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 1 Introduction The application of bcc Ti-alloys for 
bone replacement applications has attracted great attention 
because of the low elastic modulus and biocompatibility of 
these alloys [3]. The first theoretical approach to β-Ti al-
loys design was proposed by Morinaga et al. [4, 5]. Al-
though their work has proven very powerful for the design 
of novel β-Ti alloys, it did not provide quantitative infor-
mation, such as for instance the minimum alloy composi-
tion that is required to stabilize the β-phase or the elastic 
constants of the resulting alloys. In this paper a bottom-up 
theoretical concept for the design of advanced β-Ti alloys 
is presented. 
 The starting point is the use of quantum-mechanical 
predictions based on density functional theory (DFT). The 
results of the DFT calculations, namely the elastic con-
stants and the chemical composition, are subsequently used 
as input in crystal-based finite element simulations. The 

latter method comprises a group of continuum-based ap-
proaches which consider the tensorial nature of elastic-
plastic crystalline deformation and the orientation distribu-
tion in a (poly-)crystalline aggregate. In the case of purely 
elastic problems the method is referred to as crystal elastic-
ity finite element method (CEFEM) and in the case of elas-
tic–plastic loading it is referred to as crystal plasticity fi-
nite element method (CPFEM) (Fig. 1). We apply both 
methods for the investigation of two engineering problems, 
Fig. 1. 
 The first one is the evolution of the crystallographic 
texture during elastic–plastic plane strain deformation 
(idealization for cold rolling) as a function of the magni-
tude and anisotropy of the elastic stiffness. The second one 
is the prediction of the overall elastic stiffness of a textured 
polycrystal in case of reversible bending for different elas-
tic tensors. 

Crystal-based finite element methods (FEM) are versatile 

continuum approaches for predicting mechanical properties 

and deformation-induced crystallographic textures. They can 

be applied to both, elastic–plastic and elastic problems. The 

methodology is based on (i) a detailed understanding of the 

underlying crystal deformation mechanisms and (ii) a number 

of constitutive material parameters that are often difficult to 

measure. First principle calculations, that take into account 

the discrete nature of matter at the atomic scale, are an alter-

native way to study mechanical properties of single crystals 

without using empirical parameters. In this study we demon-

strate how to combine these two well-established modeling 

tools, viz., ab initio modeling and crystal mechanical FEM, 

for an improved approach to design of polycrystalline materi-

 als. The combination is based on (i) the determination of ba-

sic thermodynamic and elastic parameter trends in metallur-

gical alloy design using density-functional (DFT) calculations 

(P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964), 

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) [1, 

2], respectively) and (ii) the up-scale transfer of these results 

into crystal-based finite element simulations which take into 

account the anisotropic nature of the elastic–plastic deforma-

tion of metals. The method is applied to three body-centered 

cubic (bcc, β) Ti–Nb alloys for bio-medical applications. The 

study addresses two technological processes, namely, the 

prediction of texture evolution during cold rolling (elastic-

plastic problem) and elastic bending of textured polycrystals 

(elastic problem). 
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Figure 1 Principle of crystal-based finite element simulations. 

These methods comprise a group of continuum-based approaches 

which implement the tensorial nature of elastic–plastic crystal-

line deformation and the orientation distribution of a (poly-)crys-

talline aggregate. 

 

 Both topics represent important problems for the devel-
opment of physically-based multi-scale models that can be 
used to predict thermomechanical processes and process-
dependent homogenized properties of polycrystalline metals. 
 We use β-Ti polycrystals in this study as an example 
since both the crystallographic texture evolution and the 
texture-dependent elastic stiffness play an essential role for 
these materials with respect to biomedical applications. 
 This work is only about the role of the tensorial elastic 
properties in the context outlined above; the thermody-
namic results obtained by DFT on the Ti–Nb binary sys-
tem were published before [6]. 
 
 2 Simulation procedures We studied the three bi-
nary Ti–Nb alloys Ti–18.5 at% Nb, Ti–25 at% Nb, and 
Ti–31.5 at% Nb. The simulation procedure was divided 
into two parts. First, the elastic tensor constants were cal-
culated for the three alloys using DFT. Second, the crystal-
lographic texture evolution under elastic–plastic plane 
strain loading (idealization for cold rolling) and the ho-
mogenized elastic stiffness of textured polycrystals were 
predicted using CPFEM and CEFEM, respectively. 
 
