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Abstract — Liquid droplets on patterned hydrophobic substrates are typically observed either in
the Wenzel or the Cassie state. Here we show that for droplets of comparable size to the roughness
scale an additional local equilibrium state exists, where the droplet is immersed in the texture,
but not yet contacts the bottom grooves. Upon evaporation, a droplet in this state enters the
Cassie state, opening the possibility of a qualitatively new self-cleaning mechanism. The effect is
of generic character and is expected to occur in any hydrophobic capillary wetting situation where

a spherical liquid reservoir is involved.

Copyright © EPLA, 2009

Introduction. — The fact that roughness at the
micrometer level can drastically increase the water-
repellant properties of a hydrophobic substance has
been known for a long time [1,2] and is a frequent
phenomenon in nature —the most prominent example
being the Lotus leaf. Technical advancement in surface
fabrication and novel industrial applications, such as
self-cleaning materials, has brought the phenomenon of
superhydrophobicity again in the focus of research during
the last years (see [3,4] for recent reviews).

Until now, mostly droplets that are much larger than
the typical roughness scale of the surface have been inves-
tigated. In that case, the droplet either appears in the
Wenzel state, where it completely wets the substrate [1],
or in the Cassie state, i.e. on top of the roughness struc-
tures [2]. The characteristic low-adhesion, water-repellant
properties of superhydrophobic surfaces are associated
with droplets in the Cassie state. Contrarily, the Wenzel
state leads to sticky, highly pinned droplets [5].

The fact that usually both the Cassie and the Wenzel
state can be observed on the same substrate implies that
both are separated by a free energy barrier, which can
be overcome by external forces or kinetic energy [5-7].
It is known that the transition from the Cassie to the
Wenzel state proceeds through the nucleation of contact
between the liquid and the substrate at the grooves [8],
initiated, e.g., via the increase of internal droplet pressure
during evaporation [9-11]. It is unclear, however, how
deep a droplet can really sink into the texture and how

this process is modified for droplets of similar size as the
roughness scale.

The validity and applicability of the classical two-state
picture of Wenzel and Cassie has been questioned several
times [12-14]. In particular, for the case of droplets that
are of comparable size to the surface roughness —and
which therefore directly feel the influence of the surface
geometry— it cannot be expected to hold a priori. Due
to the fact that such sub-micron-sized droplets have a
very short lifetime, only few experimental hints on their
behaviour have been provided so far [11,15,16]. Recent
studies, focusing explicitly on this situation, confirmed at
least the existence of the two equilibrium states [16,17].

Nevertheless, droplets of this length scale are not only
important for a better understanding of the wetting prop-
erties of microscale systems [18], but also in many indus-
trial applications, as, for example, in the production of
efficient self-cleaning surfaces [19], robust metal coatings,
or in plasma spraying techniques. Moreover, since these
droplets naturally occur in any condensation or evapora-
tion process [20,21], their phenomenology is also funda-
mental for a better understanding of the water-repellant
properties of many plant leaves or insect eyes and legs.

In this letter, we investigate the behaviour of droplets
in three dimensions both analytically and via numerical
lattice Boltzmann (LB) computer simulations. We show
that, for a droplet of comparable size to the surface
roughness, besides the possible Wenzel and Cassie states,
there exists a further generic state (hereafter called
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Fig. 1: (Colour on-line) A small droplet on a hydrophobic pillar
array. (a) shows the impaled state as a typical situation in the
present simulations. In the analytical model (b), the droplet is
assumed to be pinned at the edges of the pillars, i.e. it has a
fixed base radius a. For a given droplet size, the only way to
minimize the overall free energy is thus through a change in
the penetration depth p. This also fixes the apparent contact
angle 6.

impaled state), characterized by almost complete immer-
sion of the droplet into the texture, yet not touching the
bottom of the grooves. To the best of our knowledge,
such a state has not been reported before. It is important
to realize that this state is different from the “partially
impaled” conformations of the Cassie state, where the
liquid-vapor interface below the macroscopic contact line
is curved, but the droplet essentially remains on top of
the asperities [10,22]. This statement is supported by
the fact that we indeed find a coexistence regime for the
new impaled state and the (partially impaled) Cassie
state. By virtue of this new state, a droplet can in fact be
saved from penetrating into the texture completely and
going over to the Wenzel state. Instead, it can reenter
a Cassie state upon, e.g., evaporation. We demonstrate
the generic character of this finding, which has important
implications for the wetting behaviour of droplets and for
the effectiveness of self-cleaning surfaces.

