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Abstract

A two-dimensional (2D) lattice Boltzmann-based model is developed to simulate solutal dendritic growth of binary alloys in the pres-
ence of forced flow. The model adopts the lattice Boltzmann method (LBM) that describes transport phenomena by the evolution of
distribution functions of moving pseudoparticles to numerically solve fluid flow and solute transport governed by both convection
and diffusion. Based on the LBM-calculated solutal field, the dynamics of dendritic growth is determined according to a previously pro-
posed local solutal equilibrium approach. After detailed model analysis and validation, the model is applied to simulate single and equi-
axed multidendritic growth of Al–Cu alloys with forced convection. The results demonstrate the quantitative, numerically stable and
computationally efficient capabilities of the proposed model. It is found that the solute distribution and dendritic growth are strongly
influenced by convection, producing asymmetrical dendrites that grow faster in the upstream direction, but mostly slower in the down-
stream direction.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dendritic microstructures, which are commonly
observed in solidification of metallic materials, mostly
determine the mechanical integrity of castings. The solidifi-
cation is known to be always accompanied by melt convec-
tion which may significantly alter the pattern formation of
dendritic microstructures and the solute distribution. The
coupling mechanisms between the development of solidifi-
cation microstructure and melt convection have been of
great interest for both academic research and practical
application.

In parallel to the advances of experimental techniques
and analytical models, numerical models have been devel-
oped to understand the dendritic growth and microstruc-

ture formation in solidification for some years [1–12].
Numerical studies on the interaction of melt convection
and dendritic growth in pure materials and alloys have
been performed using phase-field (PF) methods [1–4], a
front tracking method [5], level set (LS) methods [6,7]
and cellular automaton (CA) methods [8–12].

PF models have been applied successfully to reproduce
the typical asymmetric features of dendritic growth with
undercooled melt convection [1–4]. Tong et al. [2] devel-
oped a PF model incorporating the solution of the
Navier–Stokes (NS) equation and thermal noise to simu-
late the free thermal dendritic growth of a pure substance
in forced melt convection. The simulated results based on
a parabolic fitted tip radius are found to agree well with
the Oseen–Ivantsov solution and the linearized solvability
theory. Lan and Shih carried out adaptive PF simulations
of isothermal and non-isothermal free dendritic growth for
a nickel/copper binary alloy system with forced convection
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[3,4]. In the isothermal environment, the simulated results
with an antisolutal trapping scheme are in good agreement
with the Oseen–Ivantsov solution for concentration-driven
dendritic growth with convection. The selection scaling fac-
tor increases with the external flow as the prediction of the
linearized solvability theory [3].

Tan et al. [6,7] proposed a LS method combining fea-
tures of front tracking and fixed domain for modeling den-
dritic growth during the solidification of pure metal and
alloys. In their model the melt flow is described using an
equal-order velocity–pressure interpolation of the NS
equation. The solid/liquid (SL) interface is treated as a nar-
row mushy zone and volume-averaging is used for energy,
species and momentum transports to the mushy zone. The
adaptive mesh refinement approach adopted in the model
allows the simulations of coupling the microstructure evo-
lution at the mesoscale with buoyancy-driven flow in the
macroscale [6,7].

Models based on cellular automata (CA) have also been
developed to simulate the evolution of dendritic morphol-
ogy during alloy solidification in the presence of melt con-
vection [8–12]. The models are capable of simulating
convective single- and multidendritic growth with accept-
able computational efficiency [9–11]. Li et al. validated
the CA model and found that the calculated data with fine
mesh agree well with the Oseen–Ivanstov solution for iso-
thermal concentration-driven dendritic growth in a fluid
flow [12].

In all the above numerical models, the fluid flow calcu-
lation is based on solving the NS equation using a finite dif-
ference method (FDM), finite volume method (FVM) or
finite element method (FEM). Since the NS solvers are con-
tinuum-based approaches, it is not easy to properly handle
the discontinuity of flow velocity at the moving SL inter-
face. Moreover, the fluid flow calculation may be difficult
to converge as the dendritic morphology becomes compli-
cated with the increase in solid fraction. In our previous
work using a NS solver, we found that for solid volume
fractions above 0.3 the fluid flow calculations in the simu-
lations no longer converged.

Over the last two decades, the lattice Boltzmann method
(LBM) has rapidly emerged as a comparatively powerful
technique with great potential for numerically solving
momentum, energy and species transport problems [13–
18]. Unlike conventional macroscopic continuum-based
NS solvers, the LBM is a mesoscopic kinetic-based
approach that assumes the fluid flow to be composed of
a collection of pseudoparticles represented by a distribu-
tion function. The macroscopic flow phenomena are char-
acterized by the motion, collision and redistribution of
these quasiparticles in the system [13]. As a computational
tool, the LBM treats the nonlinear convective term through
relaxation to a local equilibrium. The streaming is always
local and the collision is always linear. However, in the
NS solvers the transport term u $ u is nonlocal and nonlin-
ear at the same time [14]. Accordingly, the LBM has the
attractive advantages of simplicity of programming, high

computational performance associated with good numeri-
cal stability and time-efficiency. In addition, the LBM
can be easily extended to calculate the heat and solute
transports including convection and diffusion. It is particu-
larly capable of simulating complex fluid systems, such as
multiphase and multicomponent flow phenomena under
complicated geometrical boundary conditions [13–18].

