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We investigate the wetting behavior of liquid droplets on rough hydrophobic substrates for the case of
droplets that are of comparable size to the surface asperities. Using a simple three-dimensional analytical
free-energy model, we have shown in a recent letter �M. Gross, F. Varnik, and D. Raabe, EPL 88, 26002
�2009�� that, in addition to the well-known Cassie-Baxter and Wenzel states, there exists a further metastable
wetting state where the droplet is immersed into the texture to a finite depth, yet not touching the bottom of the
substrate. Due to this new state, a quasistatically evaporating droplet can be saved from going over to the
Wenzel state and instead remains close to the top of the surface. In the present paper, we give an in-depth
account of the droplet behavior based on the results of extensive computer simulations and an improved
theoretical model. In particular, we show that releasing the assumption that the droplet is pinned at the outer
edges of the pillars improves the analytical results for larger droplets. Interestingly, all qualitative aspects, such
as the existence of an intermediate minimum and the “reentrant transition,” remain unchanged. We also give a
detailed description of the evaporation process for droplets of varying sizes. Our results point out the role of
droplet size for superhydrophobicity and give hints for achieving the desired wetting properties of technically
produced materials.
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I. INTRODUCTION

As is well known, the hydrophobicity of a surface can be
amplified by the existence of roughness at the micrometer
level �1–3�. The phenomenon of superhydrophobicity has re-
gained considerable interest during the last years, both due to
novel industrial applications, such as self-cleaning materials,
and the need for better understanding of surface-driven flows
�see �4,5� for recent reviews�.

On a topologically patterned surface, a liquid droplet can
usually attain two possible equilibrium �6� states: it can ap-
pear either in the Cassie-Baxter �CB� state, where it is resting
on top of the pillars �7�, or in the Wenzel state, where the
droplet penetrates into the grooves and wets the bottom sub-
strate between the pillars �8�. In the case of droplets much
larger than the typical size of the surface asperities, the free
energies can be calculated by taking into account average
surface properties. The relevant quantities are the surface
roughness r �ratio between actual substrate area and its hori-
zontal projection� and the surface density � �portion of a
planar surface of unit area covered by the asperities or pil-
lars�. On a perfectly flat and chemically homogeneous sur-
face, the macroscopic contact angle � is equal to the micro-
scopic contact angle �Y, which—as a consequence of free-
energy minimization—is dictated by Young’s law,

cos �Y =
�SV − �SL

�LV
. �1�

Here �LV, �SL, and �SV are the surface tensions of liquid-
vapor, solid-liquid, and solid-vapor interfaces, respectively.
On a textured surface, on the other hand, one obtains the

macroscopic contact angle as the weighted sum

cos �F = � cos �Y − �1 − �� , �2�

in the case of the CB state �7�, and

cos �W = r cos �Y ,

in the case of the Wenzel state �8�. It can be shown �9� that
the free energy of a droplet is smaller in the Cassie-Baxter as
compared to the Wenzel state if

r � cos �F/cos �Y . �3�

This analysis does not take into account possible free-
energy barriers between the two states. However, the mere
fact that more than one wetting state can occur on the same
substrate implies the existence of a free-energy barrier be-
tween them �9–19�. This barrier can be overcome, for ex-
ample, by applying an external force �12�, giving the drop a
certain impact velocity �20–22�, or by increasing the pressure
inside the drop �14,23,24�. Moreover, it has been found that
the barrier also depends on the size of the droplet �14,24,25�.

The collapse mechanism is studied in the literature mostly
by depositing the droplet initially in the CB state and letting
it slowly evaporate. When the droplet shrinks, the curvature
of the liquid-vapor interface increases; hence, the lower part
of the droplet approaches the bottom surface. On small pil-
lars, this can lead to the nucleation of contact between the
liquid and the substrate while the sidewalls of pillars are
completely dry, i.e., the droplet is still in the CB state. How-
ever, as soon as a contact is nucleated, the liquid spreads and
fills the entire groove, thereby taking on the Wenzel state. On
taller pillars, the Laplace pressure will eventually lead to a
depinning of the lower contact line and the droplet slides
down the pillars �26,27�.*fathollah.varnik@rub.de
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It is clear that a droplet which is of the same size as the
surface structures will directly feel the geometry of the sub-
strate, and therefore considering merely averaged surface
properties might be not sufficient anymore �28–31�. Due to
the fact that these droplets have typical radii on the order of
microns they are subject to fast evaporation and have a very
short lifetime. This makes them very hard to observe in di-
rect experiment and, not surprisingly, the literature has so far
provided only a few hints on their behavior �19,26,30,32,33�.

Notably, Ref. �30� concentrated on the particular case of
droplets of comparable size to the surface structures. How-
ever, the droplets considered, having typical radii of
�1000 �m, were still comparatively large to the pillar dis-
tance ��200 �m� and height ��100 �m�. It was observed
that on moderately rough �i.e., small r� structures the Wenzel
state is energetically favored, while for increased roughness
droplets typically adopted a CB state �geometry-induced
transition�. In a recent molecular-dynamics study of nano-
scale droplets on a pillared surface �19� the influence of sev-
eral geometric parameters on the wetting behavior was in-
vestigated. It was found that, if the pillar height exceeds a
critical size, both Wenzel and Cassie-Baxter states can coex-
ist due to a pronounced free-energy barrier. For smaller pil-
lars, however, the droplet typically preferred only one of the
two states, in agreement with previous investigations
�26,30�.

It has only recently been shown by us �34� that a small
droplet can, besides in the Wenzel and CB states, also occur
in a third previously unrecognized equilibrium state. This
state is characterized by a finite immersion depth of the drop-
let into the texture, yet without contact to the bottom sub-
strate. The existence of this state can be inferred from quite
general arguments and hence is expected to be largely inde-
pendent of the particular surface geometry, provided only
that the asperities are large enough to prevent contact of the
droplet with the bottom substrate.

We emphasize again that it is important to realize that this
state, which we choose to call impaled state, is different from
the previously known “partially impaled” conformations of
the CB state, where the liquid-vapor interface below the
macroscopic contact line is curved, but the droplet essen-
tially remains on top of the asperities �23,24�. This statement
is supported by the fact that we indeed find a coexistence
regime for the new impaled state and the �partially impaled�
CB state. We have demonstrated that by virtue of this new
state, a droplet can pass through a reentrant transition upon,
e.g., evaporation, having in fact been saved from adopting a
Wenzel state �34�.

Droplets of similar size to the roughness scale occur in
any evaporation or condensation process and therefore are
important for the understanding of many natural phenomena
such as, for example, the water repellency of many plant
leaves or insect eyes. On the other hand, the efficiency of a
self-cleaning surface decisively depends on its condensation
resistance and its ability to keep both large and small drop-
lets close to the top of the roughness structures, i.e., in a CB
state. The situation we consider in this paper may also be
relevant for numerous industrial processes such as ink jet
printing and spray coating, where droplets can be as small as
the roughness patterns of the substrate.

In the present work, we extend our previous study �34�
and investigate the specific behavior of small droplets on a
regularly pillared hydrophobic surface. For this purpose, we
have performed extensive numerical computer simulations
using the lattice Boltzmann �LB� method in three dimensions
�35–37�. The analytical three-dimensional free-energy model
introduced previously �34� is thoroughly discussed and suit-
ably extended to account for the observed deviations. Fur-
thermore, we will study the properties of the free-energy
barrier for a droplet in the CB state and investigate its de-
pendence on the contact angle and droplet size.

The size scale of the droplet and the roughness features
are in the range between 0.1 �m and 1 mm �see Sec. II A 2�,
so that thermal fluctuations and gravity can be safely ne-
glected and a simple macroscopic description is possible.
Figure 1 is taken from one of our simulations and shows a
typical situation that we consider in this work.