Model. — The roughness of a surface is modeled by a
regular array of cuboidal pillars with width b, height h
and spacing d (fig. 1). The intrinsic hydrophobicity of the
flat parts of the surface is described by the Young contact
angle Ay . In this work we only focus on the case 6y > 90°,
which also is a necessary condition for the existence of a
Cassie state. Gravity will be neglected throughout, as we
only consider droplets that are smaller than the capillary
length (~2.7mm for water).

In the analytical model, we assume the part of the
droplet located above the pillars to be a spherical cap
with base a =b0/2+ d= Rsin6 (with R being the radius of
the cap and 6 the apparent contact angle). The impaled
part is approximated as a cylindrical liquid column with
radius a and height p (penetration depth), surrounding
the central pillar. The macroscopic contact line of the
droplet is assumed to remain pinned at the edges of
the outer pillars. Note that in this model the Wenzel
state would correspond to p=h and the Cassie state to
p =0. Therefore, the model also neglects a possible finite
penetration depth of a droplet in a “partially impaled”
Cassie state. As further simulations [23] have shown, the

symmetric droplet configuration considered here is stable
against moderate perturbations.

Since the mechanism of the Wenzel transition has been
discussed in detail in previous publications, we will ingore
the Wenzel state completely, and, for the rest of this work,
assume the pillars to be so tall that no contact between
the liquid and the bottom of the grooves is possible.

The total volume of the droplet shall be fixed, Vit =
const = Vipn(0) + Veyi(p), with Vipn = %71'@3(2 —3cosf+
cos® )/ sin® @ the volume of the cap and Viy = (1a® — b?)p
the volume of the penetrating cylinder. In the following,
instead of the droplet volume V., we will usually refer
to the effective droplet radius R.g that corresponds to a
spherical droplet of the same volume (47/3R2; = Viot).
We consider p as the free variable and determine the
dependence of # on p via the fixed volume condition.

Since the volume of the drop (and the temperature) is
constant, only surface energy contributions play a role for
a change in the total free energy. The free energy f(p) of
the model droplet, neglecting gravity and terms associated
with the Wenzel transition, and normalizing such that
f(0) =0, is then given by

f(p) = orv[Ssph(p) — Ssph(0) + Sey1,1v (p) — 8bp cos 9y](- |
1
Here, Sqpn = 2ma?(1 — cos ) /sin?@ is the surface area of
the spherical cap Scy1.1v = (2ma — 4b)p is the lateral liquid-
vapour surface area of the cylinder and —oy,y8bp cos 0y is
the (positive, since 0y >90°) free energy associated with
the wetting of the (eight) side walls of the pillars.

Analytical results. — Figures 2a, b show the depen-
dence of the free-energy on the penetration depth p for
varying Young contact angles and droplet sizes. Several
interesting observations can be made: Firstly, as also found
in the case of droplets large compared to the rough-
ness scale [5,10,11,22,24], the stability of the Cassie state,
determined by the slope of f at p =0, depends not only
on the contact angle but also on the size of the droplet.

The novel feature is the appearance of a local minimum
of the free energy at large penetration depths, existing
in addition to the possible minimum associated with the
Cassie (and Wenzel) state. From the condition df /dp =0,
which is easily evaluated with the help of the fixed
volume constraint, a necessary condition for the existence
of a minimum of the free energy arises, namely, 0y <
arccos(—3 + =), with a=b/2+d being the base radius
of the spherical cap. Interestingly, this condition does not
depend on the droplet size.

The origin of this new state can be understood by imag-
ining the pillars to represent a (partly open) hydrophobic
capillary tube, wetted by a small droplet that is placed
at its entry. In this situation, the equilibrium state of
the droplet is a consequence of the balance between the
Laplace pressure within the spherical cap (pushing the
droplet into the capillary) and an opposing capillary force
due to the hydrophobicity of the substrate.
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Fig. 2: (Colour on-line) Predictions of the analytical model. (a) Dependence of the free energy f/4ma’ory on the penetration
depth p and the Young contact angle 0y for a droplet of fixed size Reg =a. (The inset shows a magnification of the curve
for By =108°.) (b) Dependence of the free energy f/4wa’cry on the penetration depth p and the droplet size Reg for a fixed
contact angle of fy =100°. (c¢) Contributions to the free energy f/ Ara’ory for Reg = a and 6y = 100°. fspn is the surface free
energy of the liquid-vapour interface of the spherical cap, fcap is the free energy due to the wetting of the “capillary” constituted
by the pillars and f = fsph + feap is the total free energy. The insets sketch the droplet configuration for different p according
to the analytical model. All curves in (a—c) are given for b/d =1 and plotted up to a value of p where no further volume is left

in the spherical cap.

