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In the modern practice of stamping simulation of complex industrial parts the prediction of springback
still lacks accuracy. In commercial software packages various empirical constitutive laws for stamping
are available. Limited to simple empirical models for material anisotropy they do not take into account
in a full manner the effects of microstructure and its evolution during the deformation process. The crys-
tal plasticity finite element method bridges the gap between the polycrystalline texture and macroscopic
mechanical properties that opens the way for more profound consideration of metal anisotropy in the
stamping process simulation. In this paper the application of crystal plasticity FEM within the concept
of virtual material testing with a representative volume element (RVE) is demonstrated. Using virtual
tests it becomes possible, for example, to determine the actual shape of the yield locus and Lankford
parameters and to use this information to calibrate empirical constitutive models. Along with standard
uniaxial tensile tests other strain paths can be investigated like biaxial tensile, compressive or shear tests.
The application of the crystal plasticity FEM for the virtual testing is demonstrated for DC04 and H320LA
steel grades. The parameters of the Vegter yield locus are calibrated and the use case demonstration is
completed by simulation of a typical industrial part in PAMSTAMP 2G.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The highly competitive automotive market demands for light-
weight and safe vehicles. These requirements can be met using,
for example, high strength multiphase steels. Along with the posi-
tive service properties like higher strength and energy absorption
during crash these steels tend to higher springback after forming.
The modern forming technology is aimed at early compensation
of springback by corresponding modification of the tool geometry
Roll et al. [20]. In order to comply with shape tolerances, iterative
tool modifications are required. Reliable simulation tools with ex-
act springback prediction are required which can considerably
accelerate the stamping tool design and optimization process and
reduce the time before the start of production.

Various factors have a significant impact on springback simula-
tion results. Tool shape (drawing radii), discretization (mesh
density, element types), contact and friction between sheet and
stamping tool as well as the elastoplastic sheet material behavior
during the process influence the resulting springback. In this paper
we restrict our attention to the latter aspect, namely material mod-
eling. The demands of industrial applicability of springback simu-
lation comprise reliable stress prediction, handling of multiaxial
ll rights reserved.

a).
loads and load direction change, accounting for sheet orthotropy
as well as isotropic and kinematic hardening phenomena (Bausch-
inger effect).

Commercial software packages offer a variety of empirical con-
stitutive laws for stamping simulations, a comprehensive overview
of these models can be found in Banabic et al. [4]. In the most cases
the constitutive laws by Hill [9,10] and Barlat (Barlat et al. [5], Bar-
lat and Lian [6]) are used for stamping simulations. The evolution
of material properties is usually modeled by isotropic and/or kine-
matic hardening with linear (Prager [18] type) or nonlinear (Ziegler
[24] or Armstrong and Frederick [1] type) evolution of back stress.
The empirical laws are well suited for industrial stamping simula-
tion, particularly because of relatively short computation times
and the macroscopic character of the most model parameters
which normally can be identified from standard testing
procedures.

However, sometimes, as practice shows, a reliable prediction of
springback after die opening cannot be achieved. One of the draw-
backs of the most empirical formulations is the insufficient consid-
eration of changing material anisotropy due to microstructure
evolution. In this sense, microstructural models can help to better
identify the macroscopic properties of the empirical model. Micro-
structural models based on texture allow the user to include more
physics associated with crystalline anisotropy, although they lead
to longer computation times. In this article we pay attention to
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1 The software ‘‘Multex 1.0” can be downloaded from http://www.texture.de.
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the crystallographic anisotropy of polycrystalline materials rather
than morphological microstructure anisotropy. The physical back-
ground of crystallographic anisotropy is the crystalline arrange-
ment of atoms. Each grain of the metallic material has a different
crystallographic orientation, shape and volume fraction. The dis-
crete nature of crystallographic slip along densely packed lattice
directions on preferred slip planes also contributes to the overall
anisotropic response of material. Moreover, individual crystals ro-
tate and interact during forming. This leads to strong heterogeneity
of strains and stresses. Texture and anisotropy gradually change,
even under constant strain path condition. The presented approach
demonstrates the use of performing of various virtual tests on a
representative volume element (RVE) using the crystal plasticity
model to identify the macroscopic yield behavior of the material
and to extract hereof parameters for industrial stamping
simulations.