Owing to the basic nature of the method, it seems appro-
priate to couple the LBM and related simulation tech-
niques in order to model the interaction of phase
transformation and flows. Miller and co-workers [19,20]
combined a LBM with enhanced collisions for hydrody-
namics and heat transport together with a reaction model
for the anisotropic liquid–solid phase transition. The single
free dendritic growth of pure metal with moderate buoy-
ancy convection was simulated. They then constructed a
PF-based model for crystal growth in the framework of
the LBM. The calculated steady-state tip velocity of den-
dritic growth in a static undercooled melt compared well
with that predicted by solvability theory. The simulation
example of three dendrites growing in an undercooled flow
melt reproduces the interaction between dendritic pattern
formation and buoyancy convection caused by the temper-
ature difference between upheated crystals and cold melt
[21]. Medvedev and Kassner [22] further developed the
PF-LBM model. The phase transition was modeled by
the PF approach proposed by Karma and Rappel. On
the other hand, the flow of the liquid and heat transport
were computed using the LBM. Based on this combined
model, the dendritic and doublonic growth from an under-
cooled melt with an external flow was simulated. The rela-
tionships between the selection parameter and the Péclet
number at various undercoolings and Prandtl numbers
were found to be nearly on a single curve for both dendrites
and doublons, respectively. It was also observed that exter-
nal flow might promote the morphology transition from
doublons to dendrites and change the kinetic phase dia-
gram [23]. Chatterjee and Charkraborty developed a
hybrid enthalpy-based lattice Boltzmann method (E-
LBM) by coupling a modified thermal lattice Boltzmann
model with an adapted enthalpy–porosity technique to
simulate convection–diffusion transport involved in the
liquid/solid phase transition problems. To validate the
model, they compared the simulated single-convective den-
dritic morphology with that from the PF-NS model pro-
posed by Beckermann et al. [1]. The authors claimed that
the E-LBM model is computationally more convenient to
implement for solving complex phase change problems
during solidification [24].

The numerical studies on the dendritic growth in flows
using the PF-LBM and E-LBM techniques have revealed
that LBM is indeed very promising as an efficient compu-
tational tool for the modeling of transport phenomena cou-
pled with phase transformation during solidification. It is
noted that all the above-mentioned studies of LBM have
mostly focused on free dendritic growth with convection
in pure substance. However, little work has been reported
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about the application of LBM to the stimulation of the
convective dendritic growth in alloy solidification.

This paper presents a two-dimensional (2D) LBM-based
model for the simulation of solutal dendritic growth during
alloy solidification in the presence of forced flow. In the
model, the LBM is adopted for the simultaneous numerical
calculations of melt convection and solute transport. The
kinetics of the SL interface evolution is determined using
a local interface composition equilibrium approach previ-
ously proposed by Zhu and Stefanescu (ZS) [25], which
allows the accurate simulation of dendrite growth from
the initial unstable stage to the steady-state stage without
the need for a kinetic parameter. Extensive model valida-
tions, including solute diffusion, fluid flow through obsta-
cles, purely diffusive dendritic growth and convective
dendritic growth, are performed by comparing the simula-
tions to analytical models. The proposed model is then
applied to simulate both single and equiaxed multidendritic
growth of Al–Cu alloys in a forced fluid flow.

2. Model description, governing equations and numerical

algorithms

2.1. Model description

In the present study, solutal dendritic growth of binary
alloys in the presence of melt convection is considered to
take place in the low Péclet number and low Reynolds
number regime. The driving force for dendritic growth is
determined using a local composition equilibrium
approach [25]. According to this approach, the kinetics of
dendritic growth is related to the difference between the
local equilibrium composition and the local actual liquid
composition. The local equilibrium composition is calcu-
lated from the local temperature and curvature, whereas
the local actual liquid composition is obtained by the solu-
tal transport calculation. Fig. 1 illustrates the physical sys-
tem under consideration. The 2D computational domain is
divided into a uniform orthogonal arrangement of cells.
Each cell is characterized by several variables of flow vec-
tor, concentration, crystallographic orientation, solid frac-
tion, etc., and marked as the state of liquid, solid or
interface. Since the emphasis of the present work is on sol-
ute-driven dendritic growth in a fluid flow, for the sake of
simplicity, the temperature field inside the domain is con-
sidered to be uniform with a constant undercooling or
cooling down with a constant cooling rate. The buoy-
ancy-driven flow due to gravity is neglected. The forced
flow is generated by imposing a uniform inlet flow velocity
indicated as Uin at the left boundary of the domain. The
undercooled melt, taken as an incompressible Newtonian
fluid, comes into the domain from the left boundary, flows
past the solidified cells, and then goes out from the right
wall of the domain. At the beginning of the simulation,
one or several solid seeds are placed on the domain. When
a crystal is suspended in an undercooled melt of a hypoeu-
tectic alloy, the local interface equilibrium composition is

larger than the local actual liquid composition. In order
to reach the equilibrium composition, solidification begins.
As the dendrite grows, solute is released at the SL interface,
which results in a solutal gradient ahead of the interface,
leading to solute transport in the domain. In the presence
of melt convection, the solute transport is controlled by
both diffusion and convection. Since convection vanishes
in the solid and the solute diffusion coefficient in the solid
phase is about three orders of magnitude smaller than that
in the liquid, for the sake of simplicity, solid diffusion is
ignored and the solute transport is only computed in the
liquid phase. The solute transfer, governed by convection
and diffusion, will result in a new solute field which deter-
mines the local actual interface liquid composition. The
growing dendrite, assumed to be rigid and stationary, in
turn triggers an increasing complex fluid flow and also
changes the interface curvature which influences the inter-
face equilibrium composition. This interaction of fluid
flow, solute transport and dendritic growth continues to
the end of solidification. The governing equations and
numerical algorithms for calculating fluid flow, solute field,
interface curvature, crystallographic anisotropy and kinet-
ics of dendritic growth are described in detail below.