Note that while the considered droplet configuration �Fig.
1� looks apparently special, further simulations by us have
shown that it is in fact stable against moderate perturbations
�38�. In particular, the central pillar is just included for prac-
tical reasons, namely, in order to conveniently observe a CB
state even for very small droplets. Despite that, it will be-
come clear that all the essential predictions of our work can
be expected to hold for any similar configuration and geom-
etry.

In addition to the fully static situation, we also discuss the
case of quasistatically evaporating droplets. Here, we elabo-
rate on our previous proposition of a reentrant transition, in
which—due to the specific properties of the new impaled
state—the evaporating droplet never sinks down the pillars
completely. Instead, it remains close to the top of the texture
and, if it is small enough, even dissolves from the pillar
sidewalls. This observation is of great practical relevance for
the fabrication of efficient self-cleaning surfaces where drop-
lets in the Wenzel state have a detrimental effect �39�.

II. THEORY

A. Numerical model

In order to study a two-phase liquid-vapor system, we
employ a free-energy-based lattice Boltzmann method first
introduced in �40� and later extended �35,36� to include wet-

(b)(a)

FIG. 1. �Color online� A typical small droplet suspended on a
hydrophobic pillar array, as viewed �a� from the side and �b� from
the top. The above plots are taken from one of our lattice Boltz-
mann simulations.
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ting on substrates. We will first review the thermodynamics
involved in the method and then briefly describe how it is
implemented in a lattice Boltzmann scheme.

1. Thermodynamics

The thermodynamic equilibrium of a two-phase liquid-
vapor system including a substrate is determined by a Cahn-
Hilliard-type free-energy functional of the form

� = �
vol
��b�	� +




2
���	�2�dV + �

surf
�s�	s�dS .

Here, �b is the bulk free energy of each of the two phases, �s
is the surface free energy, and 	s is the density at the surface
�see, e.g., �41��. The second term in the first integral gives
the free-energy contribution due to density gradients in an
inhomogeneous system and 
 is a parameter that tunes the
surface tension and interface width. The second integral just
runs over the substrate surface and accounts for the short-
ranged fluid-solid interactions, according to the mean-field
framework of Cahn �42�.

To solve the free-energy model we have to specify the
two free-energy densities �b and �s. We take the bulk free
energy to be of a simple double-well form �35�,

�b�	� = pc��	 + 1�2��	
2 − 2�	 + 3 − 2
�T� , �4�

yielding the equation of state for the fluid,

pb = pc��	 + 1�2�3�	
2 − 2�	 + 1 − 2
�T� .

Here, �	= �	−	c� /	c is the reduced density; �T= �Tc−T� /Tc
is the reduced temperature; and 	c=7 /2, pc=1 /8, and Tc
=4 /7 are the critical density, pressure, and temperature, re-
spectively. The parameter 
 is a constant that is related to the
density difference between the two phases and will be set to
0.1 in this work. Below Tc, the model allows liquid and
vapor to coexist in equilibrium with densities

	l,v = 	c�1 � 	
�T� .

The liquid-vapor surface tension and interface width in this
model are calculated to be

�LV = 4
3
	2
pc�
�T�3/2	c,

� = 	
	c
2/4
�Tpc.

Following �42�, the surface free energy �s is commonly
approximated as �s�	s�=−�1	s. The constant �1, called wet-
ting potential, determines the interaction between fluid and
substrate. Minimization of the free-energy functional leads to
a boundary condition for the density gradient in the direction
perpendicular to the substrate,


��	 = − �1. �5�

The wetting potential itself can be related to the equilibrium
Young contact angle �Y via

�1 = 2
�T
	2pc
 sgn��

2
− �Y�	cos

�

3
�1 − cos

�

3
� ,

with �=arccos�sin2 �Y�. As shown in �42�, the liquid-solid
and solid-vapor surface tensions can be calculated from the
liquid-vapor surface tension and the wetting potential, i.e., 

and �Y alone.

2. Lattice Boltzmann method

The lattice Boltzmann algorithm solves the Navier-Stokes
equations via a space and time discretized version of the
Boltzmann kinetic equation �for an introduction, see, e.g.,
�43,44��. The continuity and Navier-Stokes equations for an
inhomogeneous fluid read

�t	 + ���	u�� = 0,

�t�	u�� + �
�	u�u
� = − �
P�
 + ��
�	��
u� + ��u


+ ��
��u��� ,

where 	 is the density and ua is the local fluid velocity. The
thermodynamic equilibrium constraints of our model are in-
cluded in the hydrodynamic equations through the boundary
condition �5� and the pressure tensor P�
. The choice �4� for
the free energy leads to

P�
 = �pb −



2
���	�2 − 
	���	���
 + 
���	���
	� .

In our work, we employ a D3Q15 lattice Boltzmann
model, that is, we use three-dimensional spatial grid with 15
discrete velocity vectors ci on each lattice site. The dynami-
cal quantity here is the one-particle distribution function
f i�r , t� �i=0, . . . ,15� which evolves according to the lattice
Boltzmann equation

f i�r + ci�t,t + �t� = f i�r,t� +
�t

�
�f i

eq�r,t� − f i�r,t�� .

Here, �t�
1� is the time step of the simulation and � is the
relaxation time. We have neglected any terms due to a body-
force-like gravitation as we will not consider these influences
in the present work. The relaxation time is related to the
kinematic viscosity �LB �in lattice Boltzmann units� through

�LB =
1

3
�� −

1

2
� .

The thermodynamic conditions are implemented via the
pressure tensor by constraining the moments of the equilib-
rium distribution function f i

eq,

�
i

f i
eq = 	, �

i

f i
eqci� = 	ui�,

�
i

f i
eqci�ci
 = P�
 + 	u�u
 + ��u��
	 + u
��	 + u����	���
� .

For further details on the implementation and on the wetting
boundary conditions the reader is referred to �35,36�.

Units. Since in our simulations we are dealing exclusively
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with dimensionless lattice units, it is necessary to give the
conversion factors to physical units �see also �36��. The value
of quantity with dimensions LaTbMc obtained from the LB
simulation has to be multiplied by a suitable combination of
conversion factors, ��l�a��t�b��m�c, in order to find its value
in physical units. The conversion factors �l, �t, and �m are
determined using the experimentally known values of the
density 	phys�kg /m3�, viscosity �phys�m2 /s�, and surface ten-
sion �phys=�LV�kg /s2� of the liquid under consideration.
These quantities are related to the corresponding known lat-
tice Boltzmann variables 	LB, �LB, and �LB via

	phys =
�m

�l3 	LB, �phys =
�l2

�t
�LB, �phys =

�m

�t2 �LB.

Solving this system of equations for �l, �t, and �m one
finds

�l =
	phys

	LB
��phys

�LB
�2 �LB

�phys
,

�t = �	phys

	LB
�2��phys

�LB
�3� �LB

�phys
�2

,

�m = �	phys

	LB
�4��phys

�LB
�6� �LB

�phys
�3

.

In all the simulations reported in this paper, the values of the
lattice Boltzmann parameters are fixed to be

	LB = 4.1, �LB = 0.1, �LB = 5.4 � 10−4, �6�

where the value of �LB results from a choice of 
=0.002. If
we now take, for example, silicone oil as the physical coun-
terpart,

	phys = 103 kg/m3, �phys = 5 � 10−5 m2/s,

�phys = 0.02 kg/s2, �7�

we obtain

�l = 1.6 � 10−6 m/lattice distance,

�t = 5.4 � 10−9 s/lattice time,

�m = 1.1 � 10−15 kg/mass unit. �8�

For convenience, we also state the conversion factor for en-
ergy,

�E =
�l2�m

�t2 = 7.0 � 10−11 J/lattice unit.

