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Abstract

We study the link between the indentation size effect and the density of geometrically necessary dislocations (GNDs) through the follow-
ing approach: four indents of different depth and hardness were placed in a Cu single crystal using a conical indenter with a spherical tip. The
deformation-induced lattice rotations below the indents were monitored via a three-dimensional electron backscattering diffraction method
with a step size of 50 nm. From these data we calculated the first-order gradients of strain and the GND densities below the indents. This
approach allowed us to quantify both the mechanical parameters (depth, hardness) and the lattice defects (GNDs) that are believed to be
responsible for the indentation size effect. We find that the GND density does not increase with decreasing indentation depth but rather drops
instead. More precisely, while the hardness increases from 2.08 GPa for the largest indent (1230 nm depth) to 2.45 GPa for the smallest one
(460 nm depth) the GND density decreases from �2.34 � 1015 m�2 (largest indent) to �1.85 � 1015 m�2 (smallest indent).
Crown Copyright � 2008 Published by Elsevier Ltd on behalf of Acta Materialia. All rights reserved.
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1. Introduction

Advances in microtechnology require better understand-
ing of materials at small scales. This includes mechanical
characterization at small dimensions using methods such
as nanoindentation. In this context it was observed that a
material’s resistance to plastic flow depends on the size of
the sample [1,2] and on the deformed volume [3,4]. These
phenomena are referred to as mechanical size effects.

Physically based models attribute strengthening at small
dimensions to the existence of immobile dislocations of two
types: geometrically necessary dislocations (GNDs) and
statistically stored dislocations (SSDs). GNDs provide
the lattice continuity in the presence of curvature [5–8],
whereas SSDs evolve through random interactions among
dislocations with plastic strain [9,10].

The average spacing between immobile dislocations,
which is inversely proportional to the square root of the
dislocation density, determines the yield strength of the
material [9]. Introduction of additional dislocations such
as GNDs thus increases the flow strength of the material
by reducing the mean spacing between dislocations:

sa ¼ cGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

gnd þ qa
ssd

q
ð1Þ

where c is a geometrical constant ranging between 0.5 to 1,
G is the shear modulus, b is the magnitude of the Burgers
vector, and qa and sa are the dislocation density and yield
strength on slip system ‘‘a”, respectively.

GNDs that create rotational gradients of strain are used
to explain size-dependent plasticity at small dimensions
[11–15]. For instance, the increase in strength with a
decrease in diameter of copper torsion wires was attributed
to strain gradients. Ashby and Fleck introduced a material
length scale parameter that is coupled to the rotational gra-
dients of strain [15]. Later, Fleck and Hutchinson applied
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additional length scale parameters to stretch gradients in
order to capture size effects during nanoindentation [11].
Nix and Gao introduced a physically based intrinsic length
scale assuming a uniform distribution of GNDs below
indents [16,17]. The relative contribution of this effect to
the overall resistance of a material to plastic flow becomes
particularly visible in the nanometer regime [18].

The crystallographic misorientation between two neigh-
boring points can be used as an approximate measure for
the GNDs as shown below in Eq. (2), where qgnd is the
GND density that is required to accommodate a curvature
x [19,20,28]:

qgnd ¼
x
b

ð2Þ

Parks calculated the GNDs by minimizing their total
length for different possible geometrical arrangements
[21,22] in face-centered cubic (fcc) crystals. Sun and Rollett
applied this method to orientation maps obtained via elec-
tron backscattering diffraction (EBSD) from cross-sections
of deformed crystals [23–25]. They used the misorientations
to identify the GND density.

An appropriate selection of the EBSD step size is a crit-
ical issue for the calculation of GND densities. EBSD stud-
ies on deformed crystals have demonstrated the effect of the
step size on the accuracy of measured misorientations
[26,27]. The noise in an EBSD analysis strongly depends
on the step size, the type of deformation and the amount
of strain. On the other hand, the step size determines the
resolution for a Frank loop analysis [28]. Hence, the step
size used for the GND analysis has to be low enough to
be of microscopic relevance and high enough to filter out
noise.

