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A two dimensional (2D) cellular automaton (CA) - lattice Boltzmann (LB) model is presented to 
investigate the effects of forced melt convection on the solutal dendritic growth. In the model, the 
CA approach of simulating the dendritic growth is incorporated with the kinetic-based lattice 
Boltzmann method (LBM) for numerically solving the melt flow and solute transport. Two sets of 
distribution functions are used in the LBM to model the convective-diffusion phenomena during 
dendritic growth. After validating the model by comparing the numerical results with the theoretical 
solutions, it is applied to simulate the single and multi dendritic growth of Al-Cu alloys without and 
with a forced convection. The typical asymmetric growth features of convective dendrite are 
reproduced and the dendritic morphology is strongly influenced by melt convection. The simulated 
convective multi dendritic features by the present model are also compared with that by the CA-NS 
model. The present model is found to be more computationally efficient and numerically stable than 
the CA-NS model. 
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1.   Introduction 

Melt convection is an unavoidable phenomenon during solidification. It strongly affects 
the dendritic morphology and hence the final properties of castings. Several numerical 
studies have been performed on the interaction of melt convection and dendritic growth 
in pure materials or alloys by incorporating the phase field (PF) methods[1], the level set 
(LS) methods[2] or the cellular automaton (CA) methods[3] with the solution of Navier-
Stokes (NS) equations.  

The lattice Boltzmann method (LBM)[4,5] is a new technique for simulating complex 
physic phenomena of fluid flows. Instead of the NS equations, the discrete Boltzmann 
equation is solved to compute the flow with collision models such as Bhatnagar-Gross-
Krook (BGK). Researchers extended LBM to simulate melt flow in crystal growth 
because of its higher computational efficiency and better numerical stability than the 
conventional computational fluid dynamics. Miller et al.[6] and Medvedev et al.[7] 
developed PF-LBM coupled models to simulate the thermal dendritic growth with flow. 
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However, these models are usually focused on pure substance. Considering that LBM is 
originated from the lattice gas automata method that is actually a type of CA methods, it 
is natural to develop a model coupling CA and LBM to simulate dendritic growth of 
alloys in the presence of melt flow.  

This paper presents a 2D CA-LBM model for modeling dendritic growth of binary 
alloys with forced convection. After validating the model by the comparisons between 
the simulated results and the theoretical predictions, numerical simulations are performed 
for single dendritic growth both in a static melt and in a flowing melt of an Al-4wt%Cu 
alloy. Then it is applied to model multi dendritic growth with convection and the results 
are compared with that simulated by the CA-NS model[3]. 

2.   Model Description and Numerical Algorithms 

The present model involves two essential features: the calculation of melt convection and 
solute transport by the LBM with a lattice BGK (LBGK) scheme[4,5] and the calculation 
of dendritic growth by a CA approach. Since the thermal diffusivity of Al-Cu alloys is 
about 4 orders of magnitudes larger than the solute diffusivity, the kinetics for dendritic 
growth can be assumed to be solute-transport-controlled. In the present work, for the sake 
of simplicity, the temperature field in the domain is considered to be uniform with a 
constant undercooling or cooling down from the liquidus with a cooling rate of 10K/s. 

2.1.   Lattice Boltzmann method for melt flow and solute transport 

In the LBM model, the viscous flow behavior emerges automatically from the intrinsic 
particle streaming and collision processes by simulating the interaction of a limited 
number of particles. According to the BGK approximation[4], the LB equation (LBE) can 
be expressed as: 
 )/)],(),([),(),( τtftftftttf eq

iiiii xxxex −−=−Δ+Δ+  (1) 

where fi(x, t) is the particle distribution function (PDF) representing the probability of 
finding a particle at location x at time t. ei is the velocity of the particles along the i-th 
directions. fi

eq(x, t) is the equilibrium PDF (EPDF) and τ is the relaxation time. LBM can 
be modified to account for the solute transport due to convection and diffusion. Similar to 
that for the flow field calculation, the LBE for the solute field calculation can be read as[5]: 
 ),(/)],(),([),(),( tStgtgtgtttg iD
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where gi(x, t), gi
eq(x, t) and τD are the PDF, the EPDF and the relaxation time for the 

solute field calculation, respectively. Si is the source term related to the increased solute 
concentration ∆C due to the rejected solute during crystal growth. The fluid density ρ, the 
velocity u and the solute concentration C can be obtained by the following equations: 
 ∑= ifρ , 

iif eu ∑=ρ , ∑= igC  (3) 

