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Abstract-—The strength of heavily wire drawn Cu 20 mass% Nb i s/t composites considerably exceeds
the predictions of the linear rule of mixtures (ROM). An analytical model for the calculation of the yield
strength of Cu-20 mass® Nb wires is suggested. The approach is a modified linear rule of mixtures
(MROM). It regards the yield strength of the composite as the sum of the volumetric weighted average of
the experimentally observed yield strengths of the individual pure phases and a Hall-Petch type contribution
arising from the impact of the Cu-Nb phase boundaries. The latter term is described in terms of dislocation
pile-ups in the Cu matrix and dislocation movement and multiplication in the Nb filaments. The
crystallographic texture and filament geometry of both phases is incorporated. The predictions of the model
are in very good accordance with experimental data.

Zusammenfassung——Die Festigkeit drahtgezogener Cu 20 gew.% Nb in situ Verbundwerkstoffe Ubertrifft
die Vorhersagen der linearen Mischungsregel (ROM} bei weitem. Ein analytisches Modell fiir die
Berechnung der FlieBgrenze von Cu-20 gew.% Nb Drihten wird vorgeschlagen. Der Ansatz entspricht
einer modifizierten linearen Mischungsregel (MROM). Er betrachtet die FlieBgrenze des Verbundwerk-
stoffes als die Summe des volumenanteilig gewichteten Mittelwertes der experimentell beobachteten
FlieBgrenzen der einzelnen reinen Phasen und einem Hall-Petch Anteil, der aus dem EinfluB der Cu-Nb
Phasengrenzen resultiert. Der letztere Beitrag wird tiber Versetzungsaufstaus in der Cu Matrix und
Versetzungsbewegung und -multiplikation in den Nb Filamenten erklart. Die knistallographische Textur
und die Filamentgeometrie beider Phasen wird einbezogen. Die Vorhersagen des Modells sind in sehr guter

Ubereinstimmung mit expenimentellen Daten.

1. INTRODUCTION

Cu and Nb have negligible mutual solubility in the
solid state [1.2]. Fibre reinforced in situ processed
metal matrix composites (MMCs) can hence be
manufactured by large strain wire drawing of a cast
ingot. Cu-Nb composites have been under intensive
investigation for the past 15 years [3--13] mainly for
the following two reasons.

Firstly. the strength of the deformed MMC is much
greater than expected from the linear rule of mixtures
(ROM) [5,6.9-11]. Several models have been
proposed to explain the observed strength anomaly.
The phase barrier model by Spitzig et al. [3.6]
attributes the strength to the difficulty of propagating
plastic flow through the f.c.c. -b.c.c. interfaces
(f.c.c. = face-centered cubic. b.c.c. = body-centered
cubic). Funkenbusch and Courtney [11] interpret the
strength in terms of geometrically necessary dislo-
cations owing to the incompatibility of plastic
deformation of the f.c.c. and b.c.c. phase. Although
both models obtain a good description of the strength.
their application 1s limited since they depend on fitting
parameters. Raabe and Hangen [14] have suggested a
physical model which accounts for the dislocation

arrangements at the phase boundaries, for the textures
[15-17] and for the morphology [3-9] of both phases.
Using this approach the tensile strength of the MMC
can be described with a minimum input of fitting
parameters.

Secondly. owing to the combination of high strength
[3-6.9-11] and good electrical conductivity [18-20]
Cu-Nb alloys are considered as candidate MMCs for
producing highly mechanically stressed electrical
devices, e.g. long-pulse high-field resistive magnets
[13.21,22].

Whereas the processing [3-7, 24-26], the micro-
structure {3-9, 25-28] and the mechanical [3-11, 24—
28] and electrical [4, 5, 8, 18-20, 29] properties of
Cu-20 mass% Nb have been the subject of thorough
studies in the past, an analytical model which describes
the increase of strength in terms of dislocation
arrangements, texture and microstructure nearly
without employment of fitting parameters has not yet
been obtained. The current study is hence primarily
concerned with the introduction of a new dislocation
based model [14] for the description of the yield
strength of in situ processed MMCs. Although all
expressions derived are essentially valid also for other
wire drawn in situ composites consisting of a f.c.c. and
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a b.c.c. phase {e.g. Cu-Ta, Cu—Cr, Cu-Mo, Cu-Fe,
Cu-V and Cu-W) the current work concentrates on
Cu-20 mass% Nb since most of the experimental data
are available for this alloy.

