetric-energy
contribution, i.e. the energy difference is calculated from the energies of the hcp and dhcp states with their corresponding equilibrium volume.

Mg Mg107Y1 Mg31Y1 Mg15Y1 Y

at.% Y 0 0.926 3.125 6.25 100
Edhcp � Eeq

hcp (meV atom�1) 5.7 5.1 3.9 2.4 8.5 (7.8)
Vdhcp (Å3 atom�1) 23.030 23.126 23.341 23.695 32.463
Vhcp (Å3 atom�1) 22.956 23.058 23.318 23.706 32.880
(Vdhcp � Vhcp)/Vhcp 0.32% 0.30% 0.10% �0.05% �1.27%
Bdhcp (GPa) 35.0 35.5 35.9 35.8 39.3
Bhcp (GPa) 35.4 35.9 36.2 35.9 40.2
(Bdhcp � Bhcp)/Bhcp �0.99% �1.14% �0.82% �0.38% �2.49%
(c/a)hcp 1.628 1.625 1.609 1.582 1.549
½(c/a)dhcp 1.636 1.632 1.612 1.587 1.608

Fig. 9. Computed compositional trends of energy differences (a), the hcp and dhcp lattice parameter c/a ratios (b), and relative differences (in %) of
volumes V (c) and bulk moduli B (d) between the hcp and dhcp phases (hcp: hexagonal close-packed structure; dhcp: double hexagonal close-packed
structure).
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The volumetric-strain part of the energy is very small in
all compounds studied (within the computational error, i.e.
up to 0.1 meV atom�1), except for elemental Y (see the
strain-free energy difference in Y in Table 3 in brackets).
The non-negligible volumetric-strain energy in Y mostly
stems from a higher difference between the hcp and dhcp
equilibrium volumes (�1.27%). The value exceeds the dif-
ference predicted for the other compounds under investiga-
tion (Mg, Mg–Y). Since the overall trend in the strain-free
energy difference is similar to that predicted for the I1 SFEs
(Table 2), it can be concluded that the reduction of the
strain-free energy difference between the hcp and dhcp stac-
kings represents a main contribution to the I1 SFE reduc-
tion in Mg–Y alloys. Due to the fact that the strain-free
energy difference between the hcp and dhcp stackings is
also a measure of stability of the hcp stacking with respect
to the dhcp one, any reduction of this difference also indi-
cates a lower stability of the hcp stacking.

4.3.1. Strain-energy effect on the ISF1 in Mg–Y

To better understand the reasons that cause the reduced
I1 SFE, further analysis of different contributions to this
strain-free energy difference was performed. Specifically,
the volumetric difference between the equilibrium volumes
of both stacking sequences (hcp and dhcp) and the volu-
metric compressibility of the dhcp stacking sequence, rep-
resented by its bulk modulus, are analyzed. Based on
these two quantities, the volumetric-strain energy part of
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the total energy differences of the hcp and dhcp stackings is
evaluated using the Murnaghan equation of state [57].

As far as the lattice parameters are concerned, the c/a

ratio decreases in both calculated bulk structures, hcp
and dhcp, when replacing Mg by Y. The (c/a)hcp respec-
tively ½(c/a)dhcp ratios are listed in Table 3 and shown in
Fig. 9b. This comparison is pertinent as the dhcp unit cell
is defined by twice as many atomic planes (the ABAC
sequence is being repeated) compared to the hcp structure
(only the AB sequence is being repeated). Here it seems
that the compositional trend in the (c/a)hcp ratio is nearly
identical to that predicted for the ½(c/a)dhcp ratio, again,
with the pure solute, the elemental Y, being the only
exception.

As seen in Table 3, the equilibrium atomic volume
increases with increasing Y concentration in agreement
with the fact that the equilibrium volume of hcp Y is signif-
icantly higher compared to that of hcp Mg
ðV Y

eq=V Mg
eq ¼ 1:432, where V Y

eq is the equilibrium volume of
Y and V Mg

eq is the equilibrium volume of Mg). Despite the
fact that these compositional trends are qualitatively simi-
lar for both, hcp and dhcp stackings, the actual trends are
not equal. There are differences in the equilibrium atomic
volumes of the respective hcp and dhcp stacking structures
(see Fig. 9c). The equilibrium volume of the dhcp Mg is
0.32% higher than that of ground-state hcp Mg in contrast
to Y in which the volume of the dhcp phase is smaller by
1.27% than that of hcp Y. For Mg15Y the hcp and dhcp
volumes are predicted to be nearly identical, i.e. at the local
concentration Mg15Y the predicted ISF1 SFE is minimized
(Fig. 9c).