 2.1 Ab initio calculation using density func-
tional theory The simulations were done using a plane 

wave pseudopotential approach as implemented in the Vi-
enna Ab-initio Simulation Package (VASP) code [7–9]. 
The plane wave cutoff energy was 170 eV and a 8 × 8 × 8 
Monkhorst–Pack mesh was used to sample the Brillouin 
zone. In order to predict the elastic properties of the alloys, 
both tetragonal and trigonal deformation modes were ap-
plied to the cubic supercell. Based on the energy conserva-
tion principle, the elastic constants of the cubic systems are 
thus obtained. Details on the calculation of the elastic con-
stants are presented in [10]. 
 
 2.2 Crystal-based finite element method Elas-
tic–plastic plane strain compression deformation (ideal-
ized rolling) and elastic bending of textured polycrystals 
were studied using CPFEM and CEFEM simulations, re-
spectively [11–14]. 
 The study of plane strain loading aims at the prediction 
of the crystallographic texture evolution as a function of 
the magnitude and anisotropy of the elastic stiffness tensor. 
 The influence of the different elastic constants on the 
evolution of the crystallographic deformation texture is of 
interest because changes in the magnitude and anisotropy 
of elastic stress contributions may alter the resolved shear 
stresses on the slip systems. This may entail different ac-
tive slip system combinations and hence, different re-
orientation rates of the crystals leading to changes in the 
deformation-induced texture evolution. The active slip sys-
tems accommodate a certain shape change of a volume  
element which is described via the symmetric crystallo-
graphic portion of the displacement gradient tensor. The 
anti-symmetric part of this tensor corresponds to the lattice 
re-orientation which is responsible for texture evolution. 
This part of the current study thus aims to investigate how 
sensitively texture changes depend on the elastic contribu-
tion to the local stresses. 
 The different elastic tensors (corresponding to the  
different alloys) that we use as input for the CPFEM simu-
lations were taken from the first principles predictions out-
lined above. The input parameters characterizing the  
plastic response for the three alloys were taken from an 
uniaxial compression test conducted on a solution annealed 
Ti–30 at% Nb sample. As slip systems we used {110}, 
{112}, and {123} slip planes in conjunction with 〈111〉/2 
Burgers vectors with the same critical resolved shear  
stress. 
 The CPFEM model consists of 480 elements (three-
dimensional quadrilateral, eight integration points). The 
starting texture used for the plane strain deformation simu-
lation is chosen to be random according to experimental 
observations conducted on cast samples [6, 15]. Each inte-
gration point of the FEM grid carries 4 orientations repre-
senting 4 grain portions which altogether fulfill the full-

constraint Taylor homogenization condition locally at that 
integration point. This means that the strain constraints are 
homogeneous matching strain compatibility with the 
neighbor elements. A more detailed description of the con-
stitutive model is given in [16, 17]. 
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 The resulting final texture (90% thickness reduction) 
obtained from the plane strain deformation simulation as 
well as the initial random texture are then both used as in-
put orientation distributions for an elastic bending simula-
tion. The reason for this investigation is to study the influ-
ence of crystallographic texture (plane strain deformation 
texture in the current case) on the overall elastic polycrys-
tal stiffness. While the polycrystal stiffness of randomly 
textured material can be predicted using analytical or semi-
analytical models, the corresponding overall elasticity for 
textured material cannot be described by analytical models 
but requires the use of crystal-based finite element meth-
ods. 
 The purpose of the elastic bending simulations is to 
compare the homogenized elastic properties of textured 
with those of non-textured (random orientation distribu-
tion) polycrystals in the case that different elastic tensors 
are used (in terms of magnitude and anisotropy). 
 The use of a crystal-based finite element method in the 
present context does not only provide a homogenization 
model for obtaining polycrystal averages of elastic data in 
the case of a non-random crystallographic orientation dis-
tribution but it also allows one to study details of grain-to-
grain heterogeneity in metals [13]. This point is of high  
relevance since polycrystals do as a rule not deform homo-
geneously but tend to reveal strain localization and sub-
stantial inter- and intra-grain stress–strain inhomogeneity 
that cannot be captured by analytical approximations. 
Likewise is the use of ab initio predicted elastic tensor data 
in a CPFEM environment of high benefit since for many 
complex metallic alloys corresponding single crystal elas-
tic tensor data are not available from experiments. For 
some metallic materials, particularly when they have a 
high melting point, complex chemical composition, or re-
veal phase transformations during cooling from the melt, 
single crystals cannot be produced. In such cases ab initio 
simulations are the only way for obtaining the elastic ten-
sor data as input into corresponding finite element simula-
tions. 
 