The goal of this article is to present a virtual technique to deter-
mine the material parameters characterizing the ductile metal
behavior (yield locus and r-values). It enables to considerably re-
duce the experimental expenses. That is of particular importance
for the industrial goals, because in this way both cost and time sav-
ings can be achieved. The presented model is more complex than a
conventional Taylor model but is limited in order to get the plau-
sible results in a limited time. In this model the simplest approxi-
mation of a grain via one finite element is used. In this case the
grain morphology is not taken in account, however, this is the eas-
iest way to keep the model complexity within certain bounds.
Extensions of this model to mutually opposed limit states – dis-
cretisation of a single grain with many finite elements or assuming
many grains (orientations) in each integration point – are possible
but the experimental and numerical complexity to adjust the mod-
el will grow.

The influence of the discretization on strength and stiffness of
the aggregate has been investigated previously in Kraska [12].
The influence of the number of elements per grain has been sepa-
rated from the stiffening influence of different boundary conditions
(periodic boundary conditions versus suppressed local fluctuations
at the RVE boundary). It was found that for moderate numbers of
elements per grain, convergence cannot be expected (up to 320
constant strain elements per grain have been considered, this cor-
responds to 4 � 4 � 4 cubes per grain). Thus, the choice of the dis-
cretization level is always a trade-off between good texture
representation (number of grains) and good representation of local
strain fluctuations (non-homogeneities, requiring fine meshes on
grain level). Obviously, a pragmatic choice has to be made based
on the acceptable computational costs. This choice has to be kept
from the initial slip system calibration based on tensile tests
throughout all virtual testing. Different levels of grain discretiza-
tion provide different slip system calibrations. However, as long
as the aggregate is able to represent the main features of the defor-
mation induced texture, reasonable extrapolation can be expected.
Even with coarse discretization, the model is still superior to sim-
ple mixing rules (Taylor model); because the induced textures are
more realistic and local strain fluctuations are still allowed for.

This paper is organized as follows. After a brief overview of the
technique of the crystal plasticity FEM the concept of virtual mate-
rial testing using representative volume element is described.

Virtual tests enable to replace the costly numerous uniaxial ten-
sile experiments and give the opportunity to investigate those
stress and strain states which are not a standard in the material
testing practice like biaxial tensile, compressive or shear tests.

The application of the crystal plasticity FEM for the virtual test-
ing is demonstrated for DC04 and H320LA steels. The ability of the
model to simulate the rolling texture of steel is shown. The effects
of different boundary conditions of RVE and element types on the
nominal stresses and Lankford parameters are numerically investi-
gated. The pronounced Bauschinger effect for texture-based RVE is
demonstrated by cyclic uniaxial tests. As a potential application a
complex part has been simulated using the Vegter yield locus in
PAMSTAMP 2G. This model interpolates over many tests, which
in the present case have been run virtually. The perspectives and
limitations of the applied approach are discussed.
2. Crystal plasticity finite element method

The crystal plasticity FEM (Pierce et al. [16,17], Asaro [2], Asaro
and Needleman [3]) combines the basic process of crystallographic
slip with the finite element method. Assume that the plastic veloc-
ity gradient Lp is composed out of the shear contributions _ca of all
slip systems a:

Lp ¼
Xn

a¼1

_caSa ð1Þ

where Sa is the Schmid matrix of slip system a defined as
Sa ¼ma � na where ma is the slip direction and na the slip plane
normal. Lp is integrated to Fp, plastic part of the multiplicative
decomposition of the deformation gradient F