The size dependence of indentation hardness has been
associated with strain gradients which are realized in the
lattice through GNDs. This motivated us to directly mea-
sure lattice rotations below indents with the aim of quanti-
fying the density of these defects. Monitoring the evolution
of lattice rotations, GND densities and hardness in the
same set of experiments may help to better understand
indentation size effects. For this purpose we map the orien-
tation distribution below four nanoindents of different
depths. The experiment makes use of a tomographic
high-resolution electron backscatter diffraction orientation
microscope in conjunction with a focused ion beam instru-
ment for automated serial sectioning (3-D EBSD) [33]. The
GND densities are estimated below the four indents using
EBSD data considering both the 2-D and the 3-D rota-
tional gradients.

2. Methods

2.1. Theory

The translation symmetry of the crystal lattice remains
intact during plastic deformation. The line integral of the
displacement, dui, therefore, has to vanish around any area

normal in the crystal, Eq. (3).1 The same equality holds
when displacements are calculated in terms of gradients
in a reference frame.I

dui ¼
I

bijdxj ¼ 0 ð3Þ

The displacement gradient or distortion tensor, bij, con-
sists of an elastic and a plastic part, Eq. (4). Additive
decomposition of distortion allows the use of either the
elastic distortion, bel

ij , or the plastic distortion, bpl
ij , as a

measure of incompatibility.

bij ¼
dui

dxj
¼ bel

ij þ bpl
ij ð4Þ

Using the elastic distortion as a measure of incompati-
bility in conjunction with Stoke’s theorem, the dislocation
tensor can be obtained from the curl ($�) of the elastic dis-
tortion, Eq. (5). Elastic distortion consists of both an elas-
tic stretch, �el, and a rotation, g. This is shown in Eq. (6)
where ‘‘e” indicates the permutation symbol. Ignoring the
elastic stretch, the rotational gradients are used to identify
the components of the dislocation tensor, a, Eq. (7).

a ¼ r� bel ð5Þ
api ¼ epkjð�el

ij;k þ gij;kÞ ð6Þ
api ¼ epkjgij;k ð7Þ

The misorientation, D/, between two points is used to
calculate orientation gradients, gij,k. In the following we
explain the procedure for two arbitrary points with given
orientations /(1) and /(2). The 24 crystal symmetry opera-
tors (Ocry

i ) are applied to both orientations to identify the
minimum misorientation.

jD/j ¼ minfcos�1ftr½ðOcry
i /ð1ÞÞ/T

ð2ÞO
cry
j �gg

i ¼ 1 . . . 24; j ¼ 1 . . . 24 ð8Þ
D/ ¼ /ð2Þ /�1

ð1Þ ð9Þ
The orientation difference between the two points is esti-

mated in terms of Eq. (10) where I is the second-order iden-
tity matrix.

/ð2Þ � /ð1Þ ¼ ðD/� IÞ/ð1Þ ð10Þ

The orientation gradient, gij,k, is the orientation differ-
ence over the distance d between the two orientations,
Eq. (11). The minimum distance is in this study prescribed
by the EBSD step size.

gij;k ¼
/ð2Þij � /ð1Þij

dk
ð11Þ

GNDs are characterized by two vectors, the Burgers vec-
tor, b, representing the slip direction, and the normalized
tangent vector, t̂, indicating the dislocation line direction.

1 Index notation is used: i.e. Aij denotes the components of a second-
order tensor; bold letters indicate vectors, b ¼ bi êi where ê is a Cartesian
unit vector; tensor products are represented as b � t; the dot product of
two vectors is t � r=tiri.
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There are 18 possible geometrical configurations of GNDs
in fcc crystals (see Table 1).

The orientation gradients can be related to GNDs with
the aid of a Frank’s loop construction around an area nor-
mal, r. This is also the vector around which the incompat-
ibility is estimated, Eq. (5). The resulting net Burgers
vector, B, is the non-zero amount of dislocation lines pierc-
ing the area with the normal vector r, Eq. (12).