2. STRUCTURE OF THE MODEL AND BASIC
ASSUMPTIONS

In the current approach the yield strength of the
MMC is described in terms of a modified linear rule
of mixtures (MROM). It regards the yield strength of
the composite as the sum of the volumetric weighted
average of the yield strengths of the individual
pure phases (ROM), orom, and a Hall-Petch type
contribution attributed to the impact of the Cu-Nb
phase boundaries, ommc [14]. Whereas orom 18
directly calculated from experimental data, oumc 1s
first derived theoretically and subsequently computed
on the basis of microstructural data. Both portions,
orom and ommc, are linearly decomposed into the
contribution of the Cu, ofdm, 6%iMc, and of the Nb
phase, oR8m, oMuc.

The phase boundaries are impenetrable by
dislocations. In order to deduce amumc the yield strength
observed is essentially attributed to the generation of
dislocation pile-ups in the Cu matrix and to the
movement or multiplication of dislocations inside
the filaments (Fig. 1) [14]. However, some other
strengthening mechanisms were also reported in the
literature. Whereas Pelton et a/. [27] and Trybus and
Spitzig [30] observed areas in the Nb filaments which
were completely void of dislocations, Raabe and
Hangen [31] observed structurally less ordered areas,
1.e. local amorphization of the Nb filaments. Both
contributions are, however, not included in the model.
The influence of solute foreign atoms is not taken into
account due to the negligible mutual solubility of Cu
and Nb.

In the as-cast state the Nb dendrites are
randomly oriented [15-17]. With beginning wire
deformation the dendrites start to rotate [15-17). For
n > 4 the composite consists of parallel aligned Nb

Cu Cu Nb Nb
Immc * CRoM OmMmc * SROM

“UINb:

Wire axis, tensile direction

Cu_ Cu
Totp = C'MMC/MCU

Fig. 1. Schematical presentation of the dislocation
arrangements at the phase boundary as incorporated into the
model for the calculation of ammc.
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filaments embedded in the Cu matrix. The present
model is valid only for a well aligned and homogenous
morphology, i.e. for n > 4, and uniaxial strain. The
approach concentrates on wire drawn Cu-—
20 mass% Nb.

3. MODIFIED LINEAR RULE OF MIXTURES

The modified linear rule of mixtures (MROM)
describes the yield strength of the composite, ogpo ., as
the sum of the conventional rule of mixtures, orom, and
an additive contribution, oumc, arising from the
Hall-Petch type interaction between the dislocations
and the phase boundaries.

Orpo2 = Orom T Ommc. ()

Both portions, grom and omme, were computed as
volumetric weighted average of the strength contri-
butions of the individual phases

grom = OfdMVew + ORBM Vb 2
: b
dyme = Tt Veu + o Ve 3

where V¢, and Vs, are the volume fractions of Cu and
Nb, okim and oRBy the contributions of the Cu and Nb
phases to the ROM, and ofuc and o¥c the
corresponding contributions resulting from the
presence of the phase boundaries.

Since no reliable experimental yield strengths were
available for heavily deformed pure Cu (okém) and Nb
wires (gRBy) the linear ROM was calculated from the
corresponding ultimate tensile strengths (UTS) [6].
This approximation ts admissible in case of large
strains (1 > 4) but not in case of low strains (y < 4),
where the UTS exceeds the yield strength by
~20-30%. The true strain of the MMC is defined as
ume = In(A4% Aumc) where A" and Amwc are the initial
and the actual cross-section after deformation. The
true strains of Nband Cu are denoted by #n, = In(#°/¢)
and 7 = In(A% 1), where ¢ is the thickness and A the
interfilament spacing. From experimental data the
ratio of the UTS of pure Nb wires related to that of
pure Cu wires is derived as a function of strain

aths(n)  aRduln)
R = = = . 4
)= 2 = ostun) (42)