2.2. Lattice Boltzmann method for the calculation of fluid

flow and solute transport

In the present work, the LBM is adopted to numerically
calculate the fluid flow and solute transport. The LBM
originates from the gas kinetic theory based on the classical
Boltzmann equation. A widely used approximation of the
Boltzmann equation is the Bhatnagar–Gross–Krook
(BGK) approach in which the collision term is approxi-
mated by a single relaxation time scheme [26,27]. The evo-
lution equation of the lattice BGK (LBGK) model is
expressed as:

Fig. 1. Illustration of the physical system and boundary conditions used
in the simulations.
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fiðxþ eiDt; t þ DtÞ � fiðx; tÞ
¼ �½fiðx; tÞ � f eq

i ðx; tÞ�=sþ F iðx; tÞ; ð1Þ

where fi(x, t) is the particle distribution function (PDF) rep-
resenting the probability of finding a pseudoparticle at
location x and time t, ei is the discrete moving velocity of
the pseudoparticle, Dt is the time step, s is the relaxation
time, f eq

i ðx; tÞ is the equilibrium distribution function,
and Fi(x, t) is the force term caused by the internal interac-
tion or external fields such as gravity and magnetic force.
As described previously, in the present work, the buoyancy
effect caused by gravity is ignored and the forced flow is
introduced by a uniform inlet flow velocity. Thus, the force
term in Eq. (1), Fi(x, t), is taken to be zero.

The LBM also can be used to calculate solute transport
controlled by both convection and diffusion. Similar to the
LB equation for fluid flow calculation, the solute distribu-
tion function gi(x, t) with the source term can be written as
[28]:

giðxþ eiDt; t þ DtÞ � giðx; tÞ
¼ �½giðx; tÞ � geq

i ðx; tÞ�=sD þ Siðx; tÞ; ð2Þ

where sD and geq
i ðx; tÞ are the relaxation time and the equi-

librium distribution function for the solute transport calcu-
lation, respectively. The source term in Eq. (2), Si(x, t),
denotes the amount of solute rejected at the SL interface
during dendritic growth.

A widely used 2D nine-velocity (D2Q9) LB model [27] is
employed in the present work. In the D2Q9 model, space is
discretized into a square lattice including nine discrete
velocities, ei, which are given by

ei ¼
ð0; 0Þ i ¼ 0;

ðcos½ði� 1Þp=2�; sin½ði� 1Þp=2�Þc i ¼ 1–4;

ðcos½ð2i� 9Þp=4�; sin½ð2i� 9Þp=4�Þ
ffiffiffi
2
p

c i ¼ 5–8;

8><
>:

ð3Þ
where c = Dx/Dt is the lattice speed, Dx is the lattice spac-
ing, Dt is the time step. The macroscopic variables such as
fluid density, q, velocity, u and composition, C, can be cal-
culated from the relevant distribution functions,
respectively:

q ¼
X8

i¼0

fi; qu ¼
X8

i¼0

fiei; C ¼
X8

i¼0

gi: ð4Þ

In the D2Q9 scheme, the equilibrium distribution functions
in Eqs. (1) and (2) are defined as

f eq
i ðx; tÞ ¼ wiq 1þ 3

ðei � uÞ
c2
þ 4:5

ðei � uÞ2

c4
� 1:5

u2

c2

" #
; ð5Þ

geq
i ðx; tÞ ¼ wiC 1þ 3

ðei � uÞ
c2
þ 4:5

ðei � uÞ2

c4
� 1:5

u2

c2

" #
; ð6Þ

where wi are the weight coefficients given by w0 = 4/9,
w1–4 = 1/9 and w5–8 = 1/36. In Eq. (6), the terms that in-
clude the flow velocity vector, u, represent the convection

contribution to the solute transport. Apparently, in the
case of u = 0, pure solute diffusion can be calculated.
According to the Chapman–Enskog analysis [29], the con-
tinuum equation, the NS equation and the convection–dif-
fusion equation can be recovered from the above-described
LB equations. The kinematic viscosity, m, and the solute
diffusion coefficient, D, are related to the relaxation times
s and sD, respectively:

m ¼ c2Dtð2s� 1Þ=6; D ¼ c2Dtð2sD � 1Þ=6: ð7Þ
Boundary conditions are very important for the accu-

racy and stability of LBM simulation. The unknown par-
ticle distribution functions at the boundary nodes must
be calculated through proper boundary conditions. In
the present work, for flow field calculation, the nonequi-
librium extrapolation scheme with second-order accuracy
[30] is employed at the left and right walls of the
domain, whereas the top and bottom walls are treated
as symmetrical using periodic boundary conditions. The
nonslip boundary condition is implemented at the SL
interface using the bounce-back rule [31]. For solutal
transport simulation, the zero-flux boundary condition
is imposed on the four surfaces of the calculation
domain. As mentioned previously, it is assumed that
there is no solute transport in the solid phase. Thus,
the bounce-back scheme is also applied at the SL inter-
face for solutal field calculation.