F ¼ FeFp ð2Þ

using the flow rule

_Fp ¼ LpFp ð3Þ

The crystal plasticity concept is implemented into the commer-
cial FEM software MSC.Marc200x and ABAQUS/Standard by means
of user subroutines. The implementation follows the scheme given
by Kalidindi et al. [11]. The plastic shearing rates _ca on the slip sys-
tems a are taken as

_ca ¼ _c0 sa

sa
crit

����
����

1
m

sgnðsaÞ ð4Þ

where sa is the resolved shear stress for the slip system a, and sa
crit is

the current critical shear stress of slip system a. _c0 and m are mate-
rial parameters representing reference shearing rate and the rate
sensitivity of slip. The evolution of sa

crit is calculated including latent
hardening through the following set of equations:

_sa
crit ¼

X
b

habj _cbj; hab ¼ qabhb
; hb ¼ h0 1� sb

crit

ss

 !a

ð5Þ

where hab is the rate of strain hardening on slip system a due to a
shearing on slip system b, qab is the hardening matrix describing
the latent hardening behavior of a crystallite, hb is the hardening
rate of the single slip system b, h0 is the initial hardening, ss the sat-
uration stress of the slip systems and a a hardening parameter.

2.1. The texture component CP-FEM

The recently introduced texture component crystal plasticity fi-
nite element method (TCCP-FEM) (Zhao et al. [23], Raabe and Rot-
ers [19]) is basically a combination of crystal plasticity FEM with
the texture component method for the representation of statistical
textures. The basic idea of the texture component method is the
approximation of X-ray textures in the form of the orientation dis-
tribution function (ODF) by a discrete set of simple distribution
functions (texture components) defined in orientation space. It
was developed by Lücke et al. [14,13] and later on facilitated and
implemented into an easy to use computer program1 by Helming
[7], [8, see also].

http://www.texture.de
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The mathematical reproduction of the orientation distribution
function f ðgÞ by texture component functions can be expressed
by the superposition

f ðgÞ ¼ F þ
XC

c¼1

Icf cðgÞ ¼
XC

c¼0

Icf cðgÞ where I0 ¼ F; f 0ðgÞ ¼ 1

ð6Þ

where g is the crystallographic orientation and F is the volume por-
tion of all randomly oriented crystals (random texture component).
F may be understood as the intensity of the only global component
used in the approximation, equivalent to f cðgÞ ¼ 1 for each orienta-
tion point in Euler space, g 2 G. The intensity Ic describes the vol-
ume fraction of all crystallites belonging to the component c. f cðgÞ
describes the orientation density of the component. For details
about the implementation we refer to Zhao et al. [23], Raabe and
Roters [19].
3. Virtual specimen (RVE)

Currently the direct use of crystallographic slip models for
industrial forming simulations is not realistic, due to high compu-
tational costs. However, the complex models which incorporate
microstructural information like slip systems and orientation dis-
tribution (Fig. 1) have the potential for extrapolation from simple
calibration tests to arbitrary strain histories. Therefore, it is
straightforward to use such models as virtual specimens. We call
the process of running virtual tests for the identification of empir-
ical models virtual material testing. When the virtual specimen is
Fig. 1. Microscopic orientation image of a metallic sample. Each grain consists of
uniformly oriented single crystals.

Fig. 2. Discretisation and strain c
sufficiently reliable strain paths can be tested which in reality
would be very expensive or even impossible to perform.

3.1. Model assumptions

The virtual specimen is a geometrical model of a representative
volume element of real material. It is based on the crystal plasticity
finite element method developed by MPIE (Zhao et al. [23], Raabe
and Roters [19]). The most important model assumptions for the
virtual specimen realized by INPRO are:

� The material consists of many differently oriented grains, each
of them is represented by a single element. In succeding devel-
opments cubic body centered materials (ferritic steels DC04,
H320LA) will be considered. The model can also be applied to
face centered materials (austenitic steels, aluminum, copper).

� Single crystal grains possess both elastic and plastic anisotropy.
The corresponding elastic values are taken from Teodosiu [21].

