
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 59 (2011) 2082–2102
0022-50

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jmps
A phase-field model for incoherent martensitic transformations
including plastic accommodation processes in the austenite
J. Kundin a,�, D. Raabe b, H. Emmerich a

a Material and Process Simulation (MPS), University Bayreuth, 95448 Bayreuth, Germany
b Microstructure Physics and Metal Forming, Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany
a r t i c l e i n f o

Article history:

Received 20 December 2010

Received in revised form

7 July 2011

Accepted 10 July 2011
Available online 22 July 2011

Keywords:

Martensitic transformation

Phase field modeling

Plastic accommodation
96/$ - see front matter & 2011 Elsevier Ltd. A

016/j.jmps.2011.07.001

responding author.

ail address: julia.kundin@uni-bayreuth.de (J.
a b s t r a c t

If alloys undergo an incoherent martensitic transformation, then plastic accommodation

and relaxation accompany the transformation. To capture these mechanisms we develop an

improved 3D microelastic–plastic phase-field model. It is based on the classical concepts

of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G.,

1992. Philos. Mag. Lett. 65, 15–23). In addition to these it takes into account the incoherent

formation of accommodation dislocations in the austenitic matrix, as well as their

inheritance into the martensitic plates based on the crystallography of the martensitic

transformation. We apply this new phase-field approach to the butterfly-type martensitic

transformation in a Fe–30 wt%Ni alloy in direct comparison to recent experimental data

(Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931–1937). It is shown that the therein

proposed mechanisms of plastic accommodation during the transformation can indeed

explain the experimentally observed morphology of the martensitic plates as well as the

orientation between martensitic plates and the austenitic matrix. The developed phase-field

model constitutes a general simulations approach for different kinds of phase transforma-

tion phenomena that inherently include dislocation based accommodation processes. The

approach does not only predict the final equilibrium topology, misfit, size, crystallography,

and aspect ratio of martensite–austenite ensembles resulting from a transformation, but it

also resolves the associated dislocation dynamics and the distribution, and the size of the

crystals itself.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Martensitic transformation (MT) is a first-order phase transition in solid materials where a parent phase transforms
diffusionless at high undercooling rates into a martensitic phase. As solid–solid MT is accompanied by elastic or elastic–
plastic misfit deformations that influence the transformation kinetics and the final form of the microstructure. The
different types of martensite, their orientation variants and the spatial crystal-orientation relationship (OR) within a
parent austenitic phase mainly depend on the material’s composition. It also defines their formation temperature and the
eigenstrain tensor of the martensitic phase. A martensitic transformation might be coherent or incoherent. In the first case
it is a fully reversible transformation absent of any interface dislocations.

An example of the second case, i.e. of an incoherent MT, is the butterfly-type MT in Fe–30 wt%Ni alloys. The local
orientation relationships and orientation distributions between the butterfly-type a0 martensitic phase and the g austenitic
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matrix in a Fe–30 wt%Ni alloy were recently investigated by means of electron backscanner diffraction in Sato and
Zaefferer (2009) and Calcagnotto et al. (2010). Based on these experimental observations possible stages of the overall
formation process were identified, which are shown in Fig. 1. According to these experimental observations, first a thin a0
martensitic plate forms at relatively high temperature accommodated by multiple dislocation slip in the austenitic matrix.
A habit plane close to f2 2 5gg is observed on the outer side with a Kurdjumov–Sachs (K–S) OR (f1 1 1ggJf0 1 1ga0 ,

/1 0 1SgJ/1 1 1Sa0 ). In a second step, due to continued quenching, the dislocation accommodation process changes to a

single or a double slip process. At this stage the habit plane close to f2 5 9gg is formed on the inner interface of the

martensitic plate.
The precise formation mechanisms behind the experimental observations and their physical background have not been

fully elucidated so far. The assumption that the processes of elastic–plastic accommodation and relaxation processes
accompanying the f2 2 5gF transformation are essential factors influencing the morphology and crystallography of the
martensitic plates is commonly known in the literature (Kajiwara, 1981, 1984; Yang et al., 1984; Sandvik and Wayman,
1983). More precisely, the relaxation of the transformation strain by accommodating slip is regarded as the critical factor
for f2 2 5gF plate formation. A detailed and quantitative understanding of the interaction of the mentioned mechanisms
depending on the investigated material system and processing conditions is however still absent.

In this paper we intend to contribute to a better understanding of the underlying mechanisms, in particular the
influence of plastic deformation on the growth kinetics of martensitic plates, via phase-field simulations. We introduce an
improved 3D microelastic–plastic phase-field model, which takes into account the formation of accommodation
dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography
of the MT. The model applies the general concept of phase-field modeling of microelastic problems as it was initiated by
the work of Chen et al. (1992), as well as by Wang and Khachaturyan (1997).
Fig. 1. Experimental microstructure of a butterfly-type martensite in the austenite matrix in Fe–30 wt%Ni alloy. Orientation relationships are shown on

the top figure. The orientation gradients are shown in the bottom figure. The gradients are calculated with respect to the white crosses in the image

(martensite: whiteyblue ¼ 0y81, austenite: whiteyred ¼ 0y81). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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1.1. State of the art in phase-field modeling of microelastic problems

In the past 20 years an efficient method for the simulation of the martensitic microstructure formation was developed
based on the seminal works of Chen et al. (1992) and Wang and Khachaturyan (1997). This approach integrates
microelasticity into the phase-field theory and is based on the fast Fourier transformation (FFT) formalism. The method
which is referred to the microelasticity phase-field model (PFM) has been used to investigate martensitic transformations
in single crystals (Artemev et al., 2001) and polycrystalline systems (Artemev et al., 2002), and the effect of applied stresses
on the MT. These studies concern coherent transformations and do not include plastic effects due to the formation of
accommodation dislocations in the austenitic matrix, which cause irreversible plastic changes in the solid phases. So that
the original model deals with microelasticity but not with elastic–plastic relaxation.

Phase-field models describing dislocation kinetics were defined successively in a number of works (Koslowski et al.,
2002; Ortiz and Stainier, 1999; Wang et al., 2001; Hu and Chen, 2001; Shen and Wang, 2003, 2004). In this context Wang et al.
(2001) discussed the possibility of a combination of the microelasticity PFM with a PFM for dislocations. Our own earlier
contribution to the field (Kundin et al., 2010) was concerned with modeling non-coherent martensitic transformations of lath-
type martensites, where the dislocations were pinned to the interface between austenite and martensitic lath and their
energetic contribution affected the major characteristics of the final microstructure. Due to this the introduction of a field type
description of dislocation dynamics was not required.

In the current approach we go a step further to take into account that in the case of the butterfly-type martensitic
transformation the accommodation dislocations can no longer be considered to be pinned to the austenite–martensite
interface. Therefore, in order to achieve a versatile description of their dynamics, we employ a constitutive model for a
dislocation density field (Roters et al., 2000, 2010; Ma and Roters, 2004), in which the evolution of plastic slip is described
by means of an elastic driving force. Jointly with a description for the strain field of the accommodation dislocations the
introduction of such a dislocation density field allows us to simulate the influence of accommodation dislocations on the
transformation process. This implies also that other than Wang et al. (2001) we do not need to resolve phase-field kinetic
equations for individual dislocations.

The use of a dislocation density field in our model inherits features of earlier models for the simulation of transformation
induced plasticity (Tjahjanto et al., 2008). Furthermore using the phase-field microelasticity model to simulate the MT allows
us to resolve the dynamics of individual martensitic plates, which cannot be done by models of the type described in Tjahjanto
et al. (2008). Recently the number of works have appeared which couple the phase-field simulation with plasticity framework
at mesoscale (Gaubert et al., 2010; Takaki and Tomita, 2010; Zhou et al., 2010; Yamanaka et al., 2009).

A further important feature of our model is the decomposition of the overall elastic energy in bulk and edge parts. This
allows us to simulate the anisotropy of a martensitic plate correctly. In general the model can be applied to various solid–
solid transformation scenarios, by adapting the input parameters according to the physics of the underlying material
systems as described in Sections 2–4.
1.2. Structure and aim of this paper

The overall aim of this paper is to present a new phase-field model approach for solid–solid transformations involving
dislocation dynamics. Moreover we show on the example of the butterfly-type martensitic transformation in a
Fe–30 wt%Ni alloy how this model can be employed to elucidate the precise accommodation processes associated with
the transformation.