2.3. Solution of the phase fraction evolution

As described in Section 2.1, in the present model the
driving force for dendritic growth is considered to be con-
trolled by the difference between local interface equilibrium
composition and local actual liquid composition. Based on
the thermodynamic concept of local equilibrium between
liquid and solid phases, the interface equilibrium composi-
tion C�l can be calculated by:

C�l ¼ C0 þ ½ðT � � T eq
l Þ þ CKð1� 15e cos½4ðh� h0Þ�Þ�=m;

ð8Þ
where T* is the interface temperature, T eq

l is the equilibrium
liquidus temperature at the initial composition C0, e is the
degree of anisotropy of the surface energy, m is the liquidus
slope, C is the Gibbs–Thomson coefficient, K is the curva-
ture of the SL interface, h is the growth angle between the
normal to the interface and the x-axis and h0 is the angle of
the preferential growth direction with respect to the x-axis.
The calculated local interface equilibrium composition is
compared with the local actual liquid composition Cl which
is determined by solving Eqs. (1)–(7) using the LBM. If the
difference DC ¼ C�l � Cl > 0, the solid fraction of this
interface cell will increase. According to the solute equilib-
rium condition at the interface, during one time step inter-
val, Dt, the increased solid fraction, Dus, of an interface cell
in one time step can be evaluated by:

Dus ¼ ðC�l � ClÞ=½C�l ð1� kÞ�; ð9Þ
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where k is the solute partition coefficient. As the solid frac-
tion increases, solute is rejected at the SL interface. Solute
partition between liquid and solid at the SL interface is
considered according to Cs = kCl. The rejected solute in
an interface cell at each time step can be evaluated as
DC = Cl(1 � k)Dus. Thus, the source term Si(x, t), in Eq.
(2) can be calculated with Si(x, t) = wiDusCl(1 � k). If at
time t = tn, the sum of the solid fraction in an interface cell
equals 1, the state of this cell is assigned as solid and new
interface cells are explicitly captured. However, the exact
SL front is implicitly scaled by the solid fraction within
each interface cell. The local interface curvature, K, and
the growth angle, h, in Eq. (8) can be calculated according
to the solid fraction gradient at the SL interface using the
following equations [32]:

K ¼ ½2@xus@yus@
2
xyus � ð@xusÞ

2
@2

yus � ð@yusÞ
2
@2

xus�

� ½ð@xusÞ
2 þ ð@yusÞ

2��3=2 ð10Þ
h ¼ arccosð@xus=½ð@xusÞ

2 þ ð@yusÞ
2�1=2Þ: ð11Þ

Eqs. (10) and (11) are solved using a centered finite-differ-
ence scheme with second-order accuracy for the partial
derivatives of the solid fraction.

2.4. Numerical solution sequence

The solution sequence of the equations and algorithms
described above consists of the following steps:

(1) Initialing the simulation system with domain length,
mesh size, flow field and composition field, solid seeds
with preferential crystallographic orientations.

(2) Calculating the flow field and the solutal field by solv-
ing Eqs. (1)–(6) for each cell in the whole domain.
The flow velocity and liquid composition are calcu-
lated according to Eq. (4). Meanwhile, the solid com-
position is calculated with Cs = kCl.

(3) Calculating the interface curvature with Eq. (10), the
interface equilibrium composition with Eq. (8), and
the increase in solid fraction with Eq. (9) for each
interface cell.

(4) Calculating and adding the rejected solute amount
wiDusCl(1 � k) to the solute distribution function of
the same interface cell. If the cell is fully solidified,
it is added to the solute distribution function of its
surrounding neighbor interface or liquid cells. Thus,
the overall solute conservation in the domain can
be maintained.

(5) Next time step from Step (2) until the end of the
simulation.

The physical parameters used in the present work are
given in Table 1. The flow relaxation time is chosen to be
s = 1 and sD can be computed by Eq. (7) according to
the kinematic viscosity, m, and the solute diffusion coeffi-
cient in liquid, Dl. The dimensionless composition, und-

ercooling, length, time, growth velocity and flow velocity
are used by rescaling the relative quantities with C0,
DT0 = |m|(1 � k)C0, d0 = C/DT0, t0 ¼ d2

0=Dl, V0 = Dl/d0

and U0 = m/d0, respectively, where DT0 is the unit underco-
oling and d0 is the solutal capillary length.

3. Results and discussion

3.1. Mesh dependency

To evaluate the mesh dependency of the present model,
simulations are performed for a single dendrite of an Al–
3 wt.% Cu alloy growing at a constant dimensionless melt
undercooling DT/(|m|(1 � k)C0) = 0.6 with an inlet flow
velocity of Uind0/m = 0.0005. At the beginning of the simu-
lation, a solid seed with a preferential crystallographic ori-
entation of 0� with respect to the horizontal direction is
placed at the center of the domain. For these simulations
the domain length is kept constant with 2400d0 � 2400d0,
whereas the mesh size and numbers are varied. The method
of determining the steady-state growth velocities of the
dendrite tip is described in the next section. Fig. 2 shows
the steady-state growth velocity of the upstream tip as a
function of mesh size. It can be noted from Fig. 2 that
the converged solution of tip velocity is obtained when
the mesh size Dx/d0 is smaller than 14. It is found that
tip splitting occurs when the mesh size is larger than 14,

Table 1
The parameters used in the present work.

Symbol Definition and units Value

q Density (kg m�3) 2.475 � 103

l Viscosity (P) 0.014
Dl Solute diffusion coefficient in liquid (m2 s�1) 3.0 � 10�9

m Liquidus slope (K wt.%�1) �2.6
k Partition coefficient 0.17
C Gibbs–Thomson coefficient (mK) 2.4 � 10�7

e Degree of anisotropy of the surface energy 0.0267
d0 Solutal capillary length (m) 3.707 � 10�8

Fig. 2. Steady-state growth velocity of the upstream tip as a function of
mesh size (Uind0/m = 0.0005, DT/(|m|(1 � k)C0) = 0.6).
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which is considered to be the main reason for the remark-
able decrease in velocity when the mesh size is out of the
region of convergence.