It is stipulated that R also holds for the relation offuc
and oiuc

orom(n) _ alic(n)

R - = —= .
() akdm(n)  oScln)

I

(4b)

Following Sevillano [32] the critical stress for
dislocation movement between two impenetrable

walls is given by
ln<%>; A=1.2 (&)

where S is the distance of the phase boundaries, G the
shear modulus, 4 the Burgers vector and 4 a constant
valid for mixed dislocations. Figure 1 shows the
arrangement of dislocations at the phase boundary as

AGbh
2nS

T =
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stipulaied in the present approach. The critical stress é; 10 —e— Spitzig
of a dislocation source which is constrained by two - q 0 Optical
parallel impenetrable walls 1s given by TZ “u o SEM
A \\q. A TEM
. 2 A
AGh [ S = Lo e
= T In 3 ); A=12 © @z \ .,
T <0 = A ~~.
= 0.1 O
£ *
l.e. it exceeds the stress required for dislocation =
movement by nearly a factor of two. The yield strength :—
of the MMC is reached when both parallel phases start Z 901 | | \ I |
0 2 4 6 8 10 12

to deform plastically. It is hence likely that the critical
stress for dislocation movement in the Nb-phase which
requires a higher stress than in the Cu matrix defines
the yield strength of the MMC. It is assumed that prior
to massive plastic deformation of the entire sample, in
the Cu, matrix dislocations pile up in front of the phase
boundaries (Fig. 1). causing an accumulated strain not
exceeding 0.2%. At the tips of the pile-ups a shear
stress is generated. Due to this contribution the
effective shear stress on the slip planes in the Nb
filaments is increased. According to the linear
approach [equation (3)] and the configuration shown
in Fig. 1 the following equation holds

T
7
e

. 1
¢ . _
Tipy = Tpip  Hpyp = m Tm

where 14 is the shear stress acting at the tip of the
dislocation pile-up, s, the number of dislocations
accumulated in the pile-up, m the misorientation
factor between the slip systems of Cu and Nb and M.,
the Taylor factor of the Nb phase. The critical shear
stress for dislocation movement in the Nb filament, t,,
is calculated according to equation (5). The number of
dislocations in a double ended pile-up between two
interfaces is given by [33]

T (8)

where 4' = /Z/myq, is the filament spacing normalized
by the slip geometry. i.e. 4 is the distance measured
perpendicular to the phase boundary. The Hall-Petch
type contribution, ouwme, and the shear stress on the Nb
slip system. 1. are related according to

oune = Mt (9

Combining equations (7) and (8) leads to

C h/:ﬁ(] — Vo) 1/

(o) —— = — /r _ o8 (10)
" Gewbey B ”1( " My |

Using equation (4b). equation (10) reads

ot \:/1'(1 — V) 1 / Grihc
< M, ) Geobey T om (Tm ~ R My, an

Deformation strain, n

Fig. 2. TEM and SEM data as measured by Verhoeven et al.

{28]. The data were fitted to be incorporated into the present

model (MROM). For low strains (y < 4) the fitting does not
provide correct data [equation (14) and (15)].

after rearrangement one obtains

Cu leg‘uG(‘ubCu
TOMMC = — 3o T —
2471 — vey ) Mypm

RMiGebes Y | taMéGebe, |°
* [( 31— vcu)MN.,m) il — vc\,)m:| (12)

Since negative stresses are not pertinent in this context
the positive sign applies. Using equations (3) and (4)
the contribution of the phase boundaries to the yield
strength can be written as

omme = (Ve + Vi R) ™ 0iiuc- (13)

4. EXPERIMENTAL INPUT

4.1. Filament geometry

The present model incorporates the filament
geometry of wire drawn Cu-20mass% Nb as
measured by Verhoeven er af. [28] (Fig. 2). The
following expressions for the filament thickness, ¢, and
spacing, 4, were derived by fitting

(14
(15)

The true strains of both phases related to that of the
MMC., A¢, and Awp, were calculated as

t=1 eXp(—ANhnMMC)

/= 1“ eXp(—ACur’Mmc).