The present work adopts the D2Q9 LBM model, i.e., the 9-velocity model in 2D 
space[4]. The space is discretized into a square lattice, and the discrete velocities are given 
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by ei=0=(0, 0)c, ei=1,2,3,4=(cos[π(i−1)/2], sin[π(i−1)/2])c and ei=5,6,7,8= 2 (cos[π(2i−9)/4], 
sin[π(2i−9)/4])c, here c=Δx/Δt is the lattice speed and Δx is the lattice spacing. The 
EPDFs of the D2Q9 model are chosen to be: 
 ( ) ]/5.1/)(5.4/)(31[, 22422 cccwtf iii

eq
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where wi are the weight coefficients given by wi=0=4/9, wi=1,2,3,4=1/9 and wi=5,6,7,8=1/36. It 
has been proved that the NS equations and the convection-diffusion equations can be 
recovered with the LBEs by the Chapman-Enskog analysis. Thus, the relations between 
the flow relaxation time τ and the kinematic viscosity ν as well as between the diffusion 
relaxation time τD and the solute diffusivity D can be obtained by: 
 ( ) 6/122 −Δ= τν tc , ( ) 6/122 −Δ= DtcD τ  (6) 

2.2.   Cellular automaton method for the simulation of dendritic growth 

The kinetics of crystal growth controlled by the thermal, the solutal and the capillary 
contributions can be described by the Gibbs-Thomson equation: 
 ( )[ ] ( ) ( )( )tCtCmTTV l κθθμ ⋅⋅−−⋅+−⋅= 00 ,fΓ  (7) 

where V is the growth velocity of the solid-liquid (SL) interface, μ is the interface kinetic 
coefficient, Tl is the liquidus temperature, T is the melt temperature, m is the liquidus 
slope, C0 is the initial concentration, and Γ is the Gibbs-Thomson coefficient. κ(t) is the 
interface curvature which is calculated in the same manner as in the Ref.8. Here, f(θ,θ0) is 
the function accounting for the anisotropy of the surface tension. For the fourfold 
symmetric crystal, it can be calculated by: 
 ( ) ( )[ ]00 4cos151,f θθεθθ −−=  (8) 

where ε is the degree of anisotropy of the surface energy. θ0 is the angle of the 
preferential growth direction with respect to the x-axis, and θ is the growth angle between 
the normal to the interface and the x-axis, which can be calculated according to solid 
fraction gradient at the SL interface with θ=arctan(∂yφ/∂xφ). In an interface cell, the solid 
fraction increment ∆φ is evaluated by ∆φ=V·∆t/∆x and the rejected solute amount ΔC is 
calculated by ΔC=C(1−k)Δφ, here k is the solute partition coefficient. The source term Si 
in Eq.(2) can thus be obtained according to Si=wiΔC. 

3.   Results and Discussion 

Numerical simulations are performed in a 2-D domain {(x, y) | 0≤x≤L, 0≤y≤L} full of the 
Al-Cu alloy melt with an initial concentration C0 and uniform temperature T=Tl−∆T. Here, 
∆T is the undercooling. Initially, one or several seeds with preferred orientations exist in 
the cavity. The undercooled melt flows into the cavity from the top boundary with a 
uniform velocity u(x, y)|y=L=(0, Uin) and flows out from the bottom boundary with 
∂yuy|y=0=0. For the flow calculation, the non-equilibrium extrapolation scheme[9] is used to 
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treat the inlet and outlet boundary conditions. Periodic boundary conditions are imposed 
on the two sides of horizontal walls. The solute field boundary conditions are prescribed 
as ∂xC|x=0, L=0 and ∂yC|y=0, L=0. The Schmidt number, defined as Sc≡ν/D, is Sc=18.855. 
The flow relaxation time is chosen to be τ=1 and τD can be computed by Eq.(6) according 
to Sc. The dimensionless undercooling, length, time, growth velocity and flow velocity 
are used by rescaling the relative quantities with ΔT0=|m|C0(1−k), d0=Γ/ΔT0, t0=d0

2 /D, 
V0=D/d0, and U0=ν/d0, respectively, where ΔT0 is the unit undercooling and d0 is the 
solutal capillary length. The kinetic coefficient is taken as μ=0.008 m/(K·s). Other 
parameters are taken form Ref.3. 

3.1.   Model validation 

First, we validate the model for purely diffusive crystal growth using the Stefan problem 
that describes the diffusion-controlled crystal growth with a planar front[10]. The relevant 
analytical solution for the solid fraction evolution is given by φ−φ0=λ Dt , where φ0 is 
the initial solid fraction and λ is a constant. The comparison with the simulation is given 
in Fig.1. As shown, the agreement is excellent.  