The overall model consists of dynamic equations for the phase-field variables, that capture the different possible martensitic
variants, as well as dynamic equations for the dislocation density fields. These are formulated based on the elastic energy
contributions corresponding to the various possible crystallographic variants of the transformations. The paper is organized as
follows: In Section 2 we describe the formulation of the elastic problem with accommodation dislocations, where the total
elastic energy of the systems including dislocations is calculated based on the crystallography of the MT that is addressed in
this paper. In particular the influence of the elastic energy on the anisotropy is discussed. Based on this we formulate the phase-
field model equations for the transformation with accommodation processes in Section 3. Section 4 presents the simulation
results applied to the Fe–30 wt%Ni system, as well as a comparison to experimental data. These results are critically discussed
in Section 5 jointly with an outlook.
2. The solution of the elastic problem with accommodation dislocations

This section is dedicated to a derivation of the elastic energy contributions that can occur with the transformation. First
we introduce the eigenstrain of a martensitic plate, which can be derived from the crystallography of the MT. Then we
describe the eigenstrain of the accommodation dislocations. Both constitute the elastic part of the systems’ energy and
thus influence the driving force for the MT. Finally, in Section 2.4, we show how the total elastic energy can be decomposed
into bulk and edge parts, where the latter one is responsible for the aspect ratio of the plates. This decomposition allows us
to simulate the anisotropy of a martensitic plate directly using the formalism of the PFM.
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2.1. The eigenstrain of martensitic transformation

Our starting point to determine the eigenstrain of a martensitic plate is the Bowels–Mackenzie method of analysis of
MT. This method gives us the habit plane and the corresponding shape deformation in the MT.

According to Wayman (1964) in a Fe–31 wt%Ni alloy the Bain strain is given by the eigenvectors Z1 ¼ Z2 ¼ 1:136071
and Z3 ¼ 0:803324. This stain combined with the plane and the direction of the lattice invariant shear (ð1 0 1Þg and ½1 0 1�g
respectively) defines the normal to the habit plane

n0 ¼ ð0:197162,0:796841,0:571115Þ, ð1Þ

the unit vector in the direction of the shape deformation

d¼ ð�0:223961,0:727229,�0:648829Þ: ð2Þ

and the magnitude of the deformation e0 ¼ 0.2365. The last value defines the displacement vector e0d. The vectors n0 and
d are specific for each crystallographic variant of the MT. We label a specific variant of the MT as p and consider the
particular variant in Eqs. (1) and (2) as p¼1.

For the Fe–31 wt%Ni alloy the experimental habit planes are closest to the plane with the normal f2 5 9gF . The
experimental and theoretical habit planes and orientation relationships determined by Breedis and Wayman (1962) are in
a good agreement and apply best for the case where the dilatation parameter of the predicted habit plane is equal to
1.00137. According to the slip-type analysis in one case the martensite consists of a slipped crystal with one orientation
relationship, in the other case the martensite consists of two twin-related regions, twinned with respect to a ð1 1 2ÞB plane.
Twinning is usually the more favorable mode of deformation at low temperature and high strain rates.

We can define the eigenstrain matrix of the MT as e0
ijðpÞ ¼ e0n0 � d from the estimated habit plane and the direction of

the shape deformation (Bhadeshia, 2001)

e0
ijðp¼ 1Þ ¼

�0:0098 �0:0399 �0:0286

0:0320 0:1294 0:0928

�0:0286 �0:1155 �0:0838

0B@
1CA: ð3Þ

Here n0 � d is the tensor product of the vectors.

2.2. Modeling the dislocation elastic contributions

In order to formulate the micro-mechanical contributions of the accommodation dislocations in the total energy functional
underlying our phase-field model formulation we describe in this section the strain of accommodation dislocations. This strain
arises during the MT and corresponds to a plastic deformation in the g austenitic phase, which is then inherited in the a0 phase
resulting in orientation gradients.

Further we consider a dislocation with Burgers vector bðaÞ (with unit m) and slip plane with normal nðaÞ (without a unit)
in a Cartesian coordinate system defined by the cubic lattice of the parent austenitic phase, where a is an index
corresponding to a slip system. The illustration of an edge dislocation with all constitutive vectors is presented in Fig. 2. Let
components of a displacement vector created by a dislocation be given by

ud
i ða,r,r0Þ ¼ bðaÞi Haðn

ðaÞDrÞHð�eðaÞDrÞ, ð4Þ
Fig. 2. Schematic illustration of an edge dislocation. Here, b is the Burgers vector, and n is the unit vector normal to the slip plane.
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where HðxÞ is the Heaviside step function, HaðxÞ ¼ 1 if 0rxoa and 0 otherwise, a is the lattice constant and represents the
dislocation core size, Dr¼ r�r0 with a site r0 located on the dislocation line, nðaÞDr is a scalar product and eðaÞ ¼ ½nðaÞ �
lðr0Þ

ðaÞ
� is a vector product of the normal nðaÞ and the tangential unit vector to a dislocation line lðaÞ on a site r0.

The displacement vector udða,r,r0Þ with components ud
i ða,r,r0Þ ¼ bðaÞi is defined on a volume O : 0rnðaÞDroa and

eðaÞDro0). At a-0 the displacement is defined on the half plane nðaÞDr¼ 0, eðaÞDro0 with the normal nðaÞ.
Let the unit vector in the direction of the Burgers vector be defined as mðaÞ ¼ bðaÞ=bðaÞ. This vector expresses the slip

direction of a dislocation. For an edge dislocation mðaÞ ¼ eðaÞ and for a screw dislocation mðaÞ ¼ lðaÞ.
From linear elasticity the eigenstrain tensor of a dislocation can be given by

ed
ij ¼

1

2

@ud
i

@rj
þ
@ud

j

@ri

 !
: ð5Þ

By substituting (4) in (5) we get

ed
ijða,r,r0Þ ¼

1
2 ðb
ðaÞ
i nðaÞj þbðaÞj nðaÞi Þdðn

ðaÞDrÞHð�eðaÞDrÞ�1
2ðb
ðaÞ
i eðaÞj þbðaÞj eðaÞi Þdðe

ðaÞDrÞHaðn
ðaÞDrÞ, ð6Þ

where dðxÞ is the Dirac delta function. The second term in Eq. (7) represents the strain of the dislocation core.
For the convenience we introduce the symmetric Schmid tensor for the slip system a, M̂

ðaÞ
, with the components

MðaÞij ¼
1
2ðm

ðaÞ
i nðaÞj þmðaÞj nðaÞi Þ, ð7Þ

and the symmetric tensor Q̂
ðaÞ

Q ðaÞij ¼
1
2ðm

ðaÞ
i eðaÞj þmðaÞj eðaÞi Þ: ð8Þ

Consider a distribution of dislocations with a density rðaÞd , which is the value of the total dislocation line length per unit

volume. Consider a cubic box with a size L. The volume corresponding to one dislocation in this box is equal to Vd ¼ ð1=
ffiffiffiffiffiffird
p
Þ
2L.

For the eigenstrain tensor of the dislocation distribution we calculate an averaged value over the volume Vd

ed
ijða,rÞ ¼ bðaÞMðaÞij

1

Vd

Z Vd

0
dðnðaÞðr�r0ÞÞHð�eðaÞðr�r0ÞÞ dr0 þbðaÞQ ðaÞij

1

Vd

Z Vd

0
dðeðaÞðr�r0ÞÞHaðn

ðaÞðr�r0ÞÞ dr0: ð9Þ

Here the first integral is equal to ð1=
ffiffiffiffiffiffird
p
ÞL and the second integral is equal to ð1=

ffiffiffiffiffiffird
p
Þa. We define fd

aðrÞ ¼ bðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rðaÞd ðrÞ

q
as

a dimensionless dislocation function and fd,cor
a ðrÞ ¼ bðaÞarðaÞd ðrÞ as a dimensionless function of the dislocation core. After the

integration of Eq. (9) we get

ed
ijða,rÞ ¼MðaÞij fd

aðrÞþQ ðaÞij fd,core
a ðrÞ: ð10Þ

For the case a51=
ffiffiffiffiffiffird
p

the second term representing the dislocation core can be omitted. For the calculation of the elastic

energy in Section 2.3 we use only the first term, because for the second term the evaluation procedure is similar and we do
not find it convenient to overburden the paper.