Aoy = 8 gy = I (16)
Hmmc Hmmc

The ratios were found to be Axy = Acy = A = 0.5. As
starting values =12 um and 2°=6 um were
extrapolated from the TEM data [28] (Fig. 2)
(TEM = transmisson electron microscope). The in-
itial filament thickness extrapolated deviates from the
primary dendrite diameter observed by use of SEM
and optical microscopy (#3. =62 um) [28]
(SEM = scanning electron microscope). As is evident
from Fig. 2, the curve fitted from the TEM data is valid
only for true strains 4 > 4. From equations (14)-(16)
where the actual fibre thickness and spacing is
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Fig. 3. Ratio of the yield strengths of pure wire drawn Cu and
Nb specimens as a function of strain [equation (4)].

expressed in terms of the strain of the composite it
becomes apparent that in the present model
co-defomation of both phases is stipulated. This
behaviour is covered by the results shown in Fig. 2.

4.2. Linear rule of mixtures

The model regards the yield strength of the MMC
as the sum of the volumetric weighted average of the
yield strengths of the individual pure constituents
(ROM). 6rom. and a Hall-Petch type contribution
attributed to the presence of internal phase
boundaries, omme [14]. Whereas oromis calculated from
experimental data. ommc is derived theoretically. For
the computation of ogrom data from pure Cu and Nb
wires was included. After heavy deformation pure Nb
wires reveal a higher UTS, 6%s(n), than pure Cu wires,
ot4s(n). Figure 3 shows the ratio

olis(n)  aRém(n)
R = - >
o otistn)  okbuln)

as function of strain. It is stipulated that this relation
also holds for owuc {equation (4)].

Fig. 4. Texture of the Cu and of the Nb phase in the wire
drawn MMC. 7 = 10. Measurement by use of X-ray
diffraction: (a) Cu, (b) Nb.
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4.3. Crystallographic textures—Taylor factors and slip
geometry

The Cu phase in the MMC reveals a (111) and the
Nb phase a {110 fibre texture (Fig. 4). Under “Full
Constraints” conditions (FC) [34] the corresponding
Taylor factor for Cu amounts to M%* = 3.16 and for
Nb to ME =3.67 ({110}<111) slip systems) or
MY =318  ({110}<111),  {112}<111)  and
£123}<111) slip systems), respectively. In wire drawn
Cu-20 mass% Nb the Nb-filaments reveal a curled
morphology [35], indicating that FC conditions are
not fulfilled locally. Correspondingly, the Taylor
factors for “Relaxed Constraints” conditions (RC,
relaxation of all shear strains), e.g. [36, 37], have to
be additionally considered, ie. MF? =245 and
Mg = 2.15. If single slip is considered the orientation
factor for Cu is equal to 0.27 and for Nb equal to 0.4.
The misorientation factor between the Cu and the Nb
slip systems at the phase boundary then amounts to
m = 0.98.

5. RESULTS AND DISCUSSION

5.1. Comparison of simulation and experiment

Using the experimental input, oumc [equation (12)]
can be computed as a function of the true strain

TMMC = (08 -+ 02R)

4.25 MPa 425 MPa ,\’
- R

+59 MPa2<9.25— %)] 2>exp<%>. (17)

As is evident from Fig. 3, R depends on the degree
of deformation. As pointed out previously for Nb,
different Taylor factors, My, were considered. The
total yield strength of the MMC can then be calculated
according to equation (1). In Fig. 5 the yield strengths
[6] of the samples, the microstructure of which was
studied by Verhoeven et al. [28], are depicted together
with the simulation results. Since in the original figures
of Spitzig et al. [6] the UTS is shown, the yield
strengths, oreo», had to be extracted from the true
stress—true strain curves [6]. Four different simulations
covering two different variables are shown in Fig. 5.

Firstly, the upper and the lower bound value for the
Taylor factor was checked. The largest occurring
Taylor factor for Nb was M§* = 3.67 and the smallest
one M§® = 2.15. Secondly, dislocation movement
[equation (5)] as well as dislocation multiplication
[equation (6)] was considered. For low strains (n < 4)
all four predictions show a considerable deviation
from the experiments. Thisis attributed to the fact that
the UTS, ob¥s, ot4s, rather than the yield strengths of
the pure wire drawn constituents was used for the
computation of orom. Furthermore, in this strain
regime the phases are not yet aligned parallel.
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500 |
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Fig. 5. Predictions of the model compared to experimental results [6]. The simulations were carried out by
considering two parameters, viz. the Taylor factor of the Nb phase and the movement or multiplication of
dislocations in the filaments, respectively.