 3 Simulation results and discussion 
 3.1 The elastic constants calculated by DFT The 
elastic stiffness constants of the three Ti–Nb binary alloys 
obtained from DFT are shown in Table 1. The Zener ratio 

Table 1 Tensor components of the elastic stiffness as predicted 

by DFT for three Ti–Nb alloys. EH is the polycrystalline Young’s 

modulus as homogenized using Hershey’s homogenization model 

for randomly textured polycrystals [18]. 

composition C11  

(GPa) 

C12  

(GPa) 

C44  

(GPa) 

Az EH  

(GPa) 

Ti–18.75 at% Nb 131.2 114.5 26.8 3.210 49.4 

Ti–25 at% Nb 143.6 125.9 21.4 2.418 44.2 

Ti–31.25 at% Nb 154.8 118.5 19.2 1.058 54.9 

 

(Az = 2C44/(C11–C12)) given in the table is a measure of the 
elastic anisotropy. When Az = 1 the material is elastically 
isotropic. When Az is larger than 1, the Young’s modulus 
in the [111] crystallographic direction is larger than that 
along the [100] directions, and vice versa when A < 1. 
 The elastic anisotropy can be visualized by the 
Young’s modulus surface diagram, Fig. 2. In this presenta-
tion the vector direction represents the crystallographic lat-
tice direction and its magnitude the Young’s modulus. Fig-
ure 2 shows that the elastic properties become nearly iso-
tropic with increasing Nb content. 
 It was pointed out by Abdel–Hady et al. [5] that when 
the β-phase becomes more and more stable in the Ti–Nb 
system, the elastic properties of the β-Ti alloy will turn 
gradually into those that are typical for the β-phase stabi-
lizing alloying element itself, i.e. Nb in the present case. 
 Elastic modulus measurements on polycrystalline Ti–
Nb binary alloys confirm that when the β-phase becomes 
stable, the elastic modulus of the alloy will continuously 
increase [19–21]. In the current DFT study, we observed 
the same effect, i.e. the anisotropy of elasticity becomes 
gradually similar to that of pure Nb which has a Zener ratio 
below 1 [22]. 
 
 3.2 Results of the crystal plasticity finite ele-
ment simulations 
 3.2.1 Simulation results for plane strain defor-
mation Figure 3 shows the predicted crystallographic tex-
tures which are typical of rolled bcc metals [23]. The  
texture of bcc metals is typically quantified in terms of  
two main high symmetric orientation fibers, namely, the  
α-fiber  which comprises  all  orientations with a  common 
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Figure 2 (online colour at: 
www.pss-b.com) Young’s modu- 

lus surface plots of (a) Ti–18.75 at%  

Nb, (b) Ti–25 at% Nb, and (c)  

Ti–31.25 at% Nb. 
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Ti-18.75at%Nb Ti-25at%Nb Ti-31.25at%Nb 

(a) 

(b)  
Figure 3 (online colour at: www.pss-b.com) (a) φ

2 = 45° sections 

through the predicted ODFs (orientation distribution functions) of 

the Ti–Nb binary alloys after plane strain deformation. Left col-

umn: Ti–18.75 at%, middle column: Ti–25 at% Nb, right col-

umn: Ti–31.25 at% Nb. ε
h
: engineering thickness reduction. The 

color code indicates the orientation density. (b) Positions of  

α- and γ-fibers on the ODF section of φ2 = 45°. 