B ¼ bð̂t � rÞ ¼ ðb� t̂Þr ð12Þ
The Frank’s loop compensates the amount of incompat-

ibility that results from the measured orientation gradients,
Eq. (13). However, an ambiguity exists when selecting 18
scalar unknown densities (qa

gnd ) from the nine given compo-
nents of the dislocation tensor.2 In Eqs. (13) and (14), the
superscript ‘‘a” represents the slip system.

aij ¼
X18

a¼1

qa
gndba

i ta
j ð13Þ

A minimization method very similar to Taylor’s mini-
mum work approach [29] is used to identify nine unknown
dislocation densities that accommodate a given lattice cur-
vature (see details in Appendix A).

aij ¼
X9

a¼1

qa
gndba

i ta
j ð14Þ

The method is applied to both 2-D and 3-D tomo-
graphic EBSD maps. In the 2-D analysis, the gradients
gij,3 along the sectioning direction (normal to each 2-D

slice), are assumed to vanish, i.e. only the gradients in the
two in-plane directions are considered. In the 3-D analysis,
the full orientation gradients are estimated by the use of
additional orientation information from the neighboring
EBSD slices.

2.2. Experimental procedure

The copper single crystals were produced by directional
solidification in a Bridgeman furnace. The (111)-oriented
surface was wet ground, diamond polished and electropo-
lished. The normal of the cross-section has a [112] crystal-
lographic direction (Z-direction in Fig. 1) [30,31].

The indentation experiments were performed using a
Hysitron TriboScope indenter in load-controlled mode. A
60� conical indenter was used with a spherical tip of radius
R = 1 lm. A loading rate of 1.82 mN s�1 was used with
loads of 4000, 6000, 8000 and 10,000 lN producing four
indents of different depths. The corresponding depths are
0.46, 0.69, 0.85 and 1.23 lm, respectively. The conical sur-
face (60� cone angle) of the indenter is in contact with the
material at depths greater than half of the tool radius
(0.5 lm) during indentation. Therefore, the tool remains
self-similar during indentation only in case of the smallest
depth (0.46 lm).

Fig. 2 shows the hardness values obtained for each indent.
The area function was determined using PMMA (polymeth-
ylmethacrylate) since the indentation depths were too large
to obtain a satisfactory calibration from fused quartz.

3-D EBSD measurements of the deformed sample were
conducted using a dual-beam high-resolution field emission
scanning electron microscopy EBSD set-up together with a
focused ion beam (FIB) system [33]. The surface was
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Fig. 1. (a) Focussed ion beam sectioning detail with relevant crystal directions. (b) Schematic illustration of the 2-D and 3-D analysis of the EBSD maps
obtained from the cross-sections.

Table 1
Slip and line directions of dislocations for GNDs in a fcc crystal.ffiffiffi

2
p

b̂ : �110 10�1 0�11 �1�10 101 01�1 110 �101 0�1�1 1�10 �10�1 011 110 101 011 �110 10�1 0�11ffiffiffi
6
p

t̂ : �1�12 �12�1 2�1�1 �11�2 �1�21 211 1�1�2 121 �2�11 112 1�2�1 �21�1 110 101 011 �110 10�1 0�11

2 Note that the dislocation tensor is not necessarily a symmetrical tensor,
hence it yields nine independent components.
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coated with Pt to avoid Ga+ damage during sectioning.
Layers 100 nm thick were successively milled and EBSD
measurements were carried out before each milling step
[34,35]. The FIB milling procedure required for the tomo-
graphic EBSD method leads to minor edge effects at the
surface. Therefore, we avoided probing very shallow
indents, i.e. the depths were chosen to assemble reliable
EBSD data (more details are given in Refs. [30,31]).

2.3. EBSD data

Fig. 3 shows the orientation patterns in three different
slices that are equally spaced around the center position
(section 39). The patterns before and after the center sec-
tion are not symmetric with respect to the center of the
indent. Section 33 (�600 nm from center layer) reveals
sharper orientation changes compared to section 45
(+600 nm from center layer). Also the magnitude of the
orientation changes are slightly different among the two
outer sections. The difference in the texture evolution with
respect to the sectioning direction is attributed to the crys-
tallographic asymmetry of the orientation relative to
loading.