Then we validate the simulation of convective dendritic growth with the analytical 
Oseen-Ivantsov solution[11] that provides a relationship among the growth Peclet number 
Pec≡VR/(2D), the flow Peclet number Pef≡UR/(2D), and the driving force of growth. For 
the concentration-driven growth, the driving force is the dimensionless supersaturation 
Ω≡(Cl

* −C∞)/[Cl
* (1−k)], where Cl

*  is the interface equilibrium concentration at the upstream 
tip and C∞ is the concentration far away from the tip. Figure 2 indicates that the simulated 
curve of Pec vs Pef is close to the profile predicted by the Oseen-Ivantsov solution. 

       

3.2.   Single dendritic growth with melt convection 

Numerical experiments were done to study the effects of a forced flow on the growth 
process of a dendrite tip. Figure 3(a) illustrates the simulated evolution of the dendrites 
without flow and with a forced flow velocity of Uind0/ν=0.005. It is found that the flow 
significantly influences the shape of dendrites. The flow takes the solute away from the 
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Fig. 2.   The growth Peclet number as a function 
of the flow Peclet number for Ω=0.407. 
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Fig. 1.   The evolution of solid fraction for purely
diffusive crystal growth with a planar interface. 
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upstream region and thus the upstream concentration becomes lower. Since the liquidus 
slope m is a minus, the upstream solutal undercooling is increased higher than that on the 
downstream side. Accordingly, the growth velocity of the upstream tip is higher than that 
of the downstream tip. The upstream arm is thus rapidly developed while the downstream 
arm is retarded. The arm normal to flow grows slightly upwards because of the 
asymmetry of solute fluxes. As shown in Fig. 3(b), all tip velocities start from a large 
value and decrease very fast. After a transient period, the upstream tip reaches steady 
state growth. It indicates that the balance is established between dendritic growth and 
solute transport due to convection and diffusion in the front region of the upstream tip. 
The horizontal tip slowly reaches an approximately steady state after a relative longer 
time which is similar to that growing in a static melt. However, the downstream tip does 
not reach a complete steady state till the end of this simulation.  

 

3.3.   Multi dendritic growth with melt convection 

The present model was also used to simulate the multi dendritic growth behavior. Figure 
4 (a) indicates the simulated multi dendritic morphology of an Al-3wt%Cu alloy. Initially, 
six seeds with various preferred orientations were randomly placed in the domain. The 
melt temperature was assumed to be uniform and cooled down from the liquidus with a 
cooling rate of 10K/s. It is found that the flow plays a notable role in affecting growth 
behavior at the early stage of solidification. The asymmetric dendrite features are 
reproduced. As the dendrites grow close to each other, the flow gradually fades away in 
the inter-dendrites region and the effects of flow become less important. However, the 
final microstructure keeps the deflective features developed in the early stage of the 
solidification. Figure 4 (b) presents a comparison of the evolution of solid fraction 
calculated by the present model and the CA-NS model, where the melt flow is calculated 
by a NS solver. As shown, two curves coincide well before φ≈0.30. In this simulation, the 
present model can model the multi dendritic growth till φ≈0.95 whereas the CA-NS 
modeling was interrupted when φ≈0.30 because the flow calculation by the NS solver 
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(a)                                                                               (b) 

Fig. 3.    Evolution of (a) dendritic morphologies, φ=0.005, 0.030 and 0.065 from left to right and (b) dendrite 
tip velocities for an Al-4wt%Cu alloy growing at ∆T/ΔT0=0.65 without flow and with an inlet flow velocity of 
Uind0/ν=0.005 (θ0=0, 400×400 grids with ∆x=4d0). 
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can’t proceed when the solid fraction increases to higher value. Moreover, the calculating 
time by the present model with φ=0.30 is only about one-seventh of that by the CA-NS 
model. Accordingly, it can be concluded that the present model has the merits of better 
computational efficiency and numerical stability compared to the CA-NS model. 

 

4.   Conclusions 

A LBM and CA coupled model has been developed to model dendritic growth with melt 
convection. The model is validated by the Stefan problem and the Oseen-Ivantsov 
solution. It is then applied to simulate single and multi dendritic growth of Al-Cu alloys 
both in a static melt and with a forced flow. The present model exhibits the quantitative 
and efficient capabilities. Moreover, it presents a better computational efficiency and 
numerical stability than the CA-NS model in simulating convective dendritic growth. 
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Fig. 4.    Evolution of (a) dendritic morphology without flow and with a flow velocity of Uin=0.001m/s, φ=0.05, 
0.50 and 0.90 from left to right and (b) solid fraction for an Al-3wt%Cu alloy growing with a cooling rate of 
10K/s (400×400 grids with ∆x=1.0μm). 