The calculation of the time evolution of the dislocation density based on the above assumptions is presented in Section 3.4.
In our simulations we assume: (i) Transformation-induced plastic deformation is hindered in the martensite, and the evolution
of plastic slip during the process occurs only in the austenitic phase. (ii) The dislocations are inherited in the martensite without
change of their eigenstrain, because, according to the experimental results, the slip systems in the austenite matrix and
martensite have approximately similar directions (Umemoto and Tamura, 1982; Umemoto et al., 1983; Sato and Zaefferer,
2009). (iii) The lattice rotation due to dislocation glide is not considered in the model.

2.3. The calculation of the total elastic energy

Following Wang and Khachaturyan (1997) and Artemev et al. (2002), we consider a coherent multiphase mixture with
the local stress–free strain tensor e0

ijðp,rÞ ¼ e0
ijðpÞZpðrÞ reflecting the eigenstrain and ZpðrÞ is the shape function of a

martensitic plate of the pth crystallographic variant. The shape function reflects the phase-field variable in the PFM (see
Section 4). The local stress–free plastic strain tensor caused by dislocations of an a th slip system according to Eq. (10) is
given by ed

ijða,rÞ. Here n is the number of the martensitic variants and m is the number of the slip systems.
We write eijðrÞ to denote the total strain. Then Hooke’s law gives the local elastic stress

sel
ij ðrÞ ¼ lijkl eklðrÞ�

Xn
p ¼ 1

e0
klðp,rÞþ

Xm
a ¼ 1

ed
klða,rÞ

 !" #
: ð11Þ

Requiring mechanical equilibrium yields the following set of equations:

X3

j ¼ 1

@sel
ij ðrÞ

@rj
¼ 0: ð12Þ
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Since analytic solutions of such equations can be obtained for the strain distribution of a macroscopically homogeneous
but microscopically (structurally) inhomogeneous body (Khachaturyan, 1983), it is reasonable to decompose the total
strain eijðrÞ as a sum of homogeneous eij and heterogeneous deijðrÞ strains,

eijðrÞ ¼ eijþdeijðrÞ, ð13Þ

such that
R

VdeijðrÞ dr¼ 0. The homogeneous strain is equal to the volume average of the sum of the composition
eigenstrain and the dislocation eigenstrain (10),

eij ¼ e0þed ¼
1

V

Xn
p ¼ 1

e0
ijðpÞ

Z
V
ZpðrÞ drþ

1

V

Xm
a ¼ 1

MðaÞij

Z
V
fd
aðrÞ dr, ð14Þ

where V is the volume of the system.
Before we proceed to the calculation of the heterogeneous displacement contribution let us define ukðrÞ as the kth

component of the displacement, related to the strain via the formula

deij ¼
1

2

@ui

@rj
þ
@uj

@ri

� �
: ð15Þ

In order to find the heterogeneous displacement, one has to substitute Eqs. (11), (13) and (15) into the mechanical
equilibrium equations (12) and obtains

lijkl
@2ukðrÞ

@rj@rl
¼
Xn
p ¼ 1

s0
ijðpÞ

@DZpðrÞ

@rj
þ
Xm
a ¼ 1

sd
ijðaÞ

@Dfd
aðrÞ

@rj
ð16Þ

where lijkl are the elastic constants, s0
ijðpÞ :¼ lijkle0

klðpÞ, s
d
ijðaÞ :¼ lijklM

a
kl are the elastic stresses. Furthermore DZpðrÞ ¼ ZpðrÞ�

/ZpðrÞS, Dfd
aðrÞ ¼fd

aðrÞ�/f
d
aðrÞS, where / �S represents the average over the entire volume.

Eq. (16) can be solved in Fourier space. One finds

ukðkÞ ¼ �iGikðkÞ
Xn
p ¼ 1

s0
ijðpÞDbZpðkÞþ

Xm
a ¼ 1

sd
ijðaÞDbfd

aðkÞ

" #
kj, ð17Þ

where GikðkÞ is the Green tensor which is inverse to G�1
ik ðkÞ ¼ k2lijklnjnl, n¼ k=k is a unit wave vector with the magnitude k

and i denotes the imaginary unit. Furthermore bZpðkÞ and bfd

aðkÞ denote Fourier transforms.
Successively we can obtain the heterogeneous strain in the Fourier space as

dêijðkÞ ¼
i

2
ðuiðkÞkjþujðkÞkiÞ: ð18Þ

The total elastic energy is given by

Etot
elast ¼ E0þ

1

2

Z
V
lijkleijðrÞeklðrÞ dr, ð19Þ

where E0 measures the difference between the stress free state and the unstrained state,

E0 ¼
V

2

Xn
p ¼ 1

lijkle0
ijðpÞe

0
klðpÞ/ZpðrÞ

2Sþ
Xn
p ¼ 1

Xm
a ¼ 1

lijkle0
ijðpÞM

a
kl/ZpðrÞf

d
aðrÞSþ

V

2

Xm
a ¼ 1

lijklM
a
ijM

a
kl/f

d
aðrÞ

2S: ð20Þ

Substituting Eq. (13) into Eq. (19) and taking into account that by definition
R

VdeijðrÞ dr¼ 0, yields

Etot
elast ¼ E0�

V

2
lijkleijekl�

1

2

Z
V
lijkldeijðrÞdeklðrÞ dr, ð21Þ

where the second term on the right side is the energy change caused by a homogeneous strain relaxation, Ehomo
relax , and the

third term is the energy change caused by a heterogeneous relaxation of displacements u(r), Eheter
relax (Khachaturyan, 1983).

Substituting Eqs. (14) and (18) into Eq. (21) gives the homogeneous and heterogeneous strain relaxation terms. The
resulting equation for the total elastic energy becomes

Etot
elast ¼

1

2

Xn
p,q ¼ 1

�
Z

d3k

ð2pÞ3
½lijkle0

ijðpÞe
0
klðqÞ�nr̂0

ðpÞX̂ðnÞr̂0
ðqÞn�bZpðkÞbZn

qðkÞ

þ
1

2

Xn
p ¼ 1

Xm
a ¼ 1
�
Z

d3k

ð2pÞ3
½lijkle0

ijðpÞMklðaÞ�nr̂0
ðpÞX̂ðnÞr̂0

ðaÞn�bZpðkÞ
bfdn

a ðkÞ

þ
1

2

Xn
p ¼ 1

Xm
a ¼ 1
�
Z

d3k

ð2pÞ3
½lijklMijðaÞe0

klðpÞ�nr̂0
ðaÞX̂ðnÞr̂0

ðpÞn�bfd

aðkÞbZn

pðkÞ

þ
1

2

Xm
a,b ¼ 1

�
Z

d3k

ð2pÞ3
½lijklMijðaÞMklðbÞ�nr̂0

ðaÞX̂ðnÞr̂0
ðbÞn�bfd

aðkÞ
bfdn

b ðkÞ, ð22Þ
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where f�gn denotes the complex conjugate of f�g and the symbol �
R

describes the integral excluding the point k¼0. The
components of the inverse tensor O�1

ij are defined with respect to a vector n as (Khachaturyan, 1983)

OjkðnÞ
�1
¼ ljilkninl: ð23Þ

The functions in square brackets are in the following referred to as strain energy functions labeled as BpqðnÞ, BpaðnÞ,
BapðnÞ and BabðnÞ.

2.4. Decomposition of the elastic energy in bulk and edge parts

To simulate the microstructure evolution for the butterfly-type martensite, which consist of two martensitic plate of
two types, we consider separately the energy of the elastic interaction of a plate with itself or so-called self-energy and the
energy of the interaction between two martensitic plates. This procedure allows us to simplify the simulation and evaluate
the elastic part of the interface energy (Section 2.4).