 
crystallographic 〈110〉-axis parallel to the elongation direc-
tion of the plane strain tensor (rolling direction), and the  
γ-fiber which comprises all orientations with a common 
crystallographic 〈111〉-axis parallel to the compression di-
rection of the plane strain tensor (sheet normal direction). 
 Figure 3 presents the predicted crystallographic tex-
tures in terms of a set of ϕ2 = 45° sections through Euler 
space for the three cases with different elastic properties. 
This type of orientation presentation is convenient since it 
contains all relevant texture information (including the  
α-fiber and the γ-fiber) in one single section through Euler 
space. 
 The deformation textures predicted for the three cases 
reveal two common features, namely, the formation of a 

strong, incomplete α-fibre between {001} 〈110〉 and 
{111} 〈110〉 and the gradual increase of the γ-fibre. For 
low strains {001} 〈110〉 and {112} 〈110〉 are dominant tex-
ture components on the α-fibre and a weak preference 
close to the {111} 〈112〉 becomes visible on the γ-fibre. 
For larger strains the maximum on the α-fibre is shifted 
towards ≈ {111} 〈110〉 and that on the γ-fibre towards 
{111} 〈112〉. 
 At first view the similarity among the three simulated 
deformation textures seems to indicate that there is princi-
pally no pronounced relationship between slip system se-
lection and the magnitude and anisotropy of the elastic 
constants. This conclusion, however, is not quite admissi-
ble and deserves some reflection on the kinematic and dy-
namic ingredients used in such models. 
 Let us first consider the kinematics of the CPFEM 
formulation. The CPFEM boundary conditions we used in 
this work impose very strict strain constraints in terms of 
an ideal plane strain deformation state. Although in an 
CPFEM simulation these boundary conditions do not nec-
essarily apply to each element but have to be fulfilled over 
the entire domain allowing for local strain deviations 
among the elements, the requirement for compatibility of 
the deformation field is a rather strong boundary condition. 
In classical plasticity homogenization theory this amounts 
to a Taylor–Bishop–Hill assumption. It works by pre-
scribing for each grain an identical strain tensor, namely, 
that imposed externally by the tool. This boundary condi-
tion enforces identical deformation of all grains in a com-
patible way. This homogenization condition violates stress 
equilibrium among the grains since differently oriented 
crystals require different stress states to activate slip com-
binations that fulfill the same strain. 
 In view of the present results, where such a situation of 
strain dominance is approximated (of course in the current 
CPFEM simulation the stress equilibrium is not violated 
over the entire domain) one must, however, not generalize 
this result for the following reason: In a thought experi-
ment we may consider a classical single crystal compres-
sion test as an example. In this case no requirement for 
strain compatibility among the neighbor grains exists (be-
cause there are none). The only (weak) strain constraint is 
the necessity that the contact between the compression tool 
and the sample must be preserved. Plastic flow in any other 
direction, however, is admissible owing to the free surface 

of the single crystal in any direction other than the com-
pression direction. In such a case the necessity of stress 
equilibrium is more relevant than strain compatibility. It 
may hence be expected that for this scenario changes in the 
elastic properties may indeed play a role for the evolution 
of texture. Another point that deserves consideration in this 
context is the fact that the influence of changes in the elas-
tic stresses is highly orientation dependent. This means that 
for some orientations (relative to an external load) small 
changes in the stress state may alter the active corner of the 
crystalline yield locus while other orientation are very sta-
ble and only large stress changes push the system into an-
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other corner of the yield locus. This thought experiment 
(dominated by stress equilibrium, neglecting strain com-
patibility) is in plasticity homogenization theory referred to 
as Sachs hypothesis. 
 In other words the boundary conditions used in this 
study suggest that strain compatibility among the grains, as 
enforced by the plane strain loading and the local Taylor 
assumption in each element imposes a stronger boundary 
condition than the possibility for stress relaxation effects. 
 Beyond the subtleties associated with boundary condi-
tions in homogenization theory and CPFEM simulations 
also dynamical aspects associated with changes in the elas-
tic properties may play a role for texture evolution: 
 Modifying the elastic properties in terms of the magni-
tude and anisotropy changes a number of important dy-
namical properties associated with dislocations: First, the 
dislocation cores change their structure and properties. 
This is of high relevance for dislocation mobility and reac-
tions. Also, changes in the dislocation core structure may 
have substantial influence on the applicability of Schmid’s 
law. In BCC metals slip activity can reveal substantial 
twinning and anti-twinning asymmetry owing to the non-
planar structure of the cores of the screw dislocations. 
Modifying the elastic constants can affect this structure 
leading to a notable change in the asymmetry of forward 
and backward slip [26, 27]. Second, dislocation patterning 
behavior will be altered. This affects the mean free path of 
mobile dislocations and the overall stress fields formed by 
ordered dislocation arrays. Both aspects are part of the 
CPFEM kinematics. Instead they must be considered in the 
constitutive models that describe strain hardening (struc-
ture evolution equations) and the relationship between mi-
crostructure and flow stress (kinetic equation of state). 
Since all three simulations presented in Fig. 2 used differ-
ent elastic constants but the same constitutive flow stress 
model the only admissible conclusion from our current tex-
ture results is the following: For CPFEM simulations con-