Thus, for the above choice of physical parameters our
simulated droplets would be of micron scale. Note that it is
not directly possible to assume, for example, water as the
simulated liquid since the low viscosity and large surface
tension would lead to �l of order 10−10 m / lattice distance.
That in turn would mean that we would have to increase the
number of lattice sites by a factor of 106 in order to simulate
micron-sized water droplets, an option that is not computa-

tionally feasible. However, since in our case the only effect
of viscosity is to change the relaxation time of the fluid, we
expect the results in this work to be valid for all kinds of
Newtonian liquids.

An important natural scale in the physics of liquid inter-
faces is the capillary velocity uc=� / ��	� and the associated
capillary time tc= l /uc, where l is a typical length scale in the
system. tc can be understood as the characteristic time over
which a disturbance in the liquid-vapor interface is expected
to be smoothed out. Taking l�10 lattice units, which is the
order of the size of a droplet in our simulations, we obtain
for the above set of parameters �6� and �7� a value of tc,LB
=7.6�103, corresponding to tc,phys=4.1�10−5 s. For conve-
nience, we will normalize all our simulation times to 104


 tc,LB time steps.

B. Analytical model

1. Introduction

Geometry. We use a simple macroscopic three-
dimensional model for a droplet suspended on an array of
cuboidal posts with width b, height h, and distance d be-
tween each other. Gravity will be neglected in this work
since we are considering droplets that are smaller than the
capillary length k−1=	� /g	, which is about 1.4 mm for our
choice of parameters �7�. Looking at an equilibrium configu-
ration of a typical droplet in our simulation �Fig. 1�, we see
that we can well approximate the part of the droplet which is
located above the posts as a spherical cap with base

a = 1
2 �b + 2d� = R sin � ,

where R is the radius of the cap �Fig. 2�. The impaled part is
modeled as a cylinder with radius a and height p �penetration
depth�, surrounding the central pillar. In this model, the Wen-
zel state would correspond to p=h and the CB state to p
=0.

In the simplest version of this model, we assume the mac-
roscopic contact line of the droplet to be pinned at the edges
of the outer pillars. In a subsequent refinement, we shall
relax this condition and allow the base radius a to vary. Fol-
lowing the simple argument of Gibbs �45�, � can vary be-

FIG. 2. �Color online� Cross section through a droplet sus-
pended on a pillar array as described by our analytical model. The
droplet is assumed to be pinned at the edges of the pillars, i.e., has
a fixed base radius a. For a given droplet size, the only way to
minimize the overall free energy is thus via a change in the pen-
etration depth p. This also fixes the apparent contact angle �.
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tween the value of the advancing contact angle �a=�a,flat
=�Y and the receding contact angle �r=�r,flat−90° =�Y −90°.
In general, the macroscopic contact angle � is different from
the equilibrium Young contact angle �Y of a droplet on a flat
surface. Note that in this work we only consider hydrophobic
substrates ��Y �90°�.

The simplifications of our model in particular entail the
neglect of the curvature in the bottom region of the droplet.
In reality, this part is not a cylinder but instead adopts the
shape of a minimal surface spanned by the pillars, rendering
its geometry highly nontrivial and hard to capture exactly in
an analytical form �see Fig. 3�. As a consequence, the overall
liquid surface in our analytical model is slightly larger than it
would be in reality and in our simulations. Also, the cylinder
part or our model droplet contributes slightly too much to the
total volume compared to the spherical cap part.

The volume of the droplet �cap and cylinder� shall be
fixed,

V0 = const = Vsph��� + Vcyl�p� , �9�

with

Vsph =
1

3
�a32 − 3 cos � + cos3 �

sin3 �
, Vcyl = ��a2 − b2�p ,

being the volume of the cap and the penetrating cylinder,
respectively. Note that when we speak of the size of a drop-
let, we usually mean the effective radius Reff that corresponds
to a given volume V0. The quantity Reff is thus to be distin-
guished from the radius of the spherical cap R.

Since we are interested in the dependence of the droplet
free energy on the penetration depth p, we consider p as our
free variable and determine the dependence of � on p via the
fixed volume condition �9�. As the corresponding analytical
expression ��p� is rather lengthy, we will not state it here.
The surface area of the spherical cap and the lateral surface
area of the cylinder that is not covered by the pillars are
given by

Ssph = 2�a21 − cos ��p�
sin2 ��p�

, Scyl = �2�a − 4b�p ,

respectively. Note that the above expressions for Vsph and
Ssph are valid for arbitrary angles of � between 0° and 180°.

Free energy. Since the volume of the drop is constant,
only surface free-energy contributions play a role in the
present problem. The free energy of a suspended droplet in
our model, neglecting gravity, is given by

F�p� = �LV�Ssph��,a� + Scyl�p,a� + Sbot�a�
for p�h

�

+ �SL�8bp + Sbot�a�
for p=h

� + �SV�8b�h − p� + Sbot�a�
for p�h

� ,

�10�

where Sbot=�a2−b2 is the area of the liquid-vapor interface
on the bottom of the droplet cylinder. The horizontal braces
indicate that the corresponding terms should only be in-
cluded when p�h or p=h, respectively. Since the relevant
quantity is the reduced free energy f�p�
F�p�−F�0�, we
have already neglected all trivial constant contributions to F.
With the help of the Young relation �1�, the reduced free
energy can be finally written as

f�p� = �LV�Ssph��� − Ssph�p=0 + Scyl�p� − 8bp cos �Y

− Sbot

for p=h

�1 + cos �Y�� .

�11�

As expected, the free energy can be evaluated knowing
�LV and �Y alone. Moreover, the free energy is scale invari-
ant: if all length scales are increased by a factor of x, f just
changes by a factor of x2 due to the presence of the surface
terms. This is a consequence of the fact that no volume term
appears in f . Thus, changing the system size is equivalent to
changing the measurement units with no effect on the phys-
ics. Hence, our model is applicable to droplet phenomena on
any length scale as long as the droplet is small enough to
neglect the influence of gravity �and large enough to neglect
thermal fluctuations�.

The term proportional to Sbot represents the free-energy
change when the droplet reaches the bottom substrate and the
liquid-vapor and solid-vapor interfaces are replaced with one
single solid-liquid interface. In reality, due to the curvature
of the lower interface, this transition would not happen im-
mediately but instead there will be some small part of the
liquid first contacting the substrate and this contact line will
then propagate outward �46�. The final reduction in free en-
ergy due to the Wenzel transition is given by

�EWenzel = Sbot��SL − ��LV + �SV�� = − Sbot�LV�1 + cos �Y� ,

�12�

which is always negative and hence the Wenzel state is at
least metastable.

2. Predictions

Free-energy landscape. In Fig. 4 we plot the dependence
of the free energy on the penetration depth p for varying
Young contact angles and droplet radii. We observe several
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FIG. 3. �Color online� Geometry of the droplet as observed in
our simulations. �a� shows a cross section of the droplet and �b�
shows the liquid-vapor interface at different z values �marked in
�a��. It is clearly seen that especially close to the bottom of the
droplet the approximation of its shape by a cylinder becomes in-
creasingly imprecise.
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interesting features: first, the intrinsic stability of the CB
state, determined by the slope of f at p=0, depends on both
the contact angle and the size of the droplet. This fact is well
known from previous studies �14,23–26,47�. However, it
must be added that in experiments it is typically hard to
differentiate between the Wenzel transitions due to the intrin-
sic instability as compared to nucleation of contact.

Second, and more remarkably, the free energy can have a
local minimum at a finite penetration depth that exists in
addition to the minima associated with the CB and Wenzel
states. Given that �Y is smaller than a certain value �calcu-
lated below�, the intermediate minimum occurs for any drop-
let size, but the corresponding penetration depth pmin de-
creases with decreasing Reff �see Figs. 4�c� and 4�d��.
Although the existence of this metastable state has only re-
cently been described in the literature �34�, its implications
for the wettability behavior of droplets are crucial, as will be
detailed below.