Following Khachaturyan (1983) we write Eq. (22) for a single martensitic plate, which is simplified as

Eself
elast ¼

1

2

Z
d3k

ð2pÞ3
BppðnÞ9bZpðkÞ9

2
: ð24Þ

Since in Eq. (24) BppðnÞZ0 and 9bZpðkÞ9
2
40, one obtains

Eself
elast ¼

1

2

Z
d3k

ð2pÞ3
BppðnÞ9bZpðkÞ9

2
Z

1

2
ðmin BppðnÞÞ

Z
d3k

ð2pÞ3
9bZpðkÞ9

2
, ð25Þ

where min BppðnÞ is the minimum value of the function BppðnÞ. Let us define Bppðn0Þ ¼min BppðnÞ, where the unit vector n0

define the direction, where the function BppðnÞ has its minimum. Further we define DBppðnÞ ¼ BppðnÞ�Bppðn0Þ. Then we write
the strain energy in the form

Eself
elast ¼ Eself

bulkþEself
edge, ð26Þ

where

Eself
bulk ¼

1

2
Bppðn0Þ

Z
d3k

ð2pÞ3
9bZpðkÞ9

2
ð27Þ

is the bulk elastic energy and

Eself
edge ¼

1

2

Z
d3k

ð2pÞ3
DBppðnÞ9bZpðkÞ9

2
ð28Þ

is the edge elastic energy. This term quantifies the energy that belongs to that part of the interface which deviates from the
habit plane.

The precise calculation of the integral (28) for a plate-like inclusion was introduced by (Khachaturyan, 1983)

Eself
edge ¼

I
dðnintÞ dl, ð29Þ

where

dðnintÞ �
D2

4p ln
L

D

� �
bijðn0Þn

int
i nint

j , ð30Þ

with D and L being a width and a length of an inclusion, respectively. Here nint ¼ ½n0 � dl� is the normal to the habit plane
n0 and normal to the line element dl of the perimeter contour describing the shape of a martensitic plate in the habit
plane. bij are the components of the second-rank tensor

bijðn0Þ ¼

@2DBppðnÞ
@n2

x

@2DBppðnÞ
@nx@ny

@2DBppðnÞ
@nx@ny

@2DBppðnÞ
@n2

y

0B@
1CA

n ¼ n0

: ð31Þ

The eigenvalues of this tensor determine the equilibrium inclusion shape in the habit plane. The edge energy can be
interpreted as the energy of a dislocation loop along the perimeter of a plate-like inclusion. Based on this we present an
estimation of the equilibrium shape of a thin martensitic plate in Section 2.5.

2.5. The estimation of the equilibrium shape of a martensitic plate based on the interface elastic energy

According to Khachaturyan (1983), to calculate the shape of a plate-like inclusion in the habit plane, one first has to
calculate the vector n0 normal to the habit plane and the unit vector in the direction of the displacement d for the
particularly considered variant of the MT. Then one has to determine the components of the tensor bijðn0Þ, which is
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responsible for the value of the shape dependent part of the elastic strain energy or so-called edge energy (see Eq. (29)).
The components of the vector bijðn0Þ are defined as

bijðn0Þ ¼ e2
0O
�1
ij ðdÞ�ðŝ1Oijðn0Þŝþ1 Þij, ð32Þ

where the stress tensor r̂1 is defined as

ðr̂1Þij ¼ e0lilmjdln
0
m: ð33Þ

and ŝþ1 is the Hermitian transpose.
By using the nonzero components of the elastic stiffness tensor for a cubic crystal

l1111 ¼ l2222 ¼ l3333 ¼ c11,

l1122 ¼ l1133 ¼ l2233 ¼ c12,

l1212 ¼ l1313 ¼ l2323 ¼ c44,

l1221 ¼ l2112 ¼ l1331 ¼ c44, ð34Þ

and the symmetry relations for the tensor lijkl the components of the inverse tensor O�1
ij ðnÞ can be written in the detailed

form according to Eq. (23)

O�1
ii ðnÞ ¼ c44þðc11�c44Þn

2
i ,

O�1
ij ðnÞ ¼ ðc12þc44Þninj: ð35Þ

From the definition (33) one can obtain

sð1Þ11 ¼ s
ð1Þ
22 ¼ c44e0

c11

c44
d1n0

1þd2n0
2þd3n0

3

� �
,

sð1Þ33 ¼ c44e0
c11

c44
d3n0

3þd1n0
1þd2n0

2

� �
,

sð1Þij ¼ c44e0
c11

c44
din

0
j þdjn

0
i

� �
if iaj, ð36Þ

where n0 ¼ ðn
0
1,n0

2,n0
3Þ and d¼ ðd1,d2,d3Þ.

Using the elastic constant values for Fe-31.5%Ni (Hausch and Warlimont, 1973)

c11 ¼ 1:404� 1011 Pa,

c12 ¼ 0:84� 1011 Pa,

c14 ¼ 1:121� 1011 Pa, ð37Þ

the habit plane and the slip direction from Section 2.1 (Eqs. (1) and (2)) for variant p¼1 we find the corresponding stress
tensor

ŝ1 ¼ c44e0

0:1536 0:0097 �0:2238

�0:0710 0:3111 �0:2058

�0:2238 0:0279 0:0712

0B@
1CA: ð38Þ

For the components of the tensor Oijðn0Þ the substitution of values (1) and (37) into (23) and the calculation of the
inverse matrix yields

X̂ðn0Þ ¼
1

c44

1:4326 �0:3941 0:0346

�0:3941 2:7754 �2:3339

0:0346 �2:3339 3:1214

0B@
1CA: ð39Þ

The components of the inverse tensor O�1
ij ðlÞ from Eq. (23) are

X̂
�1
ðdÞ ¼ c44

0:7746 �0:2849 0:2542

�0:2839 1:0154 �0:8254

0:2542 �0:8254 0:9611

0B@
1CA: ð40Þ
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From Eq. (32) it can be seen that the vector n0 is an eigenvector (e3) of the matrix b̂ðn0Þ. Then for the vectors n0 ¼/2 9 5SF

and d given by (1) and (2) the unit vector in the direction /2 1 1SF

e2 ¼ ð�0:8165,�0:4082,04082Þ ð41Þ

is the second eigenvector of the matrix b̂ðn0Þ.
By the multiplication of two eigenvectors we can identify the last eigenvector in the direction close to /6 4 9SF

e1 ¼ ð�0:5585,�0:3858,0:7311Þ: ð42Þ

With this eigenvectors the eigenvalues of the matrix b̂ðn0Þ can be defined by

b1 ¼ e2
0ðe1X̂

�1
ðdÞe1Þ�ðŝ1e1X̂

�1
ðn0Þŝþ1 e1Þ,

b2 ¼ e2
0ðe2X̂

�1
ðdÞe2Þ�ðŝ1e2X̂

�1
ðn0Þŝþ1 e2Þ ð43Þ

as

b1 ¼ 1:4390c44e2
0 ,

b2 ¼ 0:6161c44e2
0: ð44Þ

It can be also shown that for the habit plane the eigenvalue is going to zero b3 ¼ 0.
The same procedure carried out for the habit plane f2 5 2gF yields the values

b1 ¼ 1:7046c44e2
0 ,

b2 ¼ 0:348c44e2
0 ð45Þ

with the eigenvectors

e1 ¼ ð0:5773,�0:5773,0:5773Þ,

e2 ¼ ð�0:7035,0,0:7035Þ, ð46Þ

which correspond to the directions /1 1 1SF and /1 0 1SF . Assume L1 is the size of a martensitic plate in the direction e1

with the eigenvalue b1 and L2 is the size in the direction e2 with the eigenvalue b2. For b14b2 the anisotropy parameter is
defined as

a12 ¼
b1�b2

b1

: ð47Þ

According to Khachaturyan (1983) the width-to-length ratio L2=L1 for a martensitic plate can be found as

L2

L1
¼

1�a12 if a12r0:5,

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a12

a12

r
if a12Z0:5:

8><>: ð48Þ

So that for the habit plane f2 9 5gF , a12 ¼ 0:5719 and L2=L1 ¼ 0:4281 and for the habit plane f2 5 2gF , a12 ¼ 0:7558 and
L2=L1 ¼ 0:2532.