ducted under strain-dominated boundary conditions the 
kinematics associated with polycrystal texture evolution 
are practically independent on the elastic properties. 
 Beyond these mechanical considerations thermody-
namic aspects can also be of relevance. Changes in the 
ground state of the material may alter the system in such a 
way that other deformation mechanisms might become 
relevant in β-Ti alloys such as twinning, martensite forma-
tion, or the activation of higher order slip systems, depend-
ing on the stability of the β-phase [24, 25]. 
 
 3.2.2 Simulation results of the bending tests 
The bending simulation was conducted as an example for 
calculating the effect of changes in the elastic properties on 
the overall elastic stiffness of textured BCC Ti–Nb poly-
crystals. We used the elastic tensors obtained by DFT and 
the textures predicted by the plane-strain loading boundary 
condition outlined above. 
 For predicting such cases the crystal elasticity finite 
element method is a suited approach since classical ho-
mogenization theory does not consider crystallographic 
textures. In this crystal-based finite element approach the 
overall elastic response is calculated based on the elastic 
tensor rotated into each respective coordinate system of all 
orientations under consideration of stress equilibrium and 
strain compatibility using a weak form approximation. 
 Figure 4 shows the load-displacement curves for bend-
ing of textured and non-textured binary Ti–Nb alloys.  
The displacement is along the negative direction of the 
normal direction associated with the plane strain coordi-
nate system used above. Among the non-textured materials, 
Ti–25 at% Nb shows the lowest elastic modulus which is 
consistent with the prediction by Hershey’s model (for ran-
domly textured material) listed in Table 1. The homoge-
nized elastic properties of textured and non-textured  
Ti–31.25 at% Nb are identical. This result is plausible 
since the Zener  ratio  of  this  material  is  almost  1  which   
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Figure 4 (online colour at: www.pss-b.com) 

Simulated load-displacement curves obtained 

for the elastic bending tests for textured and 

non-textured BCC Ti–Nb polycrystals. The 

predictions were made using the crystal elastic-

ity finite element method. Compositions are 

given in at%. 
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means that the elastic properties are practically isotropic. 
Consequently, no difference exists between the overall 
polycrystal stiffness of textured and non-textured material. 
 The largest change in the elastic polycrystal properties 
between textured and non-textured material occurs for  
Ti-18.75 at% Nb. This material has the largest Zener ratio 
of the three alloys. The difference of the overall elastic 
moduli between the textured and non-textured material is 
close to 5%. 
 
 3.2.3 Combination of DFT and CPFEM In this 
study we have integrated elastic modulus data from an ab 
initio modeling (DFT) in continuum-based crystal me-
chanical finite element simulations (CPFEM) to predict 
crystallographic textures and texture-dependent polycrystal 
elastic stiffness. The approach is applied to the elastic pro-
perties of β-phase Ti–Nb binary alloys which represent an 
important biomaterial class for human implant design. 
 The two models we combine (DFT, CPFEM) work at 
very different length and time scales. The strength of this 
combination for predicting certain polycrystal properties 
lies in the fact that continuum-based theoretical models 
such as CPFEM rely on a number of ground state proper-
ties (e.g. elastic tensor) the value of which does not depend 
on the microstructural path of the material. The use of tex-
ture data is sufficient to predict realistic data also for com-
plex polycrystalline aggregates irrespective of their 
thermo-mechanical process history. This is particularly 
evident for the elastic bending problem we discussed 
above. 
 A particular advantage of using an FEM based meth-
ods rather than an analytical or semi-analytical approach 
for obtaining the polycrystal stiffness from corresponding 
DFT single crystal data is that it allows one to consider any 
kind of crystallographic texture including also intra- or in-
grain interactions. Most homogenization methods for ob-
taining the elastic modulus of a polycrystal such as the 
Voigt, Reuss, Hill, or Hershey models usually either ne-
glect texture or assume highly simplified boundary condi-
tions. This is not necessary in the case of a crystal-based 
FEM method where each integration point or element can 
assume an individual crystallographic orientation [16, 17, 
28]. 
 The combination of the two methods (DFT, CPFEM) 
provided very promising results also for the elastic-plastic 
deformation problem of deformation-induced texture evo-
lution. It must be realized, however, that plasticity is a 
highly dynamic and path-dependent problem which re-
quires further atomic-based input than just the elastic con-
stants. As discussed above the change in the elastic proper-
ties goes along with corresponding changes in the micro-
scopic dislocation behavior. 
 A further very important aspect of using DFT in con-
junction with crystal mechanical simulations is the fact that 
for the elastic constants of single crystals (which are a nec-
essary input to CPFEM simulations) experimental data is 
often lacking owing to the reasons outlined in Section 2.2. 