Stability of the Cassie-Baxter state. The CB state is lo-
cally stable �i.e., metastable� in this model if df /dp �p=0�0,
where

df

dp
= �LV�dSsph

dp
+ �2�a − 4b� − 8b cos �Y� . �13�

Note that from now on we will neglect the term proportional
to Sbot, which is responsible for the Wenzel transition, in Eq.
�11� since it will merely lead to a complicated nonanalytical
behavior of the free energy and does not provide any further
insights. In order to evaluate dSsph /dp we first calculate
d� /dp with the help of the fixed volume condition �9�,

dV0

dp
= 0 =

dVsph

dp
+

dVcyl

dp
⇒

d�

dp
= −

dVcyl

dp � dVsph

d�

= 4 cos4�

2
� b2

a�
− a� .

This gives

dSsph

dp
=

dSsph

d�

d�

dp
= 4a sin

�

2
cos

�

2
�b2

a2 − �� .

Using the expression for ��p� at p=0 enables us to determine
the region in the �Y-Reff plane where the CB state is meta-
stable, that is, the set of points where df /dp�Reff ,�Y� �p=0
�0. Due to the scale invariance of the free energy, this re-
gion depends on the geometry of the pillar array only
through the ratio of the mutual pillar distance b to the pillar
width d.

We see �Fig. 5� that for very small droplets compared to
the base length a=b+d, the model predicts a stable CB state
even for Young contact angles close to 90°. Physically, this is
understandable because the surface of the cap of such drop-
lets is almost flat and hence does not exert any significant
impalement inducing force. From our model point of view,
this behavior arises from the fact that the local minimum of
the free energy shifts continuously to p=0 �Figs. 4�c� and
4�d��; hence, the impaled state now effectively appears as a
CB state and the phase boundaries for the impaled and CB
state are identical. In that situation, the CB state becomes the
only possible state.

Droplets very large compared to a will also have a wide
region of stability since the decrease in free energy due to a
reduction in the liquid-vapor surface area of the large spheri-
cal cap cannot compensate anymore the free-energy increase
resulting from the gain in liquid-solid contact area of the
penetrating cylinder. As is suggested in Fig. 5 and will be
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FIG. 4. �Color online� Free-energy landscape for a droplet in our
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geometry of b /d=1. Except for the lower left plot, all curves are
drawn up to the point �p�1.5a� where no further liquid remains in
the spherical cap. �a� and �b� Dependence of the free energy
f /4�a2�LV on the penetration depth p and the Young contact angle
�Y for a droplet of fixed size Reff=a. The vertical streaks at the right
end of the curves indicate the free-energy loss −�EWenzel �Eq. �12��
in case a transition to the Wenzel state would occur at p�1.5a. �c�
and �d� Dependence of the free energy f /4�a2�LV on the penetra-
tion depth p and the droplet size Reff for a contact angle of �Y

=100°. Note the appearance of a free-energy barrier between the
CB and partially impaled state with increasing droplet size.
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FIG. 5. �Color online� Regions of stability for the CB state. We
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for the existence of a local minimum of the free energy �see Eq.
�15��.
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proven analytically in the next section, there is never an un-
stable CB state in the region where no free-energy minimum
exists.

As becomes clear from Fig. 5, the shape of the stability
region of the CB state is largely independent of the geom-
etry, and its characteristic shape offers the interesting possi-
bility of a reentrant transition �Fig. 6�: for a given Young
contact angle, imagine a droplet that is very large and ini-
tially deposited at the top of the pillar array. According to our
analytical model, the droplet will adopt a metastable CB
state �stage 1 in Fig. 6�. If the droplet is now reduced in size
�e.g., through evaporation� and the Young contact angle is
not too large, the droplet will enter the region of CB insta-
bility �stage 2�. Depending on the tallness of the pillars, the
droplet will now either go over into the Wenzel state or the
impaled state. In the latter case, further reduction in the drop-
let’s size brings it back again into the CB state �stage 3�. This
remarkable behavior is due to the peculiar dependence of the
position of the intermediate minimum of the free energy on
droplet size �Figs. 4�c� and 4�d��. This aspect will become
clearer in the following section.

The existence of a reentrant transition can explain some
recent experimental observations, where small evaporating
droplets are found to remain close to the top of the substrate
�26,48� and not get trapped inside the texture. Interestingly, a
recent suggestion of “immortal” CB states �23� was based on
the speculative assumption that a droplet remains in a CB
state independent of its size. However, we find that this only
holds in the region of the phase diagram where no impaled
state exists �regions to the right of vertical dashed lines in
Fig. 5�.

Intermediate minimum of the free energy. As already
noted, an unstable CB state does not necessarily mean that
the droplet goes over into the Wenzel state since the free
energy can have a minimum before the droplet reaches the

bottom. Local minima of the free energy can of course al-
ways be induced by local defects on the pillar sidewalls, in
which case the droplet would pin at the defect. It will, how-
ever, be demonstrated that in the present case, the local mini-
mum is of very general nature, largely independent of the
particular geometry.

To understand the origin of the intermediate minimum, we
split up the free energy �Eq. �11�� as f�p�= fsph�p�+ fcyl�p�,
where fsph�p�=�LV�Ssph�p�−Ssph�0�� represents the contribu-
tion of the spherical cap and fcyl�p�=�LV�Scyl,LV�p�
−8bp cos �Y�=�LV�2�a−4b�1+2 cos �Y��p represents the
contribution of the cylinder �Fig. 7�. It becomes now evident
that the intermediate minimum of the free energy appears
due to the fact that, with increasing penetration depth, the
surface of the spherical cap decreases in a nonlinear fashion,
while the surface of the cylindrical part just increases lin-
early. In particular, when the droplet has penetrated deep
enough into the grooves, almost no liquid volume remains in
the spherical cap, which then becomes nearly flat. In this
regime, fsph decreases only slightly with increasing p and
consequently fcyl dominates the total free energy. Note that
fsph depends only on the droplet size and substrate geometry
and not on the Young contact angle �49�. Therefore, the de-
pendence of the local minimum on the contact angle is due to
the change in the slope of fcyl.

A more general understanding can be gained by imagining
the pillars to represent a �partly open� hydrophobic capillary
tube that is wetted by a droplet placed at its entry. In this
situation, the equilibrium state of the droplet is a conse-
quence of the balance between the Laplace pressure within
the spherical cap �pushing the droplet into the capillary� and
an opposing capillary force due to the hydrophobic substrate
and the penetrating liquid. This simple reasoning in fact sug-
gests that the intermediate minimum constitutes a generic
equilibrium state of a droplet, occurring in any situation of
filling a hydrophobic capillary by a spherical liquid reservoir.

In order to determine the position of the minimum, we
solve df /dp=0 for � which then in turn will give p by means
of the fixed volume condition �9�. Defining x=cos � /2, we
obtain
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FIG. 6. �Color online� Reentrant transition. Given a moderate
contact angle, a large droplet is predicted by our analytical model to
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df

dp
= 0 = 4a�b2

a2 − ��x	1 − x2 + �2�a − 4b� − 8b cos �Y

⇒ �1 − x2�x2 = �2ab�1 + 2 cos �Y� − a2�

2��a2 − b2� �2

. �14�

This is a quadratic equation in x2 and the necessary condition
for the existence of a solution follows from the positivity of
its discriminant. We thus find that the minimum exists if

�Y � �Y
lim = arccos�−

1

2
+

b

4a
� . �15�

As previous plots already have suggested, this condition does
only depend on the geometry of the pillar array through the
ratio of the pillar to gap width b /d. Equation �14� admits for
four solutions for � in the range 0–� of which at most two
are compatible with the fixed volume condition. The solution
with the smaller value of � represents the minimum of the
free energy.