To illustrate this idea, we split the free energy (eq. (1))
into the contributions of the spherical cap and the remain-
ing “capillary” part. As shown in fig. 2¢, an increase of the
droplet penetration p leads to a linear increase of capil-
lary free energy, while the free energy associated with the
spherical cap decreases in a non-linear fashion. As a result,
the total free energy f may exhibit a local minimum. This
simple reasoning suggests that the intermediate minimum
constitutes a generic equilibrium state of a droplet, occur-
ring in any situation of filling hydrophobic capillaries by
a spherical liquid reservoir. Indeed, further simulations
using various surface geometries (e.g., omitting the central
pillar) clearly underline this assertion [23].

These results also show under which conditions we are
allowed not to consider the Wenzel state in the first place:
A transition to this state can be inhibited, if the pillar
height h is larger than the penetration depth p of a droplet
at the local minimum, plus a small correction of the order
of d?/Reg [3] that accounts for the curvature of the lower
droplet interface.

Figure 3 presents a morphological phase diagram
displaying the theoretically expected regions of existence
for the Cassie and the impaled state. The Cassie state
is (meta-)stable for the set of points while the phase
boundary for the impaled state is determined from
df/dp =0 combined with d?f/dp* > 0. Note that below a
certain droplet size, the local minimum of the free energy
shifts continuously to p=0 (fig. 2b), hence the impaled
state now effectively appears as a Cassie state and the
phase boundaries for the impaled and Cassie state are
identical. In that case, the Cassie state becomes the only
possible state (disregarding the Wenzel state).

Interestingly, the stability region of the Cassie state
shows a characteristic shape, which is also largely inde-
pendent of the surface geometry: there exists a certain
droplet size where the Cassie state is unstable for a
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Fig. 3: (Colour on-line) Phase diagram: regions of stability
for the Cassie and the impaled state (intermediate minimum)
as predicted by the analytical model. Focusing on the case
of d/b=1 (thick lines), the impaled state is expected to
exist in the complete shaded region, while the Cassie state is
predicted to be (meta-)stable right to the dashed curve. An
unstable impaled state (white region) automatically implies
an absolutely stable Cassie state. Similarly, a unstable Cassie
state goes along with an absolutely stable impaled state. In
the lighter-shaded area, a coexistence of metastable Cassie
and impaled states is predicted. Thin dotted and dot-dashed
curves give the theoretical predictions for other values of d/b.
The arrow illustrates the path of a quasi-statically evaporating
droplet as it enters the region of an unstable Cassie state (o),
and finally goes over to a stable Cassie state again (e).

maximal range in contact angle, and both towards larger
and smaller radii the stability region increases.

Noting that in the phase diagram a quasi-statically®
evaporating droplet would move on a vertical line from

Here, quasi-static refers to a sufficiently slow evaporation, such
that the droplet assumes its optimum shape at any instant in time.
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Fig. 4: (Colour on-line) Droplet behaviour for different initial configurations. We take a fixed droplet size of Res = 1.2a, a contact
angle of Oy =103° and b=d = 12LB units. (a) shows the theoretical free energy f/4wa’ory in dependence of the penetration
depth p. In (b—d), the results of the LB simulations are displayed. The labeled dots in (a) mark the initial penetration depth
of the droplet in the cases (b—d). The arrows indicate the predicted time evolution. The (partially impaled) Cassie state is

observed in (b), while new impaled state is found in (c, d).

large towards small R.g, we infer the existence of a
reentrant transition: A droplet, initially existing in a
(meta-)stable Cassie state, can (following the arrow in
fig. 3) become unstable upon a reduction of its size and
thereupon adopt an impaled state (o). However, due to
the fact that the position of the local free energy minimum
shifts towards smaller p with decreasing volume (fig. 2b),
further evaporation will always result in the droplet to
re-appear in a stable Cassie state (e).