3.2. Validation of LBM for the calculation of solute diffusion

and fluid flow

To validate the LBM for the calculation of solute diffu-
sion, a classical benchmark problem has been modeled,
namely 1D solute transport with a prescribed constant
composition boundary. The domain is divided into 200 lat-
tice units in the horizontal direction with the initial compo-
sition of C(x, 0) = C0. The left boundary is imposed with a
prescribed constant composition of C(0, t) = CH. However,
the zero flux boundary condition is applied for the right
boundary. In this calculation, CH and C0 are taken as
5.5% and 4.0%, respectively. For the 1D solute transport,
the analytical solution can be obtain by

C ¼ C0 þ ðCH � C0Þ � 1� erf
x

2
ffiffiffiffiffi
Dt
p

� �� �
; ð12Þ

where x is the distance from the left boundary, D is the dif-
fusion coefficient and t is the time. Fig. 3 presents a com-
parison of the solute profiles calculated by the LBM and
the analytical solution. It can be seen that the agreement
between the LBM calculation and the analytical result is
excellent.

The second validation is performed to confirm that the
LBM is working properly in the simulation of fluid flow
through obstacles with a curved interface. The model is
extended to a special case described by Stokes flow through
regular arrays of infinite cylinders. As illustrated in Fig. 4,
a round obstacle is fixed in the computational domain. The
obstacle/fluid interface is treated as nonslip boundary con-
dition using the bounce-back rule. Periodic boundary con-
ditions are employed on the top and bottom sides of the
domain. The left and right walls are given with the velocity
boundary condition of oxux = 0 and uy = 0 using the non-
equilibrium extrapolation scheme [30]. A constant pressure

gradient is imposed to generate fluid flow in the horizontal
direction. Fig. 5 presents a comparison of the result
obtained by the LBM for the dimensionless mean flow
velocity as a function of volume fraction of obstacle with
the analytical solution derived by Sangani and Acrivos
[33]. As shown, the LBM calculated data approach zero
as the volume fraction of obstacle increases to higher val-
ues and coincide well with the analytical profile.

3.3. Dendritic growth in a static melt

To validate the present model for purely diffusive den-
dritic growth, the simulated steady-state growth features
of an Al–3 wt.% Cu alloy as a function of melt undercool-
ing are compared with the Lipton–Glicksman–Kurz
(LGK) model predictions. The LGK [34,35] analytical
model can be used for predicting the steady-state tip veloc-
ity and radius of a branchless needle dendrite freely grow-
ing in an undercooled static alloy melt controlled by

Fig. 3. Comparison between the LBM calculation and the analytical
solution for the 1D solute diffusion calculation.

Fig. 4. The fluid flow through one round obstacle fixed in the center of the
domain.

Fig. 5. Comparison of the result obtained by the LBM for the dimen-
sionless mean flow velocity as a function of volume fraction of obstacle
with the analytical solution [33].

1760 D. Sun et al. / Acta Materialia 57 (2009) 1755–1767



Author's personal copy

diffusion. Since the present work deals with purely solute-
driven dendritic growth during isothermal solidification
of a binary alloy, thermal transport is not considered and
thermal undercooling is zero. The total undercooling for
purely solute-driven dendritic growth in two dimensions,
DT, consists of solutal and curvature contributions and is
given by:

DT ¼ jmjC0ð1� kÞIvðP cÞ
1� ð1� kÞIvðP cÞ

þ C
R
; ð13Þ

where R is the steady-state tip radius, Pc = V � R/2Dl is the
solutal Péclet number. The 2D Ivantsov function for diffu-
sion field can be solved by [36]:

IvðP cÞ ¼
ffiffiffi
p
p ffiffiffiffiffi

P c

p
expðP cÞ � erfcð

ffiffiffiffiffi
P c

p
Þ: ð14Þ

The stability criterion of the purely solutal dendritic tip is
expressed as:

1

r�
¼ V � R2

Dld0½1� ð1� kÞIvðP CÞ�
; ð15Þ

where V is the steady-state tip velocity, d0 = C/[|m|C0(1 �
k)] is the solutal capillary length, and r* is the selection
parameter that is a constant equal to 1/4p2 in the marginal
stability theory, whereas it is considered to be a function of
the anisotropy parameter e in the solvability theory [36,37].
We determined the selection parameter r* according to the
linearized solvability theory derived by Barbieri and Lan-
ger [38]. When 15e = 0.4 was used in the present work,
the corresponding r* for two dimensions calculated by
the linearized solvability theory is 0.10654 [38]. Using this
selection parameter value, The LGK-predicted steady-state
tip velocity and radius as a function of melt undercooling
can be obtained by solving Eqs. (13)–(15).

To minimize the influence of the domain boundary on
the concentration field and to obtain a constant undercool-
ing of the melt far away from the growing dendrite, which
is the assumption of the LGK model, the simulation
domain is chosen to avoid the solute diffusion layer reach-
ing the boundary of the calculation domain. Since a den-
drite growing at small undercooling needs a longer time
to reach steady-state and has a wider solute diffusion layer,
a larger simulation domain is required. For most cases of
various undercoolings, the mesh size is chosen as 8d0. How-
ever, for the case of large undercooling DT/DT0 = 0.9, a
smaller mesh size of 6d0 is used to avoid tip splitting. At
the beginning of the simulation, a solid seed with the com-
position of kC0 and a preferential crystallographic orienta-
tion of h� with respect to the horizontal direction is placed
at the center of the domain. The cells surrounding the seed
are assigned as interface cells. The other cells in the domain
are filled with the undercooled melt liquid with the initial
composition of 3 wt.% Cu. Fig. 6 shows the simulated den-
drite morphology of an Al–3 wt.% Cu alloy solidified from
a static undercooled melt with a dimensionless undercool-
ing DT/(|m|(1 � k)C0) = 0.7. The dendrite grows symmetri-
cally in a static melt with an identical speed of four tips.