3. Experimental results and discussion

3.1. Selection of step size for the GND analysis

The selection of the gradient step size plays an
important role in establishing a reliable analysis for
the GND density (see dk in Eq. (11)). As the orienta-
tions are integrated and averaged over a larger region,
the noise in the data typically drops with increasing step

size. On the other hand, a large step size shifts the anal-
ysis to a more mesoscopic level so that one might miss
the regime where strain gradients become effective. In
addition, the small-scale nature of indentation prohibits
the use of a large step size approaching the depths of
the indents.

The 2-D analysis explained in Section 2 is applied to the
EBSD map obtained from the center cross-section using
three different step sizes for comparison, i.e. 50, 100 and
200 nm (Fig. 4). A step size above 200 nm is not considered
since it approaches the depth of the indents (�400 nm for
the smallest indent). The step size used during EBSD data
acquisition was 50 nm. The coarse graining of the data was
performed using TSL software.3

The step size used for the gradient analysis influences the
distribution and the total magnitude of the GNDs. First, due
to the averaging of neighboring orientations during coarse
graining, the GND density is locally averaged into larger vol-
umes. Second, higher orientation gradients occur in the case
of a larger step size (200 nm) when compared to those
obtained in case of smaller step sizes. Higher orientation gra-
dients mean higher magnitudes of GNDs. Third, some local
peak information may be lost if a coarse step size is selected
due to averaging (200 nm in this case). For step sizes of 50
and 100 nm, the peak values remain the same (3.5 �
1016 m�2), indicating no loss of essential information. The
gradient peak value drops to 2.4 � 1016 m�2 for the
200 nm step size which indicates a peak smoothing effect.
However, the average overall GND density becomes larger
for this step size (Fig. 4).

Fig. 2. Reduced elastic indentation modulus and indentation hardness values observed for the four different indentation depths.

3 TSL is a trademark of EDAX/TSL, Draper, UT.
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3.2. 2-D GND analysis of five EBSD sections

First, the 2-D analysis is individually applied to five
equally spaced cross-sections, i.e. the center slice (section
39) and the two nearest sections on either side (±100 and
±200 nm). The comparison of the four indents in the center
section is reasonable since the cone shape effects are
expected to be minimum close to the center (Fig. 5).

The sum of the GND densities beneath each indent was
calculated by dividing their number by the affected refer-
ence volumes (see details in Appendix A). This normaliza-
tion step renders the GND dislocation number value a
density measure. The reference volumes were determined
by using a threshold value for the GNDs. Fig. 6 shows a
corresponding example calculation containing the total
length of the GNDs beneath each indent.

Fig. 7 shows the sum of the GND densities below each
indent that are extracted individually for each of the five 2-
D EBSD maps. The main observation is that the total
GND density decreases with decreasing depth and increas-
ing hardness of the indents (Figs. 2 and 7). The GND den-
sity variation before and after the center section is
attributed to the asymmetry of deformation. The GND
densities are larger in the front sections 37 and 38 com-
pared to the sections behind the center.

3.3. 2-D GND analysis of all EBSD sections and comparison

to the hardness

Fig. 8 shows the total 2-D GND density below each
indent together with the measured hardness values. The
total 2-D GND density is obtained by summing the GNDs
over all 50 individual 2-D EBSD sections and dividing this
number by the total reference volume (Fig. 9). For this pur-
pose the GND density was first calculated separately for
each 2-D slice and subsequently the overall density was
determined by summing over the 50 sections (see Appendix
A). The data show that the GND density decreases with
decreasing indentation depth and increasing hardness.
The density of the GNDs decreases faster with decreasing
indentation depth than the affected reference volume. This
leads to an overall decrease in the GND density for smaller
indents.

3.4. 3-D GND analysis

Five sections closest to the center are used for the calcu-
lation of the GND densities considering also the out-of-
plane orientation gradients, gij,3 – 0 (Fig. 10). It has to
be emphasized, however, that the full tomographic analysis
requires the neighboring EBSD slices to be perfectly

Fig. 3. The orientation distribution below and around indents, the center section and two equally distant outer sections. Color code: crystal axis along the
direction of indentation.
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aligned with respect to each other to avoid artificial gradi-
ents due to misalignment. The results of the full 3-D anal-
ysis (see Fig. 10) are similar to those obtained from the
accumulative 2-D analysis (Fig. 8). A slightly higher
GND distribution is found underneath the indents in the
3-D analysis compared to the 2-D results. This is due to
the small misalignment between the neighboring sections
as discussed above.