The larger the parameter bi is, the larger is also the growth rate in the direction ei. In the particular direction e3 where
b3 ¼ 0 the growth rate is equal to zero. The same is valid for the crystal growth with an anisotropic surface energy: The
larger the surface energy is on a surface with a normal ei, the larger is also the growth rate in the direction ei.

The evaluated parameters b are used in the PFM for the simulation of the anisotropy of the MT.

2.6. The change of the habit plane

There are also the observations reported for the f2 2 5gF transformation (Patterson and Wayman, 1966) revealing that
the macroscopic martensitic plate is composed of more fundamental subplates. Hence there is some evidence to suggest
that for a0 martensitic plates investigated in Sato and Zaefferer (2009) f2 5 9gF plates are formed from subplates with habit
plane f2 2 5gF .

From the morphology analysis carried out by Khachaturyan (1983) we know that the anisotropy of the strain energy
function BðnÞ contributes to the formation of a coherent inclusion shape similar to the anisotropy of the surface energy.
The strain energy function of the direction n is defined as

BðnÞ ¼ lijkle0
ije

0
kl�nis0

ijO
�1
jl ðnÞs

0
lmnm: ð49Þ

In the direction normal to the habit plane n0 the function (49) is minimal Bðn0Þ ¼min BðnÞ. In the case when the strain
energy function has the same or slightly different values for two crystallographic nonequivalent vectors n0 and n1 the
situation is more complex. The plane providing the lower surface energy is preferred in that case. The change of the habit
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plane orientation from n0 to n1 results in the change of the free energy

DE¼ 1
2ðBðn1Þ�Bðn0ÞÞVþ2ðgsðn1Þ�gsðn0ÞÞL

2, ð50Þ

where gs is the surface energy and the volume of an inclusion is equal to V ¼DL2. The habit plane orientation n1 will be
favored if DEr0 or

Dr
49gsðn1Þ�gsðn0Þ9
ðBðn1Þ�Bðn0ÞÞ

: ð51Þ

Based on all the individual contributions derived in this section we can now proceed to formulate the full PFM for the
butterfly-type martensitic transformation with accommodation dislocations.

3. The PFM for martensitic transformation with accommodation dislocations

3.1. The phase-field formulation

According to the standard definition of phase-field models, an order parameter f represents a property of the system,
that is not zero in a region of a phase space and zero otherwise. We define a set of the phase-field variables of the
austenite/martensite mixture ffpðrÞg ¼ ðf1ðrÞ; . . . ;fnðrÞÞ, where r is the coordinate vector and n is the total number of
martensitic orientation variants and p 2 f1; . . . ; ng is an index corresponding to an orientation variant of the martensitic
phase. All phase-field variables change in an interval from 0 to 1 and the sum of these variables, including the austenitic
phase, on a site r should be equal to 1. The phase-field variable of austenitic phase is defined as fAðrÞ ¼ 1�

Pn
p ¼ 1 fpðrÞ. The

shape function ZpðrÞ used in Section 2 is a function of the phase-field variable fpðrÞ. It interpolates the free energy function
between two phases. For computational purposes we chose it so that the minima of the free energy remain at fixed values
fpðrÞ ¼ ZpðrÞ ¼ 0 in a specific phase labeled by p and fpðrÞ ¼ ZpðrÞ ¼ 1 in all other phases (see below Eq. (56)).

The theory of the phase-field evolution is based on the free energy functional of an investigated material system, which
consists of the chemical energy and the elastic energy

F ¼

Z
V

f ðffpg,TÞ dVþEel: ð52Þ

The chemical energy part is given by an integral of the chemical energy density over a representative volume. The
chemical energy density can be written as a sum of interface energies and chemical free energies of all phases

f ðffpg,TÞ ¼
X

p

fpðfp,TÞ,

fpðfp,TÞ ¼
K

2
ðrfpÞ

2
þHf pðfpÞþ f thðTÞZpðfpÞ: ð53Þ

The first term on the right hand side of Eq. (53) is the gradient term. fpðfpÞ is the double-well potential function and the

function f th is the chemical energy density. The constant H has dimensions of energy per unit volume and the constant K

has dimensions of energy per unit length. These constants are responsible for the surface energy defined as gs ¼
ffiffiffiffiffiffiffi
HK
p

.

The chemical energy is related to the undercooling by the relation (Artemev et al., 2001; Turteltaub and Suiker, 2006)

f thðTÞ ¼
QMðT�T0Þ

T0
þðSM�SAÞ T ln

T

T0
�ðT�T0Þ

� �
, ð54Þ

where QM is the latent heat of the MT, T0 is the equilibrium transformation temperature, SM is the specific heat of
martensite and SA is the specific heat of austenite. For the Fe–Ni system we have chosen SM ¼ SA.

For our simulation one can choose conventional model functions for ZpðfpÞ and f ðfpÞ according to the standard phase-
field models for dendritic growth, see e.g. Karma and Rappel (1998) and Folch and Plapp (2005). This gives the following
forms for the double-well potential function

fpðfpÞ ¼f2
pð1�fpÞ

2: ð55Þ

and the shape function

ZpðfpÞ ¼f3
pð6f

2
p�15fpþ10Þ: ð56Þ

The dynamics of a phase fp can now be derived by the minimization of the free energy functional F as a function of a
martensitic phase variable fp and the austenitic phase variable fA

t
@fp

@t
¼�

1

H

dFðfp,fAÞ

dfp

: ð57Þ

The other phase-field variables are taken to be constant. Here t is a relaxation time at an interface between the martensitic
plate and austenite. The system of kinetic equations for phase fields is the first part of the standard phase-field model.
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The second part is the diffusion equation for the temperature field, which in the present model is omitted as negligible in
comparison to the elastic part of the energy. The second part of the PFM is now the equation for the evolution of the elastic
energy.

The kinetic equation for a martensitic plate with a phase-field variable fp can be derived using (52), (53) and (57) as

t
@fpðr,tÞ

@t
¼W2=2fpðr,tÞ�f 0pðr,tÞ�lZ0pðr,tÞUðr,tÞ, ð58Þ

where W ¼
ffiffiffiffiffiffiffiffiffiffi
K=H

p
is the interface thickness, l¼ QM=H is the coupling constant between the phase-field variable and a

diffusion field U, f 0pðr,tÞ ¼ @fpðfpÞ=@fp and Z0pðr,tÞ ¼ @ZpðfpÞ=@fp. We use the phase-field formulation of a two-phase system
for the sake of simplicity. The last term in the kinetic equation is the driving force of the MT. The dimensionless variable U

is defined as

Uðr,tÞ ¼
Tnðr,tÞ�T0

T0
, ð59Þ

Here Tn is the effective temperature changing due to the elastic effects

Tnðr,tÞ ¼ Tþ
DGelðr,tÞ

QMZ0pðr,tÞ
T0, ð60Þ

where the elastic correction of the driving force is calculated from Eq. (57) as

DGelðr,tÞ ¼
dEelðtÞ

dfpðr,tÞ
: ð61Þ

Note that U is the function of the elastic energy changing during martensitic transformation. The derivation of the elastic
term DGel in the driving force of the MT will be done in Section 3.3.