The evolution of tip growth velocity with time is presented
in Fig. 7. The growth velocities are measured from the
interface cells around the dendrite tip, where the fraction
of solid phase is below 0.9. Each point in the plot is an
average value calculated from the measured values of sev-
eral time step intervals. It is shown that the tip velocity
starts from a large value and then decreases rapidly. After
a transient period, the tip velocity reaches an approxi-
mately steady-state level. The transient period is of the
order of Dl/V

2, where V is the steady-state tip velocity
[32]. The steady-state tip velocity, tip radius and equilib-
rium composition are measured after at least twice this
transient regime. The tip velocity and equilibrium compo-
sition are directly measured from the interface cells around
the tip, and the average values are calculated. However, the
tip radius is measured based on a parabolic fitting to the
simulated dendrite shape as described in Ref. [25].

The comparison between the numerical simulations and
the LGK predictions for the steady-state tip parameters as

Fig. 6. Simulated dendritic morphology of an Al–3 wt.% Cu alloy
solidified in a static melt at a constant melt undercooling DT/
(|m|(1 � k)C0) = 0.7.

Fig. 7. Evolution of the tip growth velocity with time for the case shown
in Fig. 6.
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functions of the melt undercooling is presented in Fig. 8.
As shown, the steady-state tip velocity, the equilibrium
composition and the Péclet number increase, whereas the
tip radius decreases with increasing undercooling. The
steady-state tip velocity predicted by the present model is
a little higher, but both, the simulated tip radius and con-
centration are slightly lower than the LGK results. Never-
theless, they are all close to the theoretical predictions.
While some discrepancies for the Péclet number compari-
son can be observed at relatively higher undercoolings,
the agreement between the simulation and the LGK predic-
tion for the Péclet number is very good at relatively low
undercoolings.

3.4. Dendritic growth with melt convection

3.4.1. Asymmetrical dendritic growth controlled by

convection

To simulate the free dendritic growth in a forced flow,
an inlet flow with a constant velocity is imposed on the left
boundary of the domain. Other conditions are identical to
those of Fig. 6. Fig. 9 represents the simulated dendritic
morphology of an Al–3 wt.% Cu alloy growing in a flowing
melt with a constant dimensionless undercooling DT/

(|m|(1 � k)C0) = 0.7 and an inlet flow velocity Uind0/m =
0.0015. Comparing Fig. 9with Fig. 6, it is apparent that
the dendritic shape is significantly influenced by fluid flow.
The growth of the dendrite is enhanced on the upstream
side and decreased on the downstream side. Fig. 10 shows
the tip velocities varying with time for the case presented in
Fig. 9. While the perpendicular tip approaches an approx-
imately steady-state velocity nearly identical to the case of
pure diffusion, the state-steady velocities of the upstream
and downstream tips are higher and lower, respectively,
than that without flow. When the dendrite grows in the
presence of convection, the solute rejected at the SL inter-
face is washed away from the upstream to the downstream
direction by the flowing melt, resulting in an asymmetrical
solute profile in liquid, i.e. the concentration in the
upstream region is lower than that in the downstream.
Fig. 11 shows the time history of the tip concentration cor-
responding to the case of Figs. 9 and 10. It can be seen that
the tip concentration initially rapidly increases because the
rejected solute accumulates at the SL interface. After a
transient period, the concentrations of different tips reach
approximately stable values with different levels, indicating
that the solute rejection has been balanced by the solute
diffusion and convection. Moreover, the steady-state con-

Fig. 8. Comparison between the numerical simulations and the LGK predictions for the steady-state tip parameters as functions of the melt undercooling:
(a) steady-state tip velocity; (b) steady-state tip radius; (c) steady-state tip equilibrium liquid composition; (d) Péclet number.
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centration of the downstream tip is higher than that of the
upstream tip due to the effect of convection. Under an uni-
form temperature field, the interface equilibrium concen-

tration calculated by Eq. (8) will not be influenced much
by fluid flow. According to Eq. (9), the decreased local
actual concentration at the interface results in a higher
increment in solid fraction Dus and thereby a higher tip
velocity.

3.4.2. Comparison with the linear solvability theory

The validation of the present model for simulating den-
dritic growth with melt convection is attempted via com-
parison of the simulations against theoretical predictions.
By extending the Ivantsov solution to the convection-free
dendritic growth of pure substance, Bouissou and Pelce
[39] derived the Oseen–Ivantsov solution that describes
the steady-state dendritic growth with a forced flow in
the small Reynolds number regime. Equivalent to the den-
dritic growth in pure materials, where the driving force is
the dimensionless thermal undercooling, D = (T* � T1)/
(DH/Cp), the driving force for purely solutal dendritic
growth is considered to be the dimensionless supersatura-
tion, X, defined as:

X ¼ C�l � C1
C�l ð1� kÞ ; ð16Þ

where C1 is the liquid composition far away from the tip.
Thus, the Oseen–Ivantsov solution can also be applied to
the solute-driven dendritic growth of alloys during isother-
mal solidification with forced convection and is given by:

X ¼P c expðP c � P f Þ

�
Z 1

1

exp �P cgþ P f 2þ
Z g

1

gðfÞffiffiffi
f
p d1� g

� �� �
dgffiffiffi

g
p ;