Simulation results. — We now compare the predic-
tions of the analytical model to computer simulations.
In contrast to standard single phase LB models [25-27],
we employ here a free energy based two-phase (liquid-
vapor) LB approach [28,29]. Details of the algorithm can
be found in [30,31]. The relaxation time is fixed to 7= 0.8.
The temperature is set to 7'=0.4LB units, giving rise to
stable coexisting liquid and vapour densities of py ~ 4.1
and py =~ 2.9, respectively. Note that this rather small
density ratio (a well-known limitation of the present LB
model) is not expected to adversely affect our results,
since we are only concerned with the quasi-static (ther-
mal equilibrium) behavior of a droplet. For the interface
parameter k we use a value of 0.002, leading to an interface
width of about 4 lattice nodes. The simulation box mostly
consists of L, X L, X L, =64 x 64 x 64 lattice nodes, but
is enlarged appropriately for the smaller droplets. The
substrate at the top (z = L.) of the simulation box is flat.
At the bottom (z=0), it is decorated with an array of
equidistant cuboidal pillars. Typically, we will use b =12,
d=12 and h around 30 lattice units. Periodic boundary
conditions are applied along the x and y directions.

The relation between LB and physical units [30] (assum-
ing the simulated liquid is some viscous silicon oil) shows
that the capillary time in our simulations is t. = 8- 103 LB
time steps~4x107®s and our droplets would be of
micron scale. However, since it can be argued that the
actual value of the physical viscosity is not important in
the present case, it can be used to tune the unit of length,
allowing the simulation results to be applied to a broad

range of length scales, as long as thermal fluctuations and
gravity can be disregarded.

We first of all demonstrate the metastability of the
different wetting states, thereby establishing also the
existence of the new impaled equilibrium state. Indeed,
as predicted by the corresponding theoretical free energy
curve (fig. 4a), the equilibrium position of a droplet
depends on where it is placed at the beginning: a droplet
deposited close to the top of the pillar array moves
further to the top (fig. 4b), while a droplet that initially
penetrates deeper into the grooves becomes trapped in the
intermediate minimum of the free energy (figs. 4c, d)?.
This figure also nicely shows that the impaled state
reported here (figs. 4c, d) is indeed different from a
partially impaled Cassie state (fig. 4b).

Figure 5 shows a simulation of the reentrant transition,
achieved through a quasi-static evaporation process. In
the beginning (fig. 5a), the droplet resides in a (“partially
impaled”) Cassie state and only slightly increases its pene-
tration depth (thus confirming [10,22]). However, after
reaching a critical size, the droplet suddenly penetrates
into the pillar grooves and goes over to the intermediate
minimum of the free energy (fig. 5b). During the impaled
phase (figs. 5b, ¢) the droplet gradually climbs up the
pillars again, still residing in the local minimum. Note that
its penetration depth is in nice agreement with the analyt-
ical predictions (fig. 5e). The final transition from the
impaled to the Cassie state (figs. 5¢, d) is, in contrast to
the predictions of the analytical model (fig. 2), not contin-
uous, but happens with the droplet depinning of from the
outer pillars.

According to the common understanding of self-
cleaning, impalement is considered unfavorable and the
droplet cleans the surface by rolling over the top of
the texture. Interestingly, the existence of a reentrant
transition suggests the possibility of a qualitatively

2Note that the free energy curves are just approximate descrip-
tions of the real droplet behavior and, for example, do not predict
the residual penetration depth of a droplet in the Cassie state.
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Fig. 5: (Colour on-line) Reentrant transition through evaporation of a droplet. In the simulation, the droplet is initially (¢ =0)
prepared in a (meta-)stable (partially impaled) Cassie state (a). Evaporation is then switched on and proceeds by reducing, at
a sufficiently low rate satisfying quasi-static equilibrium, the mass of the vapor phase across a xy-plane close to the top of the
simulation box. In the course of the evaporation process, the Cassie state becomes unstable and adopts an impaled state (b),
from where it gradually climbs up the pillars (c¢) until it reaches again a Cassie state (d). (e) shows the penetration depth
of the lower droplet interface as it is observed in the simulation (e) and predicted by the analytical model (—). Simulation
parameters: contact angle 6y = 103°, initial droplet size Reg = 1.2a, b=d = 12LB units, evaporation rate 5 x 1077/LB time

steps. All lengths are given in units of the LB grid spacing.
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Fig. 6: (Colour on-line) Stable droplet configurations in depen-
dence of the droplet size and contact angle. In the analytical
model, the Cassie state is expected to be unstable in region I
(left to the dashed line), and (meta-)stable in regions II and III
(right to the dashed line). The intermediate minimum of the
free energy is predicted to exist in regions I and II (i.e. left to
the solid line). Symbols (e, ¥) depict the phase boundaries as
they result from our numerical simulations. There, the Cassie
state is found to be unstable left to the e. Similarly, the impaled
state is found to exist left to the ¥. Although deviating by a few
degrees, both the numerical simulations and the approximate
analytical model predict that the condition for the existence of
the impaled state is independent of the droplet size.

new self-cleaning mechanism, since the droplet not only
touches the top of the substrate, but also its inner parts.