In Fig. 8�a� we plot the corresponding penetration depth
pmin for the case b=d, equivalent to a value of �Y

lim=109.5°.
Increasing �Y at constant droplet size leads to a smaller pen-
etration depth at the intermediate minimum as the tendency
for the droplet to move into the CB state is increased. Cor-
respondingly, keeping the contact angle fixed, it is seen that
the penetration depth increases with the droplet size. Of
course, if the pillars are shorter than pmin, the droplet under-
goes a Wenzel transition before ever reaching the local mini-
mum. Since in practice the pillars cannot be made arbitrarily
high, the local minimum will only be relevant for small drop-
lets, i.e., of size Reff�h.

For constant droplet size and pillar width, the increase in
the gap size d between the pillars has two main effects: first,
the penetration depth at the free-energy minimum is drasti-
cally reduced, i.e., a droplet in the intermediate minimum
remains closer to the top of the pillar array �Fig. 8�b��. Sec-
ond, an increase in d leads to a reduction in the pillar density
�, whereby the effective contact angle in the CB state is
increased �see Eq. �2��. On the other hand, a large gap size
implies a strongly bulged bottom part of a CB droplet, more

easily inducing a Wenzel transition if the pillars are not suf-
ficiently high. Therefore, as long as the pillars are suffi-
ciently tall, increasing the pillar distance can be considered
as favorable for the efficiency of self-cleaning surfaces.

Free-energy barrier. If a local minimum of the free energy
exists, the metastability of the CB state depends on the local
maximum of the free energy that occurs at a smaller penetra-
tion depth. Then the other valid solution of Eq. �14� corre-
sponds to such a local maximum. Here, the necessary condi-
tions for its existence are inequality �15� and the additional
condition df /dp �p=0�0.

In order to induce a transition from a metastable CB state
to the intermediate minimum or Wenzel state, one has to
apply on the droplet an amount of work that is equal to the
height of the free-energy barrier �F=F�pmax�−F�0�
= f�pmax�. This quantity is displayed for several droplet sizes
in Fig. 9, both in lattice Boltzmann and physical units
�joules�. The conversion factors used are given in Eq. �8�.

III. SIMULATION RESULTS

We now compare the predictions of our analytical model
with lattice Boltzmann computer simulations. Our model
was motivated by the observation that the equilibrium con-
figuration of any droplet suspended on the pillar array looks
like Fig. 1, i.e., a spherical cap above the posts and a bulged
cylinderlike part between the posts. Hence, any droplet that
is deposited on the pillar array in, for example, a purely
spherical form will relax to this equilibrium shape, given that
its surface contacts the sidewalls of some of the neighboring
pillars. Subsequently, the droplet will move into its equilib-
rium position, minimizing its free energy as approximated by
our free-energy model. The time scale related to shape relax-
ation is determined by the capillary time, which is at least
one order of magnitude smaller than the second time scale
related to the gradient of the free energy with respect to p.
Nevertheless, in order to minimize unwanted dynamical pro-
cesses and also to have better control about the initial posi-
tion of the droplet, we usually put the droplet of given over-
all volume V�Reff� directly in a cylinder-plus-cap form into
the pillar array. The point in time when steady state is
reached is determined by checking that the liquid interface
does not move anymore over a sufficiently long time.

Simulation setup. In our lattice Boltzmann simulations,

pmin�a�0.0

0.5

1.0
1.5

2.0

95 100 105 110 115
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Contact angle ΘY �deg�

D
ro

pl
et

si
ze

R
0�

a

0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pillar gap width d�b
Pe

ne
tr

at
io

n
de

pt
h

p m
in
�a

0

Reff�0.8a0

Reff�1.0a0

Reff�1.2a0

(b)
(a)
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we will generally fix the LB relaxation time to �=0.8, a
value where our model is expected to be numerically most
stable �50�. The temperature is set to T=0.4, giving rise to
coexisting liquid and vapor densities of 	L
4.1 and 	V

2.9. Note that this rather small density ratio �a well-known
limitation of the present LB model� is not expected to ad-
versely affect our results since we are only concerned with
the quasistatic �thermal equilibrium� behavior of a droplet.
For the interface parameter 
 we will use a value of 0.002.
Besides that, we have also tested other values of 
 and can
confirm that the obtained results remain qualitatively the
same.

Our simulation box consists of at least Lx�Ly �Lz=64
�64�64 lattice nodes; but, especially when dealing with
smaller droplets, we will increase the resolution by using up
to 1443 nodes in order to minimize lattice effects. The sub-
strate at the top of our simulation box is flat. At the bottom,
it is decorated with equidistant cuboid pillars of width b,
height h, and mutual center-to-center distance d+b �d being
the width of the gap between two neighboring pillars�. When
working with the 643-node system, we will typically use b
=12, d=12, and h around 30 lattice units �b, d, and h are
rescaled accordingly for larger system sizes�. These values
result in r=3.5 for the roughness factor and �=0.25 for the
pillar density. Periodic boundary conditions are applied along
the x and y directions.

The width of the diffuse interface is roughly four lattice
units. Since this is much smaller than the typical droplet size,
we expect that the influence of this quantity on our results
can be safely neglected. Possible exceptions might be situa-
tions close to depinning events, where the droplet rapidly
looses contact to a large part of solid substrate. These situa-
tions are, however, not particularly relevant for the present
purposes.

A. Stability of suspended droplets

1. Metastable states

The basic prediction of our free-energy model is the ex-
istence of three different �meta�stable droplet configurations,
namely, �i� the CB state, which is stable given that �Y is
larger than a certain value depending on the geometry and
the droplet size; �ii� an impaled state between CB and Wen-
zel states that exists given that �Y ��Y

lim; and �iii� the Wenzel
state, which is always at least metastable. In what follows,
we will not consider transitions into the Wenzel state that are
initiated by the contact between the lower part of the droplet
and the bottom substrate �curvature-induced impalement�.
These issues have been studied extensively in the literature
�see �23,24,36,47��. Instead, we will focus on the intrinsic
stability of the CB and the impaled state by making the pil-
lars so tall that no contact of the liquid to the bottom sub-
strate is possible.

Examples. In Fig. 10, we first of all exemplify the typical
behavior of the droplets in our simulations. Guided by the
behavior of the theoretical free-energy curves �displayed in
the leftmost panels�, we deposit the droplet at different initial
positions and wait until the droplet has settled into its equi-
librium state. Since the final state of a droplet depends cru-

cially on where it is put at the beginning, the results clearly
show the indication of metastability. We also notice a nice
agreement with the predictions of the theoretical free-energy
curves.

The analytical model is now investigated in closer detail
by scanning through the �Reff ,�Y� parameter plane systemati-
cally. In order to test the stability of the CB state, we have to
deposit the droplet initially with a finite penetration depth
pinit. On one hand, a small value of pinit should be favored in
order to make sure that we do not cross a possible free-
energy barrier �see Fig. 9�. On the other hand, using a too
small penetration depth can lead to an immediate dissolution
of the droplet from the outer pillars because the droplet can
always minimize its free energy by going over into a purely
spherical shape instead of penetrating into the pillars �see
Sec. III A 3�. This effect is not considered in our free-energy
model and necessarily leads to a certain ambiguity in inter-
preting the simulation results. In practice, we will set the
initial penetration depth pinit=4 lattice nodes when using a
system size of 64�64�64. When testing with higher lattice
resolutions �up to 144�144�144�, we rescale pinit accord-
ingly.

Phase diagram. In Fig. 11, the simulation results are con-
densed into a phase diagram and compared to the predictions
of our model. Note that we have used only integer values of
the contact angle; hence, the data points represent an arith-
metic mean of two corresponding measurements, i.e., if we
observe a state to be unstable for a value � and stable for
�+1, we plot a data point at �+1 /2 to represent the phase
boundary.