ð17Þ

where Pc � VR/(2D) is the growth Péclet number, and
Pf � UR/(2D) is the flow Péclet number. The function
g(f) in Eq. (17) is defined as:

gðfÞ ¼
ffiffiffi
f
p

erfcð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ref=2

p
Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpReÞ

p
½expð�Re=2Þ� expð�Ref=2Þ�

erfcð
ffiffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ

; ð18Þ

where Re � UR/m is the Reynolds number.
It should be noted that the Oseen–Ivantsov solution is

derived based on convective dendritic growth in a pure sub-
stance, where only thermal transport is calculated, and that
the thermal diffusion is a two-sided problem, i.e. as � al,
here as and al are the thermal diffusivities in solid and
liquid, respectively. However, in the simulation of isother-
mal solute-driven dendritic growth, only solutal transport
is considered, which is a one-sided problem, i.e. Ds << Dl.
For comparison with the Oseen–Ivantsov solution, we
assumed equal solid/liquid solutal diffusivities, i.e. Ds = Dl,
for this particular simulation. To implement the Ds = Dl

condition, the bounce-back scheme applied at the SL inter-
face for the LBM solutal diffusion calculation had to be
dropped. The calculation domain consists of 400 � 400
mesh points with a mesh size of 8d0. The dimensionless
undercooling is set to be DT/(|m|(1 � k)C0) = 0.7. In this
case, the simulated steady-state tip equilibrium composi-

Fig. 9. Simulated dendritic morphology of an Al–3 wt.% Cu alloy
growing in a flowing melt with a constant dimensionless undercooling
DT/(|m|(1 � k)C0) = 0.7 and an inlet flow velocity Uind0/m = 0.0015.

Fig. 10. Tip velocities vary with time for the case shown in Fig. 9.

Fig. 11. Tip concentrations vary with time for the case shown in Fig. 9.
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tion C�l=C0 ¼ 1:533. The dimensionless supersaturation can
be calculated by Eq. (16) as X = 0.42. The steady-state
velocity and radius of the upstream tip are determined as
described in Section 3.3. The tip radius is measured based
on a parabolic fitting to the simulated dendrite shape as
described in Ref. [25]. The simulated growth Péclet number
and flow Péclet number can then be calculated with
Pc = VR/(2Dl) and Pf = UinR/(2Dl), respectively. A com-
parison between the numerical simulations and the
Oseen–Ivantsov solutions for the growth Péclet number
as a function of the flow Péclet number is presented in
Fig. 12. It should be noted that the simulated growth Péclet
numbers, increasing with the flow Péclet numbers, appear
to be very close to those predicted by the Oseen–Ivantsov
solution.

Using a linear solvability analysis, Bouissou and Pelce
[39] studied the effect of flow on the selection parameter
and deduced that the ratio of the selection parameters with-
out flow and with flow, (r*)0/r*, is a function of a dimen-
sionless flow parameter, v = a(Re)Ud0/(b3/4RV), where
b = 15e and aðReÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Re=p

p
expð�Re=2Þ=erfcð

ffiffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ.

When v is large enough, the relationship has the form:
(r*)0/r* ffi 1 + bv11/14, where b is a constant. However,
when the flow is weak and v is much smaller than unity,
the ratio of (r*)0/r* is independent of the flow parameter,
i.e. (r*)0/r* ffi 1. We performed the simulations in the small
v regime (0 < v < 0.2) with two undercoolings of DT/
(|m|(1 � k)C0) = 0.6 and 0.7, corresponding to the dimen-
sionless supersaturation X = 0.37 and 0.42, respectively.
Other simulation conditions are identical to those of
Fig. 12. As shown in Fig. 13, the simulated ratios of (r*)0

/(r*) with various flow parameters v are all close to unity
for two supersaturations, which coincides with the predic-
tion of the linear solvability theory. Tong et al. [2] carried
out simulations using a PF-NS model for convective den-
dritic growth of a pure substance in the same small v
regime (0 < v < 0.2), and also found that the ratio of
(r*)0/(r*) based on a parabolic fitted radius is indeed nearly

independent of the flow parameter v for various surface
energy anisotropy coefficients and dimensionless
undercoolings.

3.4.3. Comparison with the ZS-NS model

To further examine the potential of the present model,
the ZS-NS model, in which the fluid flow and solute
transport are calculated using a NS solver based on the
SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm, is adopted to simulate single convec-
tion-free dendritic growth under identical conditions to
those used in Fig. 9. The time histories of the evolution
of the solid fraction simulated from the two models are
compared in Fig. 14. It can be seen that the agreement
between the predictions of the two numerical models is
good, although there is a slight deviation between the pro-
files when the solid phase fraction increases to higher val-
ues. This deviation is considered to be caused by the

Fig. 12. Comparison between the numerical simulations and the 2D
Oseen–Ivantsov solution for the growth Péclet number as a function of the
flow Péclet number (X: the dimensionless supersaturation).

Fig. 13. Comparison between the numerical simulations and the linear
solvability theory prediction for the ratio of the selection parameters
without and with flow as a function of the dimensionless flow parameter v.

Fig. 14. Evolution of solid fraction with time for an Al–3 wt.% Cu alloy
solidified with a constant undercooling DT/(|m|(1 � k)C0) = 0.7 and an
inlet flow velocity Uind0/m = 0.0015: comparison between the present
model and the ZS-NS (Zhu and Stefanescu – Navier – Stokes) model.
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different schemes used in the two models for treating the
nonslip boundary condition at the SL interface. Neverthe-
less, the result of Fig. 14 indicates that the LB equation for
the fluid flow calculation converges to the NS equation.
Furthermore, it is interesting to note that the present model
is computationally quite efficient. It requires about 0.5 ls
per grid point and per time step on a PC Core 2 Duo,
2.67 GHz CPU. The calculation time of the present model
for the results shown in Fig. 9 is about 18 min, which is
about nine times faster than that required for the ZS-NS
model (about 160 min).