The existence of a reentrant transition can also explain
some recent experimental observations, that found that
small evaporating droplets indeed tend to remain close to
the top of the substrate [9,11] and not get trapped inside
of the texture.

In fig. 6, the stability regions of the different droplet
states predicted by the analytical model are investigated
more closely. Due to limited computational power, only
a part of the full phase diagram (fig. 3) is covered in the

present case. The Wenzel state is also again not considered
explicitly. Hence, for small contact angles and droplet
sizes, the impaled state is expected to be the only stable
state (region I). Conversely, for large contact angles, the
Cassie state should be the only stable state (region III).
Between these two extremes, the model predicts a region
where both a (meta-)stable Cassie and impaled state exist
(region II).

As shown in fig. 6, despite its approximate nature,
the overall droplet behaviour is described correctly by
the analytical model and the three different regions are
indeed recovered in the LB simulations. The deviations
between the simulated results and the theoretical phase
diagram are not surprising, once the simplifications of
the analytical model are taken into account. In particular
the assumption of pinning at the inner pillar edges will
be violated for larger droplets that are close to the top
of the texture. They are observed to spread laterally into
the grooves (increase their base radius) in order to fulfill
the Young condition (cf. figs. 4b and 5a).

The boundary for the existence of the intermediate
minimum of the free energy is found to be independent
of the droplet size, as predicted by the analytical model.
However, this line lies at 0y ~106.5°, instead of the
theoretically expected value of fy ~ 109.5°. This deviation
arises from the approximation of the impaled part of the
droplet as a cylinder, which actually overestimates the
contribution of this part to the total droplet volume. In
the case of much larger droplets, contacting many pillars,
the arguments given in our work suggest that an impaled
state can always be realized provided that a contact
between the droplet and the bottom substrate is inhibited.

Based on the Wenzel-Cassie model it can be shown [32]
that the free energy of a droplet is smaller in the Cassie
state if 7> (¢pcosfy — (1 —¢))/cosby . Here, ¢ is the
pillar density (ratio of area covered by pillars and total
projected area), r is the surface roughness (ratio between
entire surface area that can be wetted and its horizontal
projection). For the present setup we have r=3.5 and
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¢ =0.25, leading to a value of y ~ 103° below which the
Cassie state would be unstable, regardless of the droplet
size. As can be seen from fig. 6, this estimate is clearly too
crude for the small droplets considered here. Besides that,
it also neglects possible free energy barriers between the
Cassie and Wenzel state, which, as our work demonstrates,
are crucial to the droplet phenomenology.

Summary. — In conclusion, via analytical calculations
and numerical simulations, we have uncovered the exis-
tence of an additional local equilibrium state, where the
droplet partially wets the inside of the grooves, yet is not
touching the base of the substrate. This finding quali-
tatively modifies the two-state paradigm of Wenzel and
Cassie states in the case of droplets of comparable size
to the surface roughness. Interestingly, droplets in this
new state appear to have Wenzel-like properties (e.g.,
small apparent contact angles) —but on the other hand
possess the inherent capability to reenter the Cassie state
again. We have demonstrated that our results are largely
independent of the particular surface geometry and are
expected to hold whenever a hydrophobic capillary is
wetted by a small droplet.

The insights presented here can serve as a valuable guid-
ance for the fabrication of surfaces with specific wetting
properties. Since we have explicitely shown that there is
a maximal depth that a droplet can penetrate into the
substrate, the optimal geometry of a surface can be easily
assessed, depending whether complete (Wenzel) or incom-
plete wetting (Cassie) is desired. Furthermore, our results
are expected to contribute to a better understanding of
how many surfaces occurring in nature can remain so
perfectly clean and dry.

It is important to stress the scale invariance of our
results (see eq. (1)). This may, firstly, significantly widen
the range of possible applications, and secondly, consider-
ably simplify experimental verification of our predictions.
One could, e.g., study sub-millimetric drops on pillars of
comparable size, thereby avoiding problems such as prepa-
ration and fast evaporation of micron-sized droplets.
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