One can clearly see that the overall behavior of the drop-
let is predicted correctly by our model. In particular, the
region of CB stability �i.e., regions II and III� generally in-
creases with the droplet size. However, the boundary be-
tween a stable and unstable CB state is found to deviate from
the predictions of our model quite strongly for larger drop-
lets. We attribute this to the simplifications of our model, in
particular to the fact that droplets, which are located close to
the top of the pillar array, spread laterally in order to fulfill
the Young condition on the flat top of each pillar �see also
Fig. 13�a��.

In order to test this explanation, we recalculate the phase
boundary with a refined version of our model, where the base
radius a is now allowed to increase such that ���Y is guar-
anteed for any value of p. Effectively, this means that we
now fix �=�Y and consider the dependence of a on p �instead
of ��p�� to determine the free-energy minima. Indeed, as the
dashed curve in Fig. 11 shows, we now obtain nice agree-
ment with the simulation results for larger droplets.

Note that the simple criterion �3� would give for our setup
a value of �Y �103° below which the CB state would be
unstable, independent of the droplet size. This estimate is
clearly too crude for the small droplets considered here. Be-
sides that, it also neglects possible free-energy barriers be-
tween the CB and Wenzel states, which—as our work
demonstrates—are crucial to the droplet phenomenology.

The boundary for the existence of the intermediate mini-
mum of the free energy is observed to lie between �Y
=106° and 107°, in slight deviation to �Y =109.5° as pre-
dicted by our analytical model. This deviation can be ex-
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plained by the fact that in reality the surface of the impaled
part of the droplet is generally smaller than assumed in our
model �see Fig. 3�. Hence, also the contribution of the cyl-
inder part to the total volume is smaller compared to the
spherical cap part. Consequently, a smaller volume loss of

the spherical cap when the droplet impales leads to a smaller
loss factor of liquid-vapor contact area. Therefore, at least
for large contact angles, the overall liquid-vapor interface
cannot be reduced efficiently enough to outweigh the gain in
free energy due to capillary wetting.
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FIG. 10. �Color online� Typical droplet behavior for different contact angles and initial positions for a fixed droplet size of Reff=a. For
each case, we show in the leftmost panel the theoretical �normalized� free-energy curve and mark the initial penetration depth of the droplet
with a �. The arrows indicate the predicted time evolution. The simulation results, allowing us to test these predictions, are displayed in the
panels on the right-hand side �simulation parameters: b=d=12 LB units, all times are normalized to 104
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to the phase diagram �see Fig. 11�.
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2. Minimum of the free energy

We now take a closer look at droplets which are residing
in the intermediate minimum of the free energy. In the last
section, we have already noticed that such a minimum exists
below a certain �Y which only depends on the geometry. As
another test of the predictive power of our model, we com-
pare the penetration depths of droplets in the free-energy
minimum and compare them to the theoretical expectations
�Fig. 12�. The penetration depth given in the plot is the av-
erage of the values measured at the three-phase contact line
at the central pillar and one outer pillar.

We see that as long as the droplet is of the typical size of
the array geometry �i.e., Reff�a�, the model is in rough
agreement with the results of our simulations. In particular,

simulated curves for different droplets sizes are approxi-
mately parallel for a wide range of contact angles. A similar
trend is predicted by the analytical model. The observed de-
viations can presumably be attributed to the fact that the
contribution of the bottom part of the droplet to the total
volume is overestimated by our model. A more quantitative
agreement between theory and simulations is however lim-
ited by the highly nontrivial shape of the immersed part of
the droplet, which is difficult to describe analytically.

3. Penetration depth in the CB state

An interesting question is now what happens to a droplet
for which the model free energy predicts a vanishing �or at
least very small� penetration depth? It is clear that, due to the
neglect of the Gibbs condition for the apparent contact angle,
the original analytical model will be increasingly inaccurate
for small penetration depths and large droplet sizes. In Fig.
11 we have demonstrated that the model can in principle be
adapted to take into account these constraints, however, at
the price of increased complexity since the crossover region
between the pinning and no-pinning regimes is hard to cap-
ture analytically.

In our simulations, we observe that for moderate values of
the contact angle �i.e., �Y �105° for our setup� or larger val-
ues of the droplet size �i.e., Reff�1.1a�, a droplet deposited
close to the top of the pillar array usually remains in a partly
impaled CB state with a finite penetration depth �Fig. 13�a��.
The droplet spreads laterally into the grooves between the
outer pillars in order to fulfill the constraint ���Y on top of
each pillar. This behavior is typical for large droplets and
goes in line with the findings in the literature �23,24�.

For larger values of the contact angle or smaller droplet
sizes, we observe that the droplet usually dissolves from the
sidewalls of the outer pillars and eventually attains a position
just on top of the central pillar �Fig. 13�b�; see also Fig. 10�.
Similar behavior has also been found for nanoscale droplets
�19�. The effect of detaching can be understood as a result of
the competition between minimization of the liquid surface
�favors a spherical form� and the free-energy cost for the
creation of two interfaces �liquid-vapor and solid-vapor�
from one �liquid-solid�. The liquid-solid contact area gener-
ally increases with droplet size; hence, more energy is
needed for dissolution. Furthermore, comparing the liquid-
vapor free energy FLV of a droplet within our model to a
droplet in a spherical cap shape �of the same volume� sitting
on top of just one pillar, we see that the relative gain in pure
surface free energy FLV /FLV,spherical cap is larger for smaller
droplets �Fig. 13�c��. Therefore, the resulting dissolution
force due to surface energy minimization increases with de-
creasing droplet size, eventually leading to a detachment of
the droplet from the sidewalls of the outer pillars.

B. Droplet evaporation

The case of a droplet evaporating from the CB state on a
pillar array has been extensively studied in the literature
�23–26,36,48,51�. The common observation is that evapora-
tion can induce a transition to the Wenzel state. The mecha-
nism for this effect is easy to understand: as the droplet de-
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creases in size, the curvature of the droplet surface grows
and consequently the lower part of the surface bulges more
strongly. Therefore, if the pillar distance is large and the
pillars are not too high, the droplet eventually touches the
bottom substrate, thus initiating the transition toward the
more stable Wenzel state. Furthermore, even without any
nucleation of contact between the droplet and the bottom
substrate, the CB state can become intrinsically unstable be-
low a critical droplet size.

There is currently no definite conclusion in the literature
about what happens to an evaporating droplet that is sus-
pended on pillars which are so tall that no contact between
liquid and bottom substrate is possible �23,26,52�. Here, we
show that, as is predicted by the analytical model �see Fig.
6�, if the CB state becomes unstable, the droplet is subject to
a reentrant transition �34�. Consequently, it always attains a
CB state at the end of the evaporation process.

In our simulation, a quasistatic evaporation is accom-
plished by constantly removing vapor from the volume at
one horizontal plane close to the top of the simulation box
�across a surface of area L2�. Some of the liquid of the drop-
let will then evaporate to maintain the equilibrium vapor
pressure. In order to ensure that the system stays in equilib-
rium throughout the process, we have to estimate the correct
rate for removing mass from the system. A possible candi-
date for the relevant time scale here is the capillary time tc
=R /uc, with R as the typical length scale, in our case the
radius of the droplet. The mass flux, i.e., evaporation rate per
lattice node, can be approximated by

j 

Vdrop�	L − 	G�

tcL
2 , �16�

with Vdrop= 4
3�R3; 	L=4.1 and 	G=2.9 as the densities �in LB

units� of liquid and vapor, respectively; and L as the extent of
the plane where the mass will be removed. For L�60 and a
droplet of radius R�10 we find j�10−4. In our simulations,
however, we have observed that this value of j can some-
times be too large and consequently lead to strong nonequi-
librium effects that even mask the interesting phenomenon of
the reentrant transition. The reason is that the motion of the

droplet along the pillar sidewall is determined by the gradi-
ent of the actual surface free energy of the droplet, df�p� /dp.
Hence, without the knowledge of the exact free energy, one
can estimate the correct evaporation rate in order to ensure
quasistatic equilibrium of the droplet only after the simula-
tion has finished. Based on that experience, we will typically
take j�10−7 , . . . ,10−5 in our simulations.