3.5. Equiaxed multidendritic growth

The present model is applied to simulate the formation
of multiequiaxed dendrites during alloy solidification for
the two cases of pure diffusion and diffusion together with
melt convection. The calculation domain is divided into
400 � 400 mesh points with a mesh size of 1 lm. At the
start of the simulation, several seeds with randomly
assigned preferred growth orientations are placed on the
domain. The temperature in the domain is assumed to be
uniform and cooled down from liquidus temperature at a
cooling rate of 10 K s�1. The simulations are stopped when
the domain temperature reaches the eutectic temperature.

Fig. 15 presents the simulated evolution of multiequiaxed
dendrites for an Al–4.5 wt.% Cu alloy. The figures in the
upper row show dendrites formed by pure diffusion and
those in the bottom row show dendrites formed under con-
vective boundary conditions of a forced flow with an inlet
flow velocity of Uin = 0.001 m s�1. It can be noted that dur-
ing pure diffusion-controlled solidification the main arms
of the dendrites develop along their crystallographic orien-
tations, followed by the growth and coarsening of the pri-
mary trunks together with the branching of the secondary
arms. However, the growth of the primary trunks and side
branches might be affected by the nearby dendrites. On the
other hand, when dendrites grow under the influence of
melt convection, solute atoms are at the early growth stage
transported from the upstream side to the downstream side
of each dendrite by the flowing melt, resulting in asymmet-
ric dendrite morphologies. As solidification proceeds, pri-
mary arms grow and coarsen with the evolution of side
branches. The primary and secondary arms are all dis-
tinctly deflected to the upstream direction. As the dendrites
grow close to each other, the fluid flow almost vanishes in
the interdendritic region. Thus, at the later stage the
growth of dendrites is not affected much by the flow. More-
over, it can be noted that the solute content in the liquid
phase increases as solidification proceeds. Consequently,

Fig. 15. Evolution of multiequiaxed dendrites for an Al–4.5 wt.% Cu alloy solidified with a cooling rate of 10 K s�1: (a,d) us = 0.06, (b,e) us = 0.45, (c,f)
us = 0.93 (us: solid volume fraction). Here (a–c) show dendrites formed by pure diffusion and d–f show dendrites formed under convective boundary
conditions of a forced flow with an inlet flow velocity of Uin = 0.001 m s�1.
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the outside shell of the dendrites, where the final solidifica-
tion of the solute-enriched liquid occurs, reveals a higher
solute concentration as shown in Fig. 15c and f.

As presented in the previous section, the present model is
computationally more efficient than the ZS-NS model for the
simulation of single-convective dendritic growth. Again, for
comparison the ZS-NS model is also applied to the present
case of multidendritic growth under the same conditions as
used in Fig. 15. However, because of the divergence in the
flow calculation, the ZS-NS simulation cannot be performed
when the solid fraction is above about 0.25. Accordingly, it is
apparent that the present LBM-based model has the signifi-
cant advantages of a good numerical stability and computa-
tional efficiency for the simulation of dendritic growth in the
presence of melt convection.

4. Conclusions

A LBM-based model is presented for modeling solutal
dendritic growth with melt convection. In the model, the
momentum and species transfers are numerically solved
by the kinetic-based LBM, rather than via a continuum-
based NS solver. The LB solute distribution function is
incorporated via a flow velocity vector and a source term
that accounts for the solute partition at the SL interface,
which allows valid computations of solute transport con-
trolled by both convection and diffusion during phase tran-
sition. Based on the LBM-calculated solutal field, the
evolution of the SL interface can be determined according
to a local solute equilibrium approach. The mesh depen-
dency of the present model for the simulation of convective
dendritic growth is evaluated. The calculated steady-state
growth velocity of the upstream tip is found to converge
to a finite value when the mesh is refined. Extensive model
validation has been carried out through comparison of the
simulation results with available analytical models. First,
the LB simulations for 1D solute diffusion and 2D Stokes
flow past regular arrays of infinite cylinders coincide well
with the analytical solutions. Second, the simulated
steady-state tip features, including tip velocity, tip radius,
equilibrium composition, and Péclet number, as functions
of undercoolings for purely diffusive dendritic growth of
an Al–3 wt.% Cu alloy, are compared with the analytical
LGK predictions. The agreement appears to be quite rea-
sonable. Third, for convective dendritic growth in a forced
flow, the simulated growth Péclet number of the upstream
tip as function of the flow Péclet number is very close to the
analytical Oseen–Ivantsov solution. In addition, the ratio
of the selection parameters without flow and with flow is
in good agreement with the prediction of the linearized
solvability theory. The proposed model is applied to simu-
late both single- and multiequiaxed dendritic growth of Al–
Cu alloys in a forced flow. The simulation results show that
the dendritic growth behavior is significantly affected by
melt convection. The dendritic growth is promoted and
hindered in the upstream and downstream regions, respec-
tively. However, the growth of the perpendicular tip is not

greatly affected by fluid flow. The evolution of multiequi-
axed dendrites with various orientations is also repro-
duced. The simulation results illustrate the interaction of
fluid flow, solute transport and phase transition during
alloy solidification. It is found that at the early stage of
solidification, primary arms and side branches are dis-
tinctly deflected towards the incoming fluid flow, whereas
the flow effect on dendritic growth gradually weakens as
the dendrites grow close to each other. The comparison
with the ZS-NS model indicates that the present model is
more numerically stable and computationally efficient, as
well as simpler to implement for the simulation of phase
transition problems coupled with melt convection.
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