Table 2 Suitable interfaces between DFT and CPFEM/CEFEM. 

DFT CPFEM/CEFEM aim 

phases and com-

position in ther-

modynamic  

equilibrium 

homogenized mechanical  

response of textured multi-

grain and multi-phase aggre-

gates; Intra- and inter-phase 

mechanics, mechanics at  

internal interfaces 

single or multi-

phase mecha-

nics; texture 

evolution 

elastic constants elastic constants of textured 

polycrystals 

elastic stiffness 

and anisotropy 

stacking fault  

energy, critical re-

solved shear stress 

flow law for textured multi-

grain and multi-phase aggre-

gates 

materials 

strength 

 
 In summary we can state that we presented a concept 
of combining DFT and CPFEM simulations. DFT and 
CPFEM are both well established approaches but they are 
up to now used for different purposes in different scientific 
communities. While DFT methods are used at the elec-
tronic scale, CPFEM and CEFEM methods are applied to 
tackle problems of crystal-scale mechanics. As we demon-
strated DFT methods can predict thermodynamic ground 
state properties such as elastic tensors of perfect single 
crystals. For predicting polycrystal properties the behavior 
of the single crystals must be averaged which can be done 
by CPFEM models also in the case of non-random orienta-
tion distributions. Since CPFEM and CEFEM are contin-
uum-scale approximations, they require data for the pa-
rameters of the underlying constitutive laws. These can be 
obtained from DFT calculations. Possible areas of interfac-
ing these two approaches are summarized in Table 2. 
 
 4 Conclusions The elastic tensors of three β-phase 
(BCC) Ti–Nb binary alloys (Ti–18.5 at% Nb,  
Ti–25 at% Nb, and Ti–31.5 at% Nb) were predicted by ab 
initio (DFT) calculations and used as input for crystal plas-
ticity and crystal elasticity finite element simulations 
(CPFEM). The main results are: 
 1. The ab initio calculations of the single-crystal cu- 
bic elastic constants revealed a strong compositional  
dependence of the magnitude and elastic anisotropy.  
Ti–18.5 at% Nb reveals the strongest elastic anisotropy.  
Ti–31.5 at% Nb is nearly isotropic. 
 2. The elastic properties for the three alloys were used 
as input to CPFEM-based elastic-plastic deformation tex-
ture simulations using ideal plane strain boundary condi-
tions (idealized cold rolling). The resulting orientation  
distributions were practically identical. This result was  
interpreted in terms of the strong dominance of strain com-
patibility for texture formation under such kinematical  
constraints. It was discussed that generalization to single 
crystal plasticity under stress dominated boundary condi-
tions is not recommendable. 
 3. The elastic single crystal tensors obtained by DFT 
were used for calculating the overall stiffness for the three 
polycrystalline alloys (textured and non-textured) for elas-
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tic bending conditions. The strong single crystal anisotropy 
of Ti–18.5 at% Nb was less pronounced in case of the 
polycrystalline material due to mutual elastic compensa-
tion effects. The occurrence of texture (obtained from the 
plane strain simulation) leads to about 5% difference in 
stiffness when compared to the randomly oriented material. 
For the isotropic material no texture dependence of the 
elastic polycrystal stiffness occurs. 
 4. We could demonstrate a scale-bridging simulation 
concept that combines ab initio modeling with crystal-
based finite element homogenization. The method was ap-
plied to two examples, namely to the prediction of texture 
evolution (DFT in conjunction with the crystal plasticity 
finite element method) and elastic bending of textured and 
non-textured polycrystals (DFT in conjunction with the 
crystal elasticity finite element method). 
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