Evaporation with reentrant transition. In Fig. 14 we focus
on the evaporation process of a droplet of size Reff=1.2a that
is initially in a stable CB state with a contact angle of �Y
=103°. The stability of this state has been checked before-
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hand by performing a simulation without evaporation over a
sufficiently long time. The stability is also suggested by the
corresponding theoretical free-energy curve for t=0 that is
plotted in Fig. 14�c�. However, as explained in Sec. III, while
the theoretical curve predicts a vanishing penetration depth,
in our simulation the droplet resides in a partly impaled CB
state at the beginning. We remark that the theoretically cal-
culated free-energy curves are not expected to describe every
detail of our simulation. Instead, they are given here to pro-
vide a basic understanding of the droplet behavior.

During evaporation, the droplet decreases in size �see Fig.
14�d�� and, while still being in the CB state, its penetration
depth slightly increases. At time t
30�105, the CB state
becomes unstable, and the droplet quickly slides down the
pillars, attaining its new equilibrium position at the local
minimum of the free energy.

Due to the slowness of the vapor removal, a quasistatic
equilibrium is maintained throughout the process and the
droplet adapts its penetration depth in accordance with the
prediction of the analytical equilibrium model �given by the
solid curve in Fig. 14�d��. As expected, since the position of
this minimum shifts toward smaller penetration depths as the
droplet size decreases, we now find the droplet reaching back
again to the top of the pillars. At t
1.77�107 the droplet,
having lost about three quarters of its initial volume, finally
re-enters the CB state again by dissolving from the pillar
sidewalls and attaining a position on top of the central pillar.

Evaporation without reentrant transition. For the purpose
of efficient self-cleaning surfaces it is desirable to avoid the
impalement of the droplet during evaporation at all. From
our previous analysis we guess that this can be achieved by
several means: either one can opt for a larger gap width
between the pillars, thereby reducing the maximal penetra-
tion depth, or one can choose a larger contact angle. The
evaporation process using the second option is shown in Fig.
15.

Although the free-energy curves predict that the penetra-
tion depth should go toward zero, the droplet remains pinned
at the outer pillars because the cost of the creation of two
interfaces �liquid-vapor and solid-vapor� from one �liquid-

solid� cannot yet be provided by the capillary force �see Sec.
III A 3�. But, due to the evaporation, the liquid-solid contact
area decreases and the lower contact line moves upward,
until at time t
6.5�105 the droplet finally detaches from
the outer pillars. This effect of detaching goes in line with
the observation of contact line depinning during the evapo-
ration of a large drop in �24�.

Interestingly, previous 2D simulations of the evaporation
process for similarly small droplets �24� did not observe a
reentrant transition. There, the droplet was found to always
immerse fully into the pillar structure. A similar behavior is
observed in our simulations when a significantly larger
evaporation rate is used. We therefore suspect a violated qua-
sistatic equilibrium and the occurrence of inertial effects
�i.e., acceleration of the droplet as the steepness of the free
energy increases too quickly� as the probable reasons for the
observations in �24�. The reentrant transition as such basi-
cally results from the pinning condition and should not be
bound to a certain dimensionality.

IV. CONCLUSION

In this work, we investigated the behavior of liquid drop-
lets on hydrophobic patterned substrates in the case where
the droplets are of comparable size to the roughness scale.
For this purpose, we employed numerical computer simula-
tions based on the free-energy lattice Boltzmann method and
proposed a simple three-dimensional analytical free-energy
model. The results of both approaches were shown to be in
good accordance.

We established the existence of a new equilibrium state of
a droplet, in which the liquid is immersed in the texture, but
not yet contacts the bottom surface. This impaled state is
shown to originate from a generic minimum of the free en-
ergy that is expected to occur in any situation of capillary
wetting by a spherical liquid reservoir. Consequently, the
droplet sinks down to a finite depth, where the force of the
Laplace pressure in the spherical cap �pushing the liquid into
the grooves� is compensated by the repulsive force in the
hydrophobic capillary.

The penetration depth of a droplet in the impaled state
decreases with its size in such a way that very small droplets
are always located close to the top of the surface texture. It is
understood that this behavior applies only if the pillars are
made so tall that no Wenzel transition can occur while the
droplet penetrates. Droplets in the impaled state are expected
to have Wenzel-like properties, i.e., strong pinning and a
comparatively small apparent contact angle.

We further have directly demonstrated the metastability of
the different wetting states, where—depending on the geom-
etry, the microscopic contact angle, and its initial position—
the droplet can end up in the CB state, the impaled state, or
the Wenzel state. Using a simple analytical free-energy
model, the phase boundaries for the CB and the impaled state
were computed for small droplets. The observed penetration
depth of droplets in the impaled state is found to be in good
agreement with the theoretical predictions.

Generally, the CB state either appears with the droplet
having a small residual penetration or, more specifically for
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small droplets, with the droplet dissolving from most of the
pillars and attaining a purely spherical shape on top of a
single pillar. For large values of the contact angle, we find
that the droplet always adopts a CB state even if it is depos-
ited deeply in the pillar array �but not yet contacting the
bottom substrate�.

Finally, we have applied our results to the case of a drop-
let evaporating from a CB state—a process that is especially
relevant for the efficiency of self-cleaning surfaces. Depend-
ing on the contact angle, we find that in the course of evapo-
ration, the droplet either reaches a critical size and impales in
the texture or it remains in the CB state. If the droplet be-
comes unstable, it first sinks down to the local minimum of
the free energy, but then rises again toward the top of the
pillars.

ACKNOWLEDGMENTS

We thank David Quéré for helpful discussions and Alex-
andré Dupuis for providing us a version of his LB code.
M.G. gratefully acknowledges financial support by the Deut-
sche Forschungsgemeinschaft �DFG� under the Grant No.
Va205/3-2 �within the Priority Program Nano & Microfluid-
ics SPP1164�. ICAMS gratefully acknowledges funding from
ThyssenKrupp AG, Bayer MaterialScience AG, Salzgitter
Mannesmann Forschung GmbH, Robert Bosch GmbH, Ben-
teler Stahl/Rohr GmbH, Bayer Technology Services GmbH,
and the state of North-Rhine Westphalia as well as the Eu-
ropean Commission in the framework of the European Re-
gional Development Fund �ERDF�.

�1� T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Langmuir 12,
2125 �1996�.

�2� C. Neinhuis and W. Barthlott, Ann. Bot. �London� 79, 667
�1997�.

�3� D. Öner and T. McCarthy, Langmuir 16, 7777 �2000�.
�4� D. Quéré, Annu. Rev. Mater. Res. 38, 71 �2008�.
�5� C. Dorrer and J. Rühe, Soft Matter 5, 51 �2009�.
�6� Note that with “equilibrium” we refer to mechanical equilib-

rium, which requires a local minimum of the free energy and
hence in general corresponds to a metastable state. In contrast,
thermodynamic equilibrium is usually understood as referring
to the global minimum of free energy.

�7� A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546
�1944�.

�8� R. N. Wenzel, Ind. Eng. Chem. 28, 988 �1936�.
�9� J. Bico, U. Thiele, and D. Quéré, Colloids Surf., A 206, 41

�2002�.
�10� R. E. Johnson and R. H. Dettre, Contact Angle, Wettability and

Adhesion �American Chemical Society, Washington, D.C.,
1964�, Vol. 43, pp. 112–135.