3.5. Relationship between GND density, indentation depth
and hardness

The results reveal three main points. Firstly, the GNDs
are not arranged homogeneously but in the form of pat-
terns below and around the indents. Secondly the distribu-
tion of the GND density is anisotropic with respect to the
center slice. Thirdly, and most importantly, the density of
the GNDs does not increase with decreasing indentation
depth but rather drops. The GND density decreases from
�2.34 � 1015 m�2 (largest indent) to �1.85 � 1015 m�2

(smallest indent) while the hardness increases from
�2.08 GPa for the largest indent (1230 nm) to �2.43 GPa
for the smallest one (460 nm) (Fig. 8).

The first two observations, namely GND patterning and
anisotropy of the lattice curvature, were reported before

[30–33]. The third observation, however, contradicts the
commonly expected inverse relationship between the inden-
tation depth and the density of the GNDs. The GND-based
strain gradient theories that are usually applied to analyze
indentation size effects associate larger GND densities with
smaller indents but not with larger indents [15–17]. Our anal-
ysis shows the opposite trend. Of course these results are only
valid for the selected indentation depths and type of indenter
used. It must be noted in that context that depending on the
details of the indenter and tip geometry, the theoretically
expected GND density may in special cases also be indepen-
dent rather than inversely related to the indentation depth.
However, a steep decay of the GND density for smaller
indents as found in this study was neither experimentally
observed nor theoretically predicted up to now.

Another aspect that deserves attention is the indentation
size regime. The indents under investigation are between
1230 and 460 nm deep. The indentation size effect is, how-
ever, more pronounced for shallower indents. For scales
below 460 nm, however, the EBSD method would be of lim-
ited help since it is has a lateral resolution of 40–50 nm in
copper [33,30,31]. Irrespective of the rather large size of the
indents and the comparably weak size effect in this depth
regime, the current observations document the occurrence
of an indentation size effect (Figs. 2 and 8).

Fig. 4. The distribution of the GND density below four indents in the center section for three different step sizes: 50 nm (minimum step size as prescribed
by EBSD resolution), 100 and 200 nm (top to bottom). Color code: GND density in decadic logarithmic scale (m�2).
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Fig. 5. Five equally spaced cross-sections (center slice, ±100 nm, ±200 nm) through the four indents. Color code: GND density in decadic logarithmic
scale (m�2). The noise level for the determination of the GND density is 1014 m�2 for a step size of 100 nm.
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This means that the GND density cannot in the current
case explain the indentation size effect. An alternative
explanation could be that the SSDs are responsible for
the increase in hardness at small scales. This explanation
is, however, also not plausible since the density of the SSDs
is linked to the strain and in the current case the total strain
decreases with decreasing indentation depth. Another
explanation might be a dislocation source limitation effect.
Conventional dislocation multiplication and hardening
may be expected to be highly localized close to the contact
zone between indenter and specimen. The increase in the
overall dislocation density (including GNDs) leads to a
rapid drop in the free dislocation segment length, which

in turn is the main parameter for the activation of disloca-
tion sources in terms of the Frank–Read stress (the activa-
tion stress for a dislocation source is inversely proportional
to the dislocation segment length). For small indents the
interface-to-volume ratio is higher compared to large ones.
Assuming a rapid drop in the free dislocation segment
length in these narrow contact zones, therefore, might
qualitatively explain why smaller indents yield a higher
hardness than large ones. The reason, however, would
not be a larger density of GNDs alone but their contribu-
tion to the reduction in the free dislocation segment length.
According to this approach, the mechanical size effect
observed in this work would not be due to the hardening

Fig. 6. Reference volumes (red color, e.g. center EBSD section) below the indents which indicate the zones that were affected by the indent deformation.
The affected volumes were determined by using a threshold value for the GNDs to render the dislocation number value a density measure. Color code:
GND density in decadic logarithmic scale (m�2).
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Fig. 7. Total GND densities that are extracted individually from each of the five 2-D EBSD maps that are closest to the center slice below the four indents.
The total GND density decreases with decreasing indentation depths.
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contribution of the GNDs but due to a dislocation multi-
plication limitation effect. This idea of source strengthening
in conjunction with the indentation size effects has also
been discussed by Pippan et al. [32].