DFT predicted bulk moduli (see Table 3 and Fig. 9d) are
quite similar for the hcp and dhcp stacking sequences in the
studied compositions (except for Y) and the dhcp stacking
sequences are predicted to be elastically softer than the cor-
responding hcp ones. The difference of the bulk moduli
between the hcp and dhcp stacking sequences is �0.99%
in Mg and �2.49% in Y, but it is significantly reduced
(to �0.38%) in Mg15Y (see Fig. 9d). Similar as for the
stacking fault energies and structural parameters discussed
above, differences in the elasticity of hcp and dhcp stac-
kings are lower in Mg–Y alloys than in pure Mg. Thus,
the addition of Y makes both types of stacking (defect-free
hcp and stacking-fault-like dhcp) energetically, structurally
and elastically nearly identical. Here we suppose that by
this the thermodynamic driving force needed to form the
stacking faults is significantly reduced. From a materials-
design point of view this similarity of both stackings is a
strong indication for the selection of alternative alloying
elements to improve the ductility of Mg alloys.

5. Conclusions

The ductility increase through the addition of Y to Mg is
related to higher activities of hc + ai dislocation slip pro-
viding an additional hci-deformation component in Mg–
Y alloys. This facilitated activation of out-of-basal-plane
shear modes is accompanied by a significantly decreased
I1 SFE through the addition of Y. We propose that this
modification of the I1 SFE is the main reason behind the
ductility increase in the Mg–Y system acting as follows:

(i) The enhanced ductility is caused by a high activity of
pyramidal hc + ai dislocations as slip modes out of
the basal plane are a main mechanism for the ductil-
ization of Mg alloys owing to the von Mises criterion
for compatible deformation.

(ii) The nucleation of hc + ai dislocations is the critical
step in providing out-of-basal-plane shear. It is asso-
ciated with the I1 stacking fault. The sessile I1 stack-
ing fault, whose energy decreases with Y alloying, is
bound by pyramidal partial dislocations. This struc-
tural effect enables the formation of dislocation struc-
tures on pyramidal planes. According to the
nucleation model of Yoo et al. [17,47] we suggest that
the I1 stacking fault acts as heterogeneous nucleation
source for pyramidal hc + ai dislocations.

(iii) The observed (TEM) and calculated (DFT) reduced
I1 SFE through the addition of Y, causing the forma-
tion of stable SFI1 in Mg–Y alloys, and hence sources
for hc + ai dislocations.

To further analyze the underlying mechanisms of the
experimentally observed reduction of the I1 stacking fault
ab initio calculations are performed. From these ab initio
calculations we conclude that the reduced I1 SFE is a direct
consequence of two different phenomena. First, the ther-
modynamic (strain-free) stability of hcp stacking sequences
(defect-free Mg–Y solid solution) is significantly reduced
with respect to dhcp stacking sequences (SFI1) when the
Y concentration approaches locally its solubility limit in
Mg. Second, lowering of the SFE is accompanied by signif-
icant reduction of structural and elastic differences between
hcp and dhcp stacking sequences. Here the defect-free
stacking sequence is hcp, while the I1 stacking fault causes
local dhcp stacking. Both hcp and dhcp phases are pre-
dicted to be structurally very similar, matching both in
terms of lattice parameters and corresponding c/a ratios.
This means that the strain-energy part of the I1 SFE is min-
imized. The combination of these two phenomena is the
underlying mechanism for the theoretically and experimen-
tally observed reduction in the I1 SFE.