� Grains undergo plastic deformation due to displacement of
neighbouring atom layers (slip planes) along preferred slip
directions, in each crystal 48 slip systems for bcc and 12 for
fcc grids are used. The displacements due to slip of grain inter-
faces, twinning and phase transformations are not currently
covered by the model.

� Slip systems are considered active if the critical shear stress is
exceeded. This critical shear stress corresponds to the yield
curve of empirical model. The behavior of each slip system is
described by viscous flow rule and incremental hardening law,
see Kalidindi et al. [11].

� As the parameters are to be determined from simple tensile tests
the hardening coefficient of all 48 bcc slip system classes are
assumed to be identical. This is close to the pencil glide model,
where the slip direction is restricted to the h111i class and
the slip planes are those with the highest resolved shear stress.

� The strain history specified by the velocity gradient LðtÞ is
applied such that the boundaries of the RVE are periodic. The
stress response is calculated from the reaction force in the con-
trol nodes for the periodic boundary MPCs (multipoint con-
straints). The choice of periodic boundary conditions is
motivated in Section 3.3.

Fig. 2 illustrates the virtual sample used in the present work,
consisting of 1000 differently oriented grains represented by one
volume element, respectively. From prescribed velocity gradient
the deformation gradient is computed. Due to different grain orien-
tations deformations of single crystals are different, the same is va-
lid for stresses. Via homogenisation procedure the total nominal
stress tensor in the form of the first Piola–Kirchhoff stress tensor
is determined.
ontrol of the virtual sample.
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3.2. Orientation distribution

The initial orientations of the grains in the RVE follow from ran-
dom sampling of the texture components as obtained from pole
figures (Figs. 3 and 4) using Multex program.

Texture development is an important cause for deformation in-
duced anisotropy. The ability of the virtual specimen to predict
deformation textures is demonstrated for the cold rolling process
(Fig. 5).

Starting from a uniform orientation distribution the thickness of
the specimen is reduced while the width remains constant. The
simulated and measured pole figures look very similar even though
Fig. 3. Measured and recalcu

Fig. 4. Measured and recalcula
small quantitative differences exist (Fig. 5). Possibly, if the cold roll-
ing degree is known, texture measurement is no longer necessary
because the texture can be obtained from the rolling simulation

3.3. Boundary conditions

Dependent of the superimposed averaged deformation, the fol-
lowing variants are considered (see Fig. 6)

� Homogeneous deformation. All nodes are moved so that the
local deformation field is uniform. The grains are not in equilib-
rium. This corresponds to the Taylor model.
lated pole figures, DC04.

ted pole figures, H320LA.



Fig. 5. Comparison between measured and simulated rolling texture.

Fig. 6. Finite element nodes in reference state (left) and deformed with homogeneous boundary deflection (center) and periodic boundary deflection (right) as in Kraska [12].
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� Homogeneous boundary. At the boundary, the nodal displace-
ment is prescribed by the global strain. Inside the model, non-
homogeneous deformations are possible. The internal nodes
are in equilibrium while the boundary nodes generally are not.

� Periodic boundary. All nodal displacements are free but the
model has to be periodic at the three space directions. This
implies an indirect restriction to the boundary nodes. However,
these are in equilibrium with their counterparts at opposite
sides.

In Fig. 7 the deformation of the virtual specimen by different
boundary conditions is shown. All of these constraints allow the
exact prescription of the overall deformation. The periodic bound-
ary conditions imply the least severe restrictions to prevent local
non-homogeneous deformation of differently oriented grains. Cor-
respondingly, the stress level for this type of boundary conditions
(Fig. 8) is lowest. The r-value also shown in Fig. 8 is defined for ten-
sile specimens as the ratio of the logarithmic strain in the width
direction to the logarithmic strain in the thickness direction. Here-
with the r-value is technologically important parameter in the
stamping simulation that characterizes the sheet resistance against
thickness reduction. Peridodic boundary conditions are used
throughout the article because they imply the least artificial
restrictions to the displacement field.
3.4. Influence of element type

