Atom probe analysis of interfaces in pearlite

Y. Li, S. Goto, C. Borchers^{*}, P. Choi, M. Herbig, S. Zaefferer, A. Kostka, J. von Pezold, A. Nematollahi, J. Neugebauer, R. Kirchheim^{*}, D. Raabe

* Institut für Materialphysik, Georg-August-Universität Göttingen, Germany

Düsseldorf, Germany WWW.MPIE.DE d.raabe@mpie.de

27. Sept. 2012 Dierk Raabe

MSE, Darmstadt

- Motivation: Pearlite is the strongest mass-produced bulk structural material
- Joint chemical and structure analysis of interfaces

Pearlite nanostructures

Conclusions

Steels are intrinsically strong: adjust the correlation length

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Raabe et al.: MRS Bull. 35 (2010) 982

Pearlitic wire (0.7-1.2 wt.% C)

	С	Mn	Si	Cr	Cu	Р	S
wt.%	0.98	0.31	0.20	0.20	0.01	0.006	0.007
at.%	4. 40	0.30	0.39	0.21	0.003	0.01	0.01

Joint EBSD and APT analysis of APT pearlite tips

Pearlite, eps6.02, 400°C 2min

Joint TEM and APT analysis of APT pearlite tips

APT analysis of carbon distribution and carbide dissolution

How does the carbon get into the ferrite so massively ?

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Raabe et al.: MRS Bull. 35 (2010) 982

Heat treatment and segregation of C to substructure

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Li et al.: Acta Mater. 60 (2012) 4005

Pearlite, 400°C, 30 min