The best agreement between the experimental
results [6] and the model (Fig. 5) is yielded for the
simulation which is based on M% = 2.15 and on
dislocation movement rather than on multiplication.
Both results are physically reasonable. First, the low
Taylor factor is attributed to the release of local
geometrical constraints, usually imposed by the
neighbouring crystals. This assumption is vindicated
by the curled morphology of the Nb filaments.
Furthermore, it is consistent with Taylor type
simulations of crystallographic cold rolling textures of
pure polycrystalline Nb which reveal the best
agreement with experimental data if the RC approach
(relaxation of transverse and longitudinal shear)
and 48 potential slip systems are considered
[15, 16, 38, 39]. However, the relaxation of strain
constraints locally should promote the accumulation
of geometrically necessary dislocations [40] in the Nb
phase leading to large residual stresses. This effect is
consistent with the experimental observations of Bevk
et al. [4,5, 18] and Heringhaus er al. [17, 19, 20].
Second, since the yield strength rather than the UTS
1s simulated it seems reasonable that in the first
place movement rather than multiplication of
dislocations takes place. Furthermore, it was
frequently observed that the filament thickness is not
homogeneous {8, 14, 19, 20]. It is thus likely that by
reaching the yield strength, dislocation multiplication
also starts in regions having maximum thickness
[equation (6)].

In Fig. 6 both contributions to the total yield
strength, i.e. 6rom and oummc, are shown separately. It
becomes apparent that the deviation at low strains
(n <4) is entirely attributed to orom, which was
calculated from the UTS rather than from the yield
strength of the pure constituents.

5.2. Checking for physical consistency

In order to check the physical consistency of the
present model, predictions other than the yield
strength, viz. the structure of the dislocation pile-ups
in the Cu matrix was computed. As a useful measure
for alower bound estimation of the minimum distance,
hmin, between two parallel pile-ups in front of the phase
boundary, the distance which allows for two parallel
dislocations to pass each other under an externally
imposed stress contribution, was chosen
(Fig. 7(a)]

Cu
TMMC,

GCubCuMCu . 1
27[(1 —_ ch) O'}?/[UM(‘ :

Honin = (18)
Considering the number of dislocations per pile-up,
Hpip

aimc AT(1 —~ veo)

MCu GCubCu (19)

Mpp =
the dislocation density which is assembled in such
configurations, pas, amounts to [Fig. 7(b)]

BT

Pas = oty l
A2 h

GCubCuMCu

IS

According to this description the maximum
dislocation density accumulated in the pile-ups in
front of the phase boundaries amounts to pg(n = 12)
= 3.3 x 10" m ~? and the minimum distance between
parallel pile-ups t0 Ann(n = 12) = 8 nm. Albeit the
number of additional dislocations, pai(n = 12), is quite
small and the distance between pile-ups, Amn, quite
narrow, three features which are regarded as a measure
for the physical consistency of the model are
elucidated. First, the A, and p4s values predicted are
within a reasonable order of magnitude [Fig. 7(a,b)].
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400 |
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true strain n

Fig. 6. Results of the simulation (M = 2.15, dislocation movement) compared to experimental results [6].

Both contributions to the total yield strength, i.e. orom and ommc, are shown separately. It becomes apparent

that the deviation at low strains (n < 4) is entirely attributed to 6rom, which was calculated from the UTS
rather than from the yield strength of the pure constituents.