Not only the boundary conditions, but also the type of element
constrains the local motion posibilities of the virtual specimen.
Tests for four different element types (linear and quadratic, reduced
and fully integrated) were performed. The RVE with eight nodes and
reduced integration elements (C3D8R) shows the highest displace-
ment fluctuations (Fig. 9). This partly could be due to the hourglas-
sing effect. The hourglass stiffness was calibrated to meet the
C3D20R yield curve. Quadratic elements reproduce inhomogeneous
deformation more accurately. The fully integrated elements lead to
a higher tensile strength than the reduced ones (Fig. 9). The reduc-
tion in CPU time and the small differences in the calculated tensile
strength justify the use of C3D8R elements for the planned tests.

3.5. Calibration and verification

The virtual specimen is calibrated (determination of the hard-
ening parameters in slip system) on the basis of uniaxial tensile
tests in the rolling direction (0). This leads to the hardening param-
eters given in Fig. 10 The quality of the model prediction is evalu-
ated by comparing corresponding simulations to the remaining
experimental data (stress–strain response and r-value of tensile
tests in different directions and tension–compression tests). The



Fig. 7. RVE with different boundary conditions, DC04.

Fig. 8. Stress–strain response and r-value for different boundary conditions, DC04.

Fig. 9. Stress–strain response and r-values for different element types.
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Fig. 10. Hardening parameters from the calibration of the virtual specimen.
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stress–strain response for tensile tests under 45� and 90� is well
predicted (Fig. 11). Only the tensile stress under 45� for DC04 is
slightly underestimated (Fig. 11c). The estimated error is below
1.6%. The prediction for r-values are poor. In particular, for the cold
rolling steel DC04 the simulated values for 0� and 45� are very low
(Fig. 12). For the steel H320LA the situation is somewhat better as
can be seen in Fig. 12.

3.6. Bauschinger effect

The ability of the model to predict the Bauschinger effect is
evaluated comparing with tension–compression data. In order to
compare the measurements with the simulation, two different
 0

 100

 200

 300

 400

 500

 0  5  10  15  20  25  30  35  40  45

N
om

in
al

 s
tre

ss
 [M

Pa
]

Elongation [%]

Real test
Virtual test

(a) Calibrated DC04
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Fig. 11. Stress–strain response. Calibration and prediction. (a and b) T
curve representations are chosen. The direct comparison is ob-
tained from the stress–strain curves. Fig. 13 shows that the simu-
lated results for 0� agree with the measured curve, also after stress
reversal from tension into compression. Even smooth transition to
reversal of plastic flow is reproduced quite well. The Bauschinger
effect (lower equivalent stress after change of loading direction)
can also be illustrated by plotting the equivalent stress against
the plastic equivalent strain (Fig. 14). In contrast to results from
the virtual specimen, the measured curve shows a softening effect
during high compression strain ranges (equivalent stress drop
down). This can be traced back to instability of the specimen
(buckling). In phenomenological (empirical) material models the
Bauschinger effect is described using kinematic hardening. The vir-
tual specimen does not include any explicit kinematic hardening.
The reproduction of this effect is exclusively due to internal stres-
ses between the grains.

4. Examples

It is very time and cost intensive to simulate a stamping process
with crystal plasticity. Therefore, empirical material models are
used in stamping simulation software. To obtain the right (empir-
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(b) Calibrated H320LA
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(d) Predicted H320LA
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ensile test 0�; (c and d) tensile test 45�; (e and f) tensile test 90�.
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Fig. 12. r-Values for simulated tensile tests 0�, 45� and 90�.
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Fig. 13. Comparison between measured (R) and predicted (V) stress–strain curves of tension–compression tests in (a) 0� and (b) 90�, H320LA.