3.2. Simulation of the anisotropic kinetics

In this section we take into account the anisotropy of the shape of the martensitic plate described in Section 2.4, and
calculated in Section 2.5. First we define a mixture interface energy gmix as a combination of the surface energy gs and the
edge elastic energy gedge. Due to the anisotropy of the surface energy and the elastic contribution the mixture interface
energy is also anisotropic. We can write the anisotropic interface energy and the corresponding parameters in the phase-
field model as

gmixðnintÞ ¼ gmixasðnintÞ, ð62Þ

KðnintÞ ¼ KasðnintÞ ð63Þ

and

HðnintÞ ¼HasðnintÞ, ð64Þ

where asðnintÞ is the anisotropic function and

nint ¼
=f
9=f9

ð65Þ

is the normal direction to the interface.
The model parameter H can be defined as

HðnintÞ ¼
gmixðnintÞ

W
¼
gsðnintÞ

W
þ
bðn0,nintÞD

W
, ð66Þ

where bðn0,nintÞ ¼ bijðn0Þn
int
i nint

j is a function of the edge elastic energy in units of energy per unit volume and D is the

maximal size of the crystal in the direction n0. In the direction n0 the edge elastic energy is equal to zero, so that bðn0Þ ¼ 0
and Hðn0Þ ¼ gsðn0Þ=W . From Eq. (66) anisotropic function can be defined as

asðnintÞ ¼ 1þ
bðnintÞD

gsðnintÞ
: ð67Þ

Due to the shape dependency of the edge elastic energy the anisotropy function also depends on the width of the
martensitic plate D. In the following simulations we assume an isotropic surface energy gs.

Since bðe1Þ4bðe2Þbgs=D (see Section 2.5) we can assume the limits asðe1Þ ¼ b1D=gs, asðe2Þ ¼ b2D=gs and asðe3Þ ¼ b3D=gs

with b3 ¼ gs=D and write the anisotropic function through eigenvalues bi and eigenvectors ei in the following form:

asðnintÞ ¼
X

i

bi

b1

ðnint � eiÞ
2: ð68Þ
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The kinetic equation is obtained by

t
@fp

@t
¼�

1

Hðn?intÞ

dFðKðn?intÞ,fp,fAÞ

dfp

, ð69Þ

where the normal to the growth direction n?int expresses the fact that the formation of a surface plane with normal n?int

effects the growth rate in the direction nint.
Inserting as in Eq. (69) we obtain

tasðn
?
intÞ

@fpðr,tÞ

@t
¼W2 = � ½asðn

?
intÞ=fpðr,tÞ�

�
þ@x 9=fp9

2
asðn

?
intÞ

1=2 @asðn?intÞ
1=2

@ð@xfpÞ

 !

þ@y 9=fp9
2
asðn

?
intÞ

1=2 @asðn?intÞ
1=2

@ð@yfpÞ

 !
þ@z 9=fp9

2
asðn

?
intÞ

1=2 @asðn?intÞ
1=2

@ð@zfÞp

 !!
�f 0pasðn

?
intÞ�lZ

0
pU: ð70Þ

To avoid the arbitrary choice of n?int in 3D-simulation we suggest to assume

asðn
?
intÞ ¼ a�1

s ðnintÞ: ð71Þ

Since we have a large anisotropy parameter for the directions normal to the habit plane, we can simplify the model and
make a pseudo-2D simulation. For this aim we use the following procedure: (i) the initial coordinate is chosen with x-,
y- and z-axes being parallel to the directions /1 0 0Sg, /0 1 0Sg and /0 0 1Sg of an austenitic crystal; (ii) all coordinates
and parameters such as the eigenstrain tensor and strain energy functions transform to the Cartesian coordinate system
(x0, y0, z0) corresponding to a martensitic variant with eigenvectors e1, e2 and e3 (the habit plane n0 ¼ e3 is parallel to the
z0-axis); (iii) the kinetic equation is solved in the new coordinate system in two dimensions (x0, y0); (iv) the coordinates are
transformed to the initial Cartesian coordinate system. After that the elastic energy and the evolution of the
accommodation dislocation (see Section 3.4) are calculated in 3D space, this is iteratively repeated from item (ii).

The kinetic equation is calculated in the plane, which is parallel to the habit plane and passes the point of the formation
of a martensitic nucleus. The transformation matrix from the system (x0, y0, z0) with the basis (e1, e2, e3) to the system (x, y,
z) with the basis (/1 0 0Sg, /0 1 0Sg, /001Sg) is defined as

T̂ðnÞ ¼

cos k cos y sin k sin y sin k
�sin k cos y cos k sin y cos k

0 �sin y cos y

0B@
1CA: ð72Þ

After the substitution of the habit plane n0 ¼ ðn1,n2,n3Þ we have

T̂ðnÞ ¼

n2ffiffiffiffiffiffiffiffiffi
1�n2

3

p n3n1ffiffiffiffiffiffiffiffiffi
1�n2

3

p n1

�
n1ffiffiffiffiffiffiffiffiffi
1�n2

3

p n3n2ffiffiffiffiffiffiffiffiffi
1�n2

3

p n2

0 �

ffiffiffiffiffiffiffiffiffiffiffiffi
1�n2

3

q
n3

0BBBBB@

1CCCCCA: ð73Þ

Back transformation proceeds by

ðx y zÞT ¼ T̂
�1
ðx0 y0 z0ÞT : ð74Þ

3.3. The calculation of the elastic component in the driving force of the martensitic transformation

To calculate the elastic component in the driving force of the MT we now consider the part of the elastic energy

~E
el
¼ Eel�Eself

edge: ð75Þ

The edge part of the self-energy of the martensitic plate is taken into account in the anisotropic formulation.
Then the elastic component in driving force is calculated for two variants of the MT from Eq. (22) as

DGel ¼ d
~E

el
ðtÞ

dfpðr,tÞ
¼ Bppðn0ÞðZpðrÞ�/ZpSÞZ

0
pðr,tÞþZ0pðr,tÞ �

Z
d3k

ð2pÞ3
BpqðnÞe

ikrbZqðkÞ

þZ0pðr,tÞ
Xm
a ¼ 1
�
Z

d3k

ð2pÞ3
BpaðnÞe

ikr bfd

aðkÞþZ
0
pðr,tÞ

Xm
a ¼ 1
�
Z

d3k

ð2pÞ3
BapðnÞe

ikr bfd

aðkÞ

þZ0pðr,tÞ
Xm

a,b ¼ 1

@fd
aðrÞ

@fpðrÞ
�
Z

d3k

ð2pÞ3
BabðnÞe

ikr bfd

aðkÞ: ð76Þ

In the last term we take into account that the function fd
a of the dislocation density depends on the phase-field variable fp,

as it can be seen below from Eq. (91).
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In our simulations we neglect the interaction of the edge elastic energy of a particle with a second martensitic plate as
well as with the accommodation dislocations. These simplifications are underlying the formulation of Eq. (76):

DGel ¼ d
~E

el
ðtÞ

dfpðr,tÞ
¼ Bppðn0ÞðZpðrÞ�/ZpSÞZ

0
pðr,tÞþBpqðn0ÞðZqðrÞ�/ZqSÞZ

0
pðr,tÞ

þ
Xm
a ¼ 1

Bpaðn0Þðf
d
aðrÞ�/f

d
aSÞZ

0
pðr,tÞþ

Xm
a ¼ 1

Bapðn0Þðf
d
aðrÞ�/f

d
aSÞZ

0
pðr,tÞ

þ
Xm

a,b ¼ 1

@fd
aðrÞ

@fpðrÞ
Babðn0Þðf

d
aðrÞ�/f

d
aSÞZ

0
pðr,tÞ: ð77Þ

The first term in Eq. (76) and all terms in Eq. (77) are obtained using the Parseval theorem (see also Khachaturyan, 1983).
For example the second term in Eq. (22) for a constant n0 transforms to

�
Z

d3k

ð2pÞ3
Bpqðn0ÞbZpðkÞbZqðkÞ ¼ Bpqðn0Þ

Z
d3k

ð2pÞ3
DbZpðkÞDbZqðkÞ ¼ Bpqðn0Þ

Z
DZpðrÞDZqðrÞ dr: ð78Þ

From Eq. (77) it can be seen that the accommodation dislocations play a crucial role in the transformation kinetic. The last
terms in the driving force increase with increasing dislocation density, that leads to a decreasing effective temperature and
at Tn ¼ T0 to the termination of the transformation process. In their experimental work Sato and Zaefferer (2009)
conjectured that most likely the transformation process comes to an end when the austenitic phase is that much strain-
hardened that its further deformation is no longer possible.