4. Conclusions

We studied the effect of the indentation size effect and
the GND density by using the following approach. Four
indents of different depth and hardness were placed in a

Cu single crystal using a conical indenter with spherical
tip of radius 1 lm. The deformation-induced lattice rota-
tions were monitored using a tomographic EBSD method.
The GND densities were calculated from the measured
rotations using the dislocation density tensor which con-
nects lattice curvature to GNDs. This approach allowed
us to directly quantify in one experiment both the mechan-
ical parameters (depth, hardness) and the lattice defects
(GNDs) that are held responsible for the indentation size
effect. The main results are:

Fig. 8. The total GND densities below each indent obtained by summation over all 50 individual 2-D EBSD sections together with the measured hardness.

Fig. 9. 3-D view of the volume around the four indents. Upper row: EBSD pattern quality. The bright gray scale indicates large local lattice distortions.
Bottom row: local orientation deviation. The color code is chosen to indicate the largest local orientation changes (15�) in red.
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	 The GNDs have an inhomogeneous distribution under-
neath the indents with very high local density values.
This fact questions the homogeneous distribution
assumptions frequently used in the literature.
	 The heterogeneous distribution in GND density might

play the key role in strengthening since a long-range
back stress field develops due to imbalance in signed dis-
location density and resists dislocation motion.
	 The total GND density below the indents decreases with

decreasing indentation depth. This observation contra-
dicts the strain gradient theories attributing size-depen-
dent material properties to GNDs.
	 The amount of deformation imposed reduces with

decreasing indentation depth. Therefore, SSDs that
evolve through strain do not account for the increasing
hardness values with decreasing indentation depth.
	 The decreasing dislocation segment lengths associated

with decreasing indentation depth are believed to
account for the increase in hardness.
	 Explaining size-dependent material strengthening effects by

using average density measures for both GNDs and SSDs
is not sufficient to understand the indentation size effect.
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Appendix A. Details of the analysis of GNDs from EBSD

data

The procedure to extract GNDs from EBSD data was
implemented in MatLab. The EBSD output file (TSL for-

mat) is processed to identify a GND density for every data
point. The solution procedure uses five steps: (i) Nine slip
systems (corresponding to the nine components of the dis-
location density tensor) are selected arbitrarily from the 18
possible GND systems (48,620 possible combinations). (ii)
The slip system combinations are checked for geometrical
independence and 21,464 linearly independent solutions
are found. (iii) A solution is calculated for each possible
combination of nine slip systems. (iv) The total GND den-
sity, which is the sum of the absolute values of the nine
individual GND densities, is calculated. (v) The solution
yielding the minimum total GND density among all possi-
ble combinations is selected.

There are three main input quantities to the analysis,
i.e. the Burgers vector, the gradient step sizes in the x, y

and z directions, and the lower threshold limit for the
misorientations. The Burgers vector is 2.5 � 10�4 lm in
the case of copper. The influence of the step size used
for the gradient calculation has been discussed in Section
3.1. A lower limit for misorientations is used to eliminate
noise and to save analysis time. On the contrary, some
information may be lost depending on the value of the
lower limit. Therefore, the lower limit is selected slightly
above the noise level (0.5�) so that a minimum amount
of information is lost.

The GNDs have to be summed over the deformed
region in order to identify the total GND density under
an indent. The total GND density is estimated by summing
the number of all GNDs and dividing this value by the
total reference volume (Fig. 6). Firstly, the region affected
by an indent is selected. Secondly, the densities of each
point that exceeds the lower bound are summed and the
total number of all data points are counted. Finally, the
total density of the region is found by dividing the sum
of the GND densities by the number of points, Eq. (15).
(In Eq. (15), N represents the number of points and A0

stands for the unit area affected.)
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Fig. 10. GND densities calculated considering the gradients also in the third direction (perpendicular to the slices) for the five central slices closest to the
indent tips.
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qtotal
gnd ¼

P
iq

i
gndA0P

iN
iA0

¼
P

iq
i
gndP

iN
i ð15Þ
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