Acknowledgments

The authors are grateful to the Deutsche Forschungs-
gemeinschaft (DFG) for financial support through the pro-
ject “Fundamental investigation of the mechanisms of
deformation and recrystallisation of cold deformable Mg
alloys micro-alloyed with rare earth elements and micro-
structure optimization for the development of a new class
of Mg-alloys”, Grant YI 103 1-2/ZA 278 6-2.
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[27] Blöchl PE. Phys Rev B 1994;50(24):17953–79.
[28] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996;77(18):

3865–8.
[29] Song SG, Gray III GT. Philos Mag A 1995;71(2):263–74.
[30] Tomsett DI, Bevis M. Philos Mag A 1969;19(159):533–7.
[31] Koehler JS. Phys Rev 1941;60:397–410.
[32] Peach M, Koehler JS. Phys Rev 1950;80(3):436–9.
[33] Hirth P, Lothe J. Theory of dislocations. 2nd ed. New York: John

Wiley & Sons; 1982.
[34] Stevens R, Miles LJ. J Mater Sci 1976;11:1911–8.
[35] Christian JW, Vitek V. Rep Prog Phys 1970;33:307–411.
[36] Buff Jr AW. Metall Trans 1970;1:2391–413.
[37] Chino Y, Sassa K, Mabuchi M. Mater Sci Eng A 2009;513–

514:394–400.
[38] Yi S, Bohlen J, Heinemann F, Letzig D. Acta Mater 2010;58(2):

592–605.
[39] Dreyer CE, Chiu WV, Wagoner RH, Agnew SR. J Mater Process

Technol 2010;210:37–47.
[40] Gehrmann R, Frommert MM, Gottstein G. Magnesium. In: Kainer

KU, editor. Proc magnesium alloys and their applications. Wein-
heim: Wiley-VCH Verlag; 2010. p. 142–8.

[41] Jianxin Z, Sinclair C, Wagner F. Magnesium. In: Kainer KU, editor.
Proc magnesium alloys and their applications. Weinheim: Wiley-VCH
Verlag; 2010. p. 238–44.

[42] Groh S, Marin EB, Horstemeyer MF, Bammann DJ. Model Simul
Mater Sci Eng 2009;17:075009 [15pp].

[43] Wu X, Wang R, Wang S. Appl Surf Sci 2010;256:3409–12.
[44] Harris JE, Masters BC. Proc Roy Soc (Lond) 1966;A292:240–4.
[45] Hales R, Smallman RE, Dobson PS. Proc Roy Soc (Lond)

1968;A307:71–81.
[46] Sastry DK, Prasad YVRK, Vasu KI. Scripta Met 1969;3:927–30.
[47] Yoo MH, Agnew SR, Morris JR, Ho KM. Mater Sci Eng A

2001;310–321:87–92.
[48] Counts WA, Friák M, Battaile CC, Raabe D, Neugebauer J. Phys

Status Solidi B 2008;245(12):2630–5.
[49] Counts WA, Friák M, Raabe D, Neugebauer J. Adv Eng Mater

2010;12(7):572–6.
[50] Counts WA, Friák M, Raabe D, Neugebauer J. Adv Eng Mater

2010;12:1198–205.
[51] Counts WA, Friák M, Raabe D, Neugebauer J. Magnesium. In:

Kainer KU, editor. Proc magnesium alloys and their applica-
tions. Weinheim: Wiley-VCH Verlag; 2009. p. 133–7.

[52] Fleischer RL, Peckner D, editor. The strength of metals; 1964. p. 93–
140.

[53] Fleischer RL. J Appl Phys 1962;33(12):3504–8.
[54] Chen K, Boyle KP. Metall Mater Trans A 2009;40(11):2751–60.
[55] Zhu YM, Morton AJ, Weyland M, Nie JF. Acta Mater

2010;58:464–75.
[56] Ando S, Gotoh T, Tonda H. Metall Mater Trans A 2002;33(3):823–9.
[57] Murnaghan FD. Proc Natl Acad Sci USA 1944;30:244.


	The relation between ductility and stacking fault energies in Mg and Mg–Y alloys
	1 Introduction
	2 Experimental and theoretical methods
	2.1 Experimental procedure
	2.2 Simulation methodology

	3 Results
	3.1 Experimental results
	3.2 Results of the ab initio DFT simulations

	4 Discussion
	4.1 Introduction
	4.2 Atomic-scale mechanisms affecting shear system competition in Mg and Mg solid-solution alloys
	4.3 Individual energy contributions affecting stacking fault energy modification
	4.3.1 Strain-energy effect on the ISF1 in Mg–Y


	5 Conclusions
	Acknowledgments
	References