Second, the true strain imposed by such dislocation
configurations in the Cu matrix is for all degress of
deformation confined to the microplastic regime, i.e.
it never exceeds n = 10~ 7. Third, the values computed
are not in contradiction to TEM experiments
[8,9, 25, 27, 28, 30]. However, there is also not yet any
direct evidence for the occurrence of dislocation
pile-ups in front of the phase boundaries. This is
essentially attributed to two reasons. First, pile-up
configurations arranged in such a narrow grid are
mechanically not very stable and tend to dissolve

3.5e+012

3e+012 |- /

T

2.5e+012 |

2e+012

T

T

1.5e+012 [

1e+012 |

dislocation density in the pile-ups [1/m 2]

5e+011 F

4 6 8 10 12
a) true strain n

during TEM preparation. This is particularly likely if
preparation methods like dimpling and ion beam
bombardment are employed, e.g. [27, 28, 30]. Second,
dynamic recovery and dynamic recrystallization which
have been observed by Spitzig and coworkers, e.g.
[6, 30], remove pile-up configurations at large strains.

In addition to the investigation of the physical
consistency of these internal variables the predictions
of the MROM were also successfully used for
simulating the yield strengths of Cu-base composites
with less then 20% Nb content [41].

1,000

distance between pile-ups in Cu matrix [nm]

10—t —

4 6 8 10 12
b) true strain 1

Fig. 7. (a) Lower bound estimation of the minimum distance between parallel pile-ups as a function of strain,
hma( = 12) = 8 nm. (b) Simulated dislocation density accumulated in the pile-ups in front of the phase
boundaries as a function of strain, pa(n = 12) = 3.3 x 102 m~2



HANGEN and RAABE: YIELD STRENGTH OF A Cu 20%Nb COMPOSITE

5.3. Comparison with other models

A comparison of the MROM with the phase barrier
model of Spitzig [3. 6} and the model of Funkenbush
and Courtney [11] is difficult since in both approaches
fitting parameters were employed. The Hall-Petch
type simulation of Spitzig [3.6] and the present
MROM approach bear a certain resemblance. Both
models attribute the strength to the difficulty of
propagating plastic flow through the fc.c-b.cc.
interfaces. Whereas the first one (3, 6] is essentially
derived by fitting of experimental data, the latter one
is based on a physical approach. Since it also leads to
a Hall-Petch type relationship, the MROM. in
particular the contribution oyuc can be regarded as a
suitable supplementary physical derivation of the
barrier model introduced by Spitzig et al. [3, 6].

Comparatively, there are less similarities between
the MROM and the model of Funkenbush and
Courtney [11]. The latter approach is based on a work
hardening mechanism, viz. on the generation of
geometrically necessary dislocations owing to the
incompatibility of plastic deformation of the f.c.c. and
b.c.c. phases. This approach is at first sight opposed by
the experimental fact that the ratio between the yield
and the tensile strength of the MMC is 80% even for
heavily wire drawn samples. If the strengthening
mechanism was based on such a type of work
hardening [11]. however. one would for heavily
deformed specimens expect a much smaller difference
between the yield and the tensile strength. Asa possible
explanation of this contradiction, the occurrence of
dynamic recovery and recrystallization which was
observed by Spitzig er /. [6. 30] is conceivable.

The model of Sevillano [32] overestimates the yield
strength of Cu-Nb when tested with the data of
Verhoeven et al., e.g. [28]. The mechanisms proposed
as being critical. viz. the movement or multiplication
of dislocations in the filaments. however. seem to be
relevant and were hence used in the present approach.
It might be a flaw in Sevilliano’s model [32] that not
the local but only the externally imposed load is
considered. 1.e. dislocation pile-ups in the Cu matrix
which increase the shear stress in the Nb filaments [14]
are not taken into account explicitly.

6. CONCLUSIONS

A modified linear rule of mixtures (MROM) for the
description of the yield strength of a wire drawn
Cu-20 mass% Nb composite was suggested. It
regards the yield strength of the composite as the sum
of the volumetric weighted average of the vyield
strengths of the individual pure phases and a
Hall-Petch type contribution which results from the
impact of the Cu-Nb phase boundaries. The latter
term is described in terms of dislocation pile-ups in the
Cu matrix and the movement or multiplication of
dislocations in the Nb filaments. The crystallographic
texture and filament geometry of both phases was
considered. The predictions reveal a very good
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agreement with experimental data. It was shown that
first. a physical model is able —nearly without use of
fitting parameters - -to produce a very good descrip-
tion of the experimentally observed yield strength, and
second, additional microstructural data such as the
structure of pile-up configurations can be predicted.
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