�11� J. Bico, C. Marzolin, and D. Quéré, EPL 47, 743 �1999�.
�12� Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto,

Langmuir 18, 5818 �2002�.
�13� G. Carbone and L. Mangialardi, Eur. Phys. J. E 16, 67 �2005�.
�14� A. Lafuma and D. Quéré, Nature Mater. 2, 457 �2003�.
�15� B. He, N. A. Patankar, and J. Lee, Langmuir 19, 4999 �2003�.
�16� A. Marmur, Langmuir 20, 3517 �2004�.
�17� N. A. Patankar, Langmuir 20, 7097 �2004�.
�18� C. Ishino, K. Okumura, and D. Quéré, EPL 68, 419 �2004�.
�19� T. Koishi et al., Proc. Natl. Acad. Sci. U.S.A. 106, 8435

�2009�.
�20� D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silber-

zan, and S. Moulinet, EPL 74, 299 �2006�.
�21� M. Reyssat, A. Pépin, F. Marty, Y. Chen, and D. Quéré, EPL

74, 306 �2006�.
�22� J. Hyväluoma and J. Timonen, EPL 83, 64002 �2008�.
�23� S. Moulinet and D. Bartolo, Eur. Phys. J. E 24, 251 �2007�.
�24� H. Kusumaatmaja, M. L. Blow, A. Dupuis, and J. M. Yeo-

mans, EPL 81, 36003 �2008�.
�25� G. McHale, S. Aqil, N. Shirtcliffe, M. I. Newton, and H. Y.

Erbil, Langmuir 21, 11053 �2005�.
�26� M. Reyssat, J. M. Yeomans, and D. Quéré, EPL 81, 26006

�2008�.
�27� C. Cottin-Bizonne, C. Barentin, E. Charlaix, L. Bocquet, and J.

L. Barrat, Eur. Phys. J. E 15, 427 �2004�.
�28� P. S. Swain and R. Lipowsky, Langmuir 14, 6772 �1998�.
�29� G. Wolansky and A. Marmur, Colloids Surf., A 156, 381

�1999�.
�30� J. Jopp, H. Grüll, and R. Yerushalmi-Rozen, Langmuir 20,

10015 �2004�.
�31� D. Quéré, Rep. Prog. Phys. 68, 2495 �2005�.
�32� K. K. S. Lau et al., Nano Lett. 3, 1701 �2003�.
�33� R. D. Narhe and D. A. Beysens, Langmuir 23, 6486 �2007�.
�34� M. Gross, F. Varnik, and D. Raabe, EPL 88, 26002 �2009�.
�35� A. J. Briant, A. J. Wagner, and J. M. Yeomans, Phys. Rev. E

69, 031602 �2004�.
�36� A. Dupuis and J. M. Yeomans, Langmuir 21, 2624 �2005�.
�37� F. Varnik et al., Phys. Fluids 20, 072104 �2008�.
�38� N. Moradi, F. Varnik, and I. Steinbach �unpublished�.
�39� R. Blossey, Nature Mater. 2, 301 �2003�.
�40� M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev.

Lett. 75, 830 �1995�.
�41� P. G. de Gennes, Rev. Mod. Phys. 57, 827 �1985�.
�42� J. W. Cahn, J. Chem. Phys. 66, 3667 �1977�.
�43� D. Raabe, Modell. Simul. Mater. Sci. Eng. 12, R13 �2004�.
�44� S. Succi and J. M. Yeomans, Phys. Today 55�12�, 58 �2002�.
�45� J. W. Gibbs, Scientific Papers 1906 �Dover, New York, 1961�,

Dover reprint.
�46� M. Sbragaglia, A. M. Peters, C. Pirat, B. M. Borkent, R. G. H.

Lammertink, M. Wessling, and D. Lohse, Phys. Rev. Lett. 99,
156001 �2007�.

�47� M. Nosonovsky and B. Bhushan, Nano Lett. 7, 2633 �2007�.
�48� Y. C. Jung and B. Bhushan, Scr. Mater. 57, 1057 �2007�.
�49� This is a consequence of the assumption that the droplet re-

mains pinned to the edges of the pillars.
�50� M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans,

Phys. Rev. E 54, 5041 �1996�.
�51� H. Y. Erbil, G. McHale, and M. I. Newton, Langmuir 18, 2636

�2002�.
�52� Y. C. Jung and B. Bhushan, J. Microsc. 229, 127 �2008�.

GROSS et al. PHYSICAL REVIEW E 81, 051606 �2010�

051606-14

http://dx.doi.org/10.1021/la950418o
http://dx.doi.org/10.1021/la950418o
http://dx.doi.org/10.1006/anbo.1997.0400
http://dx.doi.org/10.1006/anbo.1997.0400
http://dx.doi.org/10.1021/la000598o
http://dx.doi.org/10.1146/annurev.matsci.38.060407.132434
http://dx.doi.org/10.1039/b811945g
http://dx.doi.org/10.1039/tf9444000546
http://dx.doi.org/10.1039/tf9444000546
http://dx.doi.org/10.1021/ie50320a024
http://dx.doi.org/10.1016/S0927-7757(02)00061-4
http://dx.doi.org/10.1016/S0927-7757(02)00061-4
http://dx.doi.org/10.1209/epl/i1999-00453-y
http://dx.doi.org/10.1021/la020088p
http://dx.doi.org/10.1140/epje/e2005-00008-y
http://dx.doi.org/10.1038/nmat924
http://dx.doi.org/10.1021/la0268348
http://dx.doi.org/10.1021/la036369u
http://dx.doi.org/10.1021/la049329e
http://dx.doi.org/10.1209/epl/i2004-10206-6
http://dx.doi.org/10.1073/pnas.0902027106
http://dx.doi.org/10.1073/pnas.0902027106
http://dx.doi.org/10.1209/epl/i2005-10522-3
http://dx.doi.org/10.1209/epl/i2005-10523-2
http://dx.doi.org/10.1209/epl/i2005-10523-2
http://dx.doi.org/10.1209/0295-5075/83/64002
http://dx.doi.org/10.1140/epje/i2007-10235-y
http://dx.doi.org/10.1209/0295-5075/81/36003
http://dx.doi.org/10.1021/la0518795
http://dx.doi.org/10.1209/0295-5075/81/26006
http://dx.doi.org/10.1209/0295-5075/81/26006
http://dx.doi.org/10.1140/epje/i2004-10061-9
http://dx.doi.org/10.1021/la980602k
http://dx.doi.org/10.1016/S0927-7757(99)00098-9
http://dx.doi.org/10.1016/S0927-7757(99)00098-9
http://dx.doi.org/10.1021/la0497651
http://dx.doi.org/10.1021/la0497651
http://dx.doi.org/10.1088/0034-4885/68/11/R01
http://dx.doi.org/10.1021/nl034704t
http://dx.doi.org/10.1021/la062021y
http://dx.doi.org/10.1209/0295-5075/88/26002
http://dx.doi.org/10.1103/PhysRevE.69.031602
http://dx.doi.org/10.1103/PhysRevE.69.031602
http://dx.doi.org/10.1021/la047348i
http://dx.doi.org/10.1063/1.2963958
http://dx.doi.org/10.1038/nmat856
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1063/1.434402
http://dx.doi.org/10.1088/0965-0393/12/6/R01
http://dx.doi.org/10.1063/1.1537916
http://dx.doi.org/10.1103/PhysRevLett.99.156001
http://dx.doi.org/10.1103/PhysRevLett.99.156001
http://dx.doi.org/10.1021/nl071023f
http://dx.doi.org/10.1016/j.scriptamat.2007.09.004
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1021/la011470p
http://dx.doi.org/10.1021/la011470p
http://dx.doi.org/10.1111/j.1365-2818.2007.01875.x