Fig. 14. After direction change from tension into compression the equivalent stress is lower than by forward loading in tensile direction (Bauschinger effect). This effect is
observed in real tension–compression tests (R) and is well reproduced from the virtual specimen (V).
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ical) material parameters, now tests are carried out with the RVE.
With the virtual specimen, there is no limitation to the type and
number of experiments for material paramater identification. In
this case the Vegter model is chosen.
4.1. Vegter material model

The material model as proposed by Vegter et al. [22] and imple-
mented in PAM-STAMP 2G [15] essentially is a very flexible



Fig. 15. The Vegter yield locus derived from virtual test data. Single tests are schematically depicted.
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description of the yield locus based on interpolation over a high
number of tests:

� A stack compression test with measurement of ovalization.
� Three uniaxial tensile tests (0�, 45�, 90�) with lateral strain

measurement.
� Three tensile tests with constrained lateral strain (plane strain,

0�, 45�, 90�). Contrary to real tests, the lateral stress can be iden-
tified in the virtual tests.
Fig. 16. Parameters for the Vegter model (PAM-STAMP 2G [15]) obtained from the
virtual tests, H320LA.

Fig. 17. Stamping part of car boot. Fotos and visualized
� Three shear tests, providing yield locus data in the lower right
quadrant for different principal stress directions with respect
to rolling direction.

The yield locus is interpolated out of the experimental data by
means of cubic Bezier-spline (Fig. 15) The model parameters can
be extracted directly from the individual experiments and can be
specified subsequently in PAMSTAMP 2G. An explicit fit is only
necessary for the hardening parameters (yield curve). The required
variables are determined for all experiments at 1% accumulated
shear deformation at the slip systems of the virtual specimen. This
corresponds to approximately 0.4% plastic strain.

4.2. Springback simulation

The material parameters, obtained from tests with the virtual
specimen, are used in springback analysis (Fig. 16).

For a part (Fig. 17) of the car boot (DaimlerChrysler) made of
H320LA stamping, trimming and springback are simulated. The
differences between real (optically scanned) and simulated geom-
etry are determined. Virtual material testing is expected to provide
better agreements between the springback simulation and reality
in order to justify the efforts. The simulations using the virtual test
data shows greater discrepancies than those using a Hill48 model
(Fig. 18) fitted to real tensile test data. If the r-values of the virtu-
ally fitted Vegter model are replaced by the measured r-values, the
results are improved. Obviously a significant improvement is not
yet achieved. However, the reproduction of tensile strength and
measured data. After stamping and after trimming.



Fig. 18. Shape deviation between measured and simulated geometry for different material models and different types of test data for parameter fitting.
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the Bauschinger effect encourage furthermore to improve the vir-
tual specimen.

5. Conclusions

Springback simulation and compensation generate an increas-
ing demand for high precision material models. Microstructural
approaches like texture based crystal plasticity still are too expen-
sive in terms of memory and computational power for direct appli-
cation in industrial sheet metal forming simulations. Therefore,
more sophisticated empirical models with various yield loci and
hardening laws will continue to emerge. Higher experimental ef-
fort for material identification is the price for increasing flexibility
and precision of such models. However, microstructural models
can be used off-line as virtual specimens to move the effort from
the test lab to the computer, thus profiting from continuously
decreasing costs per operation.

In this paper a virtual specimen was used to demonstrate the
process from model calibration, virtual test program to real part
simulation. The particular setting of the virtual model still lacks
the important capability to predict the r-values correctly. On the
other hand, the good prediction of the Bauschinger effect encour-
ages further work. Shortcomings of the presented virtual specimen
could be addressed by

� Improved texture sampling for better reproduction of the mea-
sured pole figures by discrete grain orientations.

� Account for anisotropy of the grain shape.
� Improved calibration procedure, which should include the latent

hardening matrix.

Other extensions could open the model for a wider class of
materials, currently being restricted to single phase bcc and fcc
metals.

Even with the given restrictions, it was shown that material
parameters obtained from texture data and tensile tests using
the virtual test program can compete in simulation quality with
the full parameter set obtained experimentally.
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