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Abstract

This article reviews continuum-based variational formulations for describing the elastic–plastic deformation of anisotropic heteroge-
neous crystalline matter. These approaches, commonly referred to as crystal plasticity finite-element models, are important both for basic
microstructure-based mechanical predictions as well as for engineering design and performance simulations involving anisotropic media.
Besides the discussion of the constitutive laws, kinematics, homogenization schemes and multiscale approaches behind these methods, we
also present some examples, including, in particular, comparisons of the predictions with experiments. The applications stem from such
diverse fields as orientation stability, microbeam bending, single-crystal and bicrystal deformation, nanoindentation, recrystallization,
multiphase steel (TRIP) deformation, and damage prediction for the microscopic and mesoscopic scales and multiscale predictions of
rolling textures, cup drawing, Lankfort (r) values and stamping simulations for the macroscopic scale.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Crystalline anisotropy and the spirit of the crystal

plasticity finite-element method

The elastic–plastic deformation of crystalline aggregates
depends on the direction of loading, i.e. crystals are
mechanically anisotropic. This phenomenon is due to the
anisotropy of the elastic tensor and to the orientation
dependence of the activation of the crystallographic defor-
mation mechanisms (dislocations, twins, martensitic trans-
formations). A consequence of crystalline anisotropy is
that the associated mechanical phenomena such as shape
change, crystallographic texture, strength, strain harden-
ing, deformation-induced surface roughening and damage

are also orientation dependent. This is not a trivial state-
ment as it implies that mechanical parameters of crystalline
matter are tensor quantities.

An example is the uniaxial stress–strain curve, which is
the most important mechanical measure in structural mate-
rials design. The statement above means that such flow
curves represent an incomplete description of plastic defor-
mation as they reduce a six-dimensional yield surface and
its change upon loading to a one-dimensional (scalar) yield
curve (see Fig. 1). Another consequence of this statement is
that the crystallographic texture (orientation distribution)
and its evolution during forming is a quantity that is inher-
ently connected with plasticity theory. Texture can hence
be used to describe the integral anisotropy of polycrystals
in terms of the individual tensorial behavior of each grain
and the orientation-dependent boundary conditions among
the crystals. Formally, the connection between shear and
texture evolution becomes clear from the fact that any
deformation gradient can be expressed as the combination
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of its skew-symmetric portion, which represents a pure
rotation leading to texture changes if not matched by the
rotation implied by plastic shear, and a symmetric tensor
that is a measure of pure stretching. Plastic shear hence cre-
ates both shape and orientation changes, except for certain
highly symmetric shears. Therefore, a theory of the
mechanical properties of crystals must include, first, the
crystallographic and anisotropic nature of those mecha-
nisms that create shear, and second, the orientation(s) of
the crystal(s) studied relative to the applied boundary con-
ditions (e.g. loading axis, rolling plane).

Early approaches to describe anisotropic plasticity under
simple boundary conditions have considered these aspects,
such as, for instance, the Sachs [3], Taylor [4], Bishop–Hill
[5,6] or Kröner [7] formulations. However, these approaches
were neither designed for considering explicitly the mechan-
ical interactions among the crystals in a polycrystal nor for
responding to complex internal or external boundary condi-
tions (Fig. 2). Instead, they are built on certain simplifying
assumptions of strain or stress homogeneity to cope with
the intricate interactions within a polycrystal.

For that reason variational methods in the form of
finite-element (FE) approximations have gained enormous
momentum in this field. These methods, which are referred
to as crystal plasticity finite-element (CPFE) models, are
based on the variational solution of the equilibrium of
the forces and the compatibility of the displacements using
a weak form of the principle of virtual work in a given
finite-volume element. The entire sample volume under
consideration is discretized into such elements. The essen-
tial step which renders the deformation kinematics of this
approach a crystal plasticity formulation is the fact that
the velocity gradient is written in dyadic form. This reflects

the tensorial crystallographic nature of the underlying
defects that lead to shear and consequently, to both shape
changes (symmetric part) and lattice rotations (skew-sym-
metric part)—see Section 3. This means that the CPFE
method has evolved as an attempt to employ some of the
extensive knowledge gained from experimental and theo-
retical studies of single-crystal deformation and disloca-
tions to inform the further development of continuum
field theories of deformation. The general framework sup-
plied by variational crystal plasticity formulations provides
an attractive vehicle for developing a comprehensive theory
of plasticity that incorporates existing knowledge of the
physics of deformation processes [8–10] into the computa-
tional tools of continuum mechanics [11,12] with the aim of
developing advanced and physically based design methods
for engineering applications [13].

One main advantage of CPFE models lies in their ability
to solve crystal mechanical problems under complicated
internal and/or external boundary conditions. This aspect
is not a mere computational advantage but is an inherent
part of the physics of crystal mechanics since it enables
one to tackle those boundary conditions that are imposed
by inter- and intra-grain micromechanical interactions
(see Fig. 3) [14]. This is not only essential to study in-grain
or grain cluster mechanical problems but also to better
understand the often quite abrupt mechanical transitions
at interfaces [15].

However, the success of CPFE methods is not only built
on their efficiency in dealing with complicated boundary
conditions. They also offer great flexibility with respect to
including various constitutive formulations for plastic flow
and hardening at the elementary shear system level. The
constitutive flow laws that were suggested during the last

Fig. 1. Flow stress and strain hardening of anisotropic materials are tensor quantities.
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decades have gradually developed from empirical visco-
plastic formulations [16,17] into physics-based multiscale
internal-variable models of plasticity, including a variety
of size-dependent effects and interface mechanisms [9,18–
26]. In this context it should be emphasized that the FE
method itself is not the actual model but the variational
solver for the underlying constitutive equations that map
the