Based on the estimation of the equilibrium shape of the single martensitic plate and the elastic part of the driving force
we can now simulate the evolution of the phase-field variable of a martensitic phase, taking into account the interplay of
all kinetic and energetic contributions. As a result we can determine the influence of the individual contributions on the
final morphology that will arise after any kind of mechanically induced transformation accompanied by accommodation
dislocations.

3.4. The evolution of the accommodation dislocation density

In this section we describe the time evolution of the density of the accommodation dislocations generated during the
MT and forming plastic deformation strain outlined in Section 2.2.

In order to determine the evolution of the dislocation density we define the mobile dislocation density rM,a, the
immobile dislocation density rI,a, the parallel dislocation density rP,a and forest dislocation density rF,a for a slip system a.
Following Ma and Roters (2004) we define

rF,a ¼
XN

b ¼ 1

rI,b9cosðnðaÞ,nðbÞ �mðbÞÞ9, ð79Þ

rP,a ¼
XN

b ¼ 1

rI,b9sinðnðaÞ,nðbÞ �mðbÞÞ9, ð80Þ

rM,a �
2kBT

c1c2c3Gb3
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rF,arP,a

p
, ð81Þ

where G is the shear modulus, kB is the Boltzmann constant, T is the temperature and c1, c2, c3 are numerical constants.
Using the Orowan theory we can calculate the evolution of the dislocation density of the immobile dislocations by

_rI,a ¼ c4
ffiffiffiffiffiffiffiffiffi
rF,a

p
_g, ð82Þ

where the evolution of the average slip velocity of the dislocation lines is defined as

_ga ¼ rM,abavafA: ð83Þ

Here we assume that transformation-induced plastic deformation is hindered in the martensite owing to its much high
flow stress compared to the austenite and, hence, we describe the evolution of plastic slip during the process only in the
austenitic phase. This assumption is consistent with the plastic deformation accumulation that was experimentally
observed in the original work of Sato and Zaefferer (2009).

The average dislocation velocity can be found based on the model of thermally activated dislocation motion as (Ma and
Roters, 2004; Roters et al., 2000)

va ¼ lana exp �
Qslip

kBT

� �
sinh

9ta9�tpass,a

kBT
Va

� �
ð84Þ
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with

taffiŝ � M̂a ð85Þ

being the external stress or the external driving force and

tpass,a ¼ c1Gba
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rP,aþrM,a

p
ð86Þ

being the stress of the mobile dislocations, where na is the attack frequency, Qslip is the effective activation energy for the
dislocation slip, ŝ is the external stress. The jump width la and the activation volume Va are calculated as

la ¼
c2ffiffiffiffiffiffiffiffiffirF,a

p ð87Þ

and

Va ¼ c3b2
ala, ð88Þ

where c2 and c3 are constants.
Now we show that the external driving force of the dislocation evolution (85) can be derived from the total elastic

energy (22). The components of the stress tensor can be defined from the total elastic energy

ðr̂Þij ¼
Xn
p ¼ 1

@Eelast

@e0
ijðp,rÞ

, ð89Þ

where e0
ijðp,rÞ ¼ e0

ijðpÞZpðrÞ. After differentiation of Eq. (22) we obtain

ðr̂Þij ¼
1

2

Xn
q ¼ 1
�
Z

d3k

ð2pÞ3
½lijkle0

klðqÞ�nilijklOjkðnÞlklije0
klðqÞnl�bZqðkÞe

ikr

�
1

2

Xm
a ¼ 1

�
Z

d3k

ð2pÞ3
½lijklMklðaÞ�nilijklOjkðnÞlklijMklðaÞnl�

bfd

aðkÞe
ikr: ð90Þ

Inserting the stress tensor in Eq. (85) we can write the external stress as

ta ¼
1

2

Xn
q ¼ 1

�
Z

d3k

ð2pÞ3
BaqðnÞbZqðkÞe

ikr�
1

2

Xm
b ¼ 1

�
Z

d3k

ð2pÞ3
BabðnÞbfd

bðkÞe
ikr: ð91Þ

4. Numerical simulation

4.1. Simulation scheme

In this section we demonstrate how the model derived in the previous sections is applied in numerical simulations. The
complete set of evolution equations for our model consists of two parts which are the phase-field part and the dislocation
evolution part as it is shown in Fig. 3. In the phase-field part we calculate two kinetic equations for two variants of the MT.
They are given by Eq. (70) and include a contribution of the elastic energy to the driving force given by Eq. (76), as well as
the anisotropy function equation (68). The dislocation evolution part consists of the set of equations (79)–(88) with
external driving force equation (91) (see Section 3.4).

To arrive at a numerical efficient formulation we can reduce the complexity of the above set of coupled equations ass follows
by inserting Eqs. (83)–(88) into (82). This yields the following set of equations for the evolution of immobile dislocation densities:

_rI,a ¼ rM,abðaÞc4c2nafA exp �
Qslip

kBT

� �
sinh

kQslip

kBT

� �
ð92Þ

with

k¼
9ta9�c1GbðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rP,aþrM,a

p� �
c1GbðaÞ

ffiffiffiffiffiffiffiffiffirF,a
p � 2c1c2c3, ð93Þ

where the dislocation densities rP,a, rF,a and rM,a are defined by Eqs. (79)–(81). The external stress is given by Eq. (91). Here we
use the fact that the effective activation energy for dislocation slip is equal to Qslip ¼ 1=2Gb3. Eq. (92) must be stepwise integrated
in each time step.

Successive to the solution of the evolution equation for the dislocation density (92) the following coupling equation is
applied for the calculation of the dislocation slip function:

fd
aðr,tÞ ¼ bðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrI,aðr,tÞþrM,aðr,tÞÞ

q
: ð94Þ

In the simulation we assume a51=
ffiffiffiffiffiffird
p

and omit the energy of dislocation core. The two differential equations, which
constitute our model (Eq. (70) for the phase-field evolution and Eq. (92) for the dislocation density evolution), are
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Fig. 4. The simulated transformation curves obtained with and without accommodation dislocations. The total martensitic volume fraction in the

simulated domain is calculated.

Fig. 3. The simulation scheme. The following input parameters are presented: the kinetic parameter t, the coupling constant l, the temperature T0 of the

MT, the initial dislocation density r0,i , the attack frequency na , the eigenstrain matrix of the MT e0, the shear modulus G.
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numerically integrated by using a simple Euler, forward-time finite difference scheme. For the Laplacian we employ a
nine-point formula involving nearest and next nearest neighbors. Our simulations are carried out on a 3D domain of size
150�150�150 Dx with periodic boundary conditions.
4.2. Model parameters

In the phase-field part of the model we have chosen the following input parameters: the interface thickness W ¼

Dx¼ 7:0� 10�7 m, the latent heat QM¼3.5�108 J m�3 (Artemev et al., 2001), the surface energy gs ¼ 1:9 J m�2 for f2 5 2gg
plane and gs ¼ 2:5 J m�2 for f2 9 5gg (Kuznetsov et al., 1998). From the chosen parameters the coupling constant l¼
QMW=gs is 130 and 100 respectively.

For our simulations we assume a transformation law from the experimental data (Tjahjanto et al., 2008) with the
maximal transformation rate _x0 ¼ 0:003 s�1. Here the transformation rate is defined as the mean rate of the martensitic
transformation averaged over the whole system, taking into account the dynamical constraints imposed by crystal defects
as well as the nucleation of new plates. From this value we have estimated the mean transformation rate for our case as
0.3 s�1 and the corresponding kinetic parameter as t¼ 3 s taking into account the anisotropy (D=Lffi0:01). From these
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kinetic parameters the time step of the simulation is chosen as Dt¼ 0:005t, which is smaller than the stability limit
Dtot=l.

The following material parameters for the simulated Fe–30 wt%Ni alloy are underlying the simulation results, which we
present in the following: shear modulus G¼0.84 GPa, the lattice constant a¼3.59�10�10 m, constants c1¼0.18, c2¼5.0,
c3¼5.0, c4¼8.0�106 m�1, the initial dislocation density r0,I ¼ 108 m�2 for all systems and the attack frequency
na ¼ 1010 s�1. In the fcc lattice of the austenitic matrix 24 variants of the dislocation slip have been chosen with slip
plane of type f1 1 1gg and the slip direction of type /1 0 1Sg.

In the work Umemoto et al. (1983), the temperature of martensitic transformation Ms in the Fe–30 wt%Ni alloy is
estimated around the room temperature TM¼300 K. The simulations are carried out under isothermal conditions at an
initial undercooling being ðT0�TÞ=T0 ¼ 0:3 with T0 ¼ 500 K. Then simulations proceeded with the increasing undercooling
ðT0�TÞ=T0 ¼ 0:5.
Fig. 5. Simulated micro-structure (a) and the dislocation density around the martensitic plates (b) at t ¼ 0:9t. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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For the two variants of the MT with the habit planes ð2 2 5Þg and ð2 2 5Þg we use the eigenstrains (Section 2)

e0
ijð1Þ ¼

0 �0:0286 �0:0399

�0:0286 �0:0838 �0:1155

0:0320 0:0928 0:1294

0B@
1CA,

e0
ijð2Þ ¼

�0:0838 �0:0286 �0:1155

�0:0286 0 �0:0399

0:0928 0:0320 0:1294

0B@
1CA: ð95Þ

The corresponding eigenvectors of the matrix b̂ are

e1ð1Þ ¼ ð0:5773 �0:5773 0:5773Þ, e2ð1Þ ¼ ð0:7035 0:7035 0:0Þ,
Fig. 6. Simulated micro-structure (a) and the dislocation density around the martensitic plates (b) at t ¼ 3t. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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e1ð2Þ ¼ ð0:5773 �0:5773 �0:5773Þ, e2ð2Þ ¼ ð0:7035 0:7035 0:0Þ: ð96Þ

During the transformation the habit plane ð2 2 5Þg changes to ð2 5 9Þg and ð2 5 9Þg with the eigenvectors

e1ð5Þ ¼ ð0:5585 0:7311 0:3858Þ, e2ð6Þ ¼ ð0:8165 0:4082 0:4082Þ,

e1ð5Þ ¼ ð0:5585 0:7311 �0:3858Þ, e2ð6Þ ¼ ð0:8165 0:4082 �0:4082Þ: ð97Þ

The habit plane ð2 2 5Þg changes to ð5 2 9Þg and ð5 2 9Þg with

e1ð3Þ ¼ ð�0:7311 �0:5585 0:3858Þ, e2ð3Þ ¼ ð�0:4082 �0:8165 0:4082Þ,

e1ð4Þ ¼ ð0:7035 0:5585 0:3858Þ, e2ð4Þ ¼ ð0:4082 0:8165 0:4082Þ: ð98Þ

For the calculation of the anisotropy function the eigenvalues b1 and b2 were chosen for the habit plane f2 9 5gF and
f2 5 2gF the same as in Section 2.5. For the value b3 we assume the relation gs=D.
Fig. 7. Simulated micro-structure (a) and the dislocation density around the martensitic plates (b) at t ¼ 3:9t.
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4.3. Results of the simulation and the comparison to the experiment

The nucleation of two martensitic variants occurs in a single austenitic crystal. The size of nuclei of the martensitic
phase was chosen as 2Dx. The first nucleus forms in the center of the simulation box, whereas the second one forms on the
neighboring sites.

To study the effect of accommodation dislocations on the butterfly-type martensite microstructure the simulation have
been performed for two cases with and without dislocations. The simulated transformation curves for these cases are
shown in Fig. 4.

In the simulation two martensitic plates start to grow with habit planes ð2 2 5Þg and ð2 2 5Þg. The transformation stops
at the time 3t due to the increasing size of the crystals and the increasing mean dislocation density in the system. The
microstructure at the time 0:9t and 3t is shown in Figs. 5(a) and 6(a). Blue and green colors correspond to the two crystals.
We can observe that the two thin lamella grow in main directions according to the anisotropy parameters and cross each
other. The dislocation density distribution in the system in the same periods of time is shown in Figs. 5(b) and 6(b).

Then the temperature is lowed and the transformation proceeds. In the case without dislocations the martensitic plates
grow up to the boundary of the simulation box and broader keeping the habit plane of type f2 5 2gg. In the second case
with dislocation effects the transformation proceeds with the change of habit planes to the new habit planes of type
f2 5 9gg. The first habit plane f2 5 2gg serves as a substrate for the nucleation of new plates. In our simulations nuclei of
new martensitic variants of size 2Dx were inserted at the inner surface of twin-related martensitic plates. The rate of
spontaneous nucleation were 1 nucleus per time step for 20 time steps. Then the transformation stops again when the
martensitic crystals increase their thickness and fill the volume between old and new habit planes. The mean dislocation
density also increases and hinders the further transformation process.

The final microstructure at t¼ 3:9t is shown in Fig. 7(a). The corresponding dislocation density distribution is shown in
Fig. 7(b). To show the full intrinsic structure of the martensitic crystals Mayavi2 software is used in Fig. 8. Here the
Fig. 8. The simulated microstructure at t ¼ 3t (a) and 3:9t (b) in 3D-plot. The areas with various habit planes are shown by the various colors.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
The size of the martensitic plate. The comparison of the simulation and the experiment.

Direction Simulation ðmmÞ Experiment ðmmÞ

/1 1 1S 70.5 70.0

/1 0 1S 25.0 –

/2 5 2S 7.2 7.0
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simulated structure is shown as 3D-plot. The areas with different habit plane orientation are indicated by the various
colors. The butterfly-type martensitic system consists of two crystals. Each crystal contains three distinct regions. One
region is a thin lamella with habit plane f2 5 2gg. The other two regions have a three-angular shape with habit plane of
type f2 9 5gg.

From these simulation results we can draw the following conclusion: The suggestion, that the transformation process
terminates when the austenitic matrix is very much strain hardened (Sato and Zaefferer, 2009), is confirmed in the
simulation for the first and for the second part of the transformation. Moreover, the transformation process comes to its
end when the equilibrium of elastic energy and chemical energy is reached.

A more detailed comparison of our simulations to experiments yields the following: First, the size of the larger
martensitic plate obtained from our 3D simulations is compared to the corresponding experimental values (see Fig. 1) in
Table 1. We observe very good qualitative agreement, which validates our model at this point.

Further, the distribution of the dislocation density in the direction ½0 0 1�g is depicted in Fig. 9. It can be observed that
the dislocation density reaches its maximum value on the martensite/austenite interface. The value of dislocation density
varies from 5�1011 in the volume far from the martensitic crystal to 5�1015. The distribution of the dislocations around
the crystals and the size of the first and the second martensitic plates in one system are not equal due to the interplay of
the various slip systems.

The comparison of the experimental results presented in Calcagnotto et al. (2010) and our simulated dislocation density
profiles yields again excellent agreement and serves as a further model validation.
5. Conclusions

In the present study the formation mechanism of butterfly-type martensite in a Fe–30 wt%Ni alloy was investigated in
detail by means of the phase-field model. As the input we have used the anisotropy parameters evaluated from the
crystallography of the MT. While the growth of the martensitic phase volume was driven by the chemical free energy
reduction, the anisotropy of the microstructure evolution was caused by the anisotropic feature of the elastic energy.

Our new model takes into account the formation of accommodation dislocations in austenitic matrix and their
inheritance to the martensitic plates. It resolves the effects of the accommodation dislocations’ dynamics on the kinetic of
growth as well as on the microstructure.

Comparison between simulations based on our model and experiments yields excellent agreement with experiments
for a large number of details characterizing the butterfly type MT.

The thereby developed and validated phase-field model constitutes a general simulation approach which can efficiently
resolve different kinds of dislocation dynamics in phase-change materials undergoing mechanical transformations
inherently coupled to the kinetics of the transformation process. It reaches far beyond equilibrium crystallography in
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the sense that it allows to predict not only the aspect ratio of resulting martensitic crystals, but also the size of the crystals
itself, as well as the resulting dislocation distribution. As an outlook, we also intend to investigate in more detail the
influence of dislocations on the shape of the growing crystal and to include a description of crystal defects as vacancies and
inclusions in our model and study their effect on resulting microstructure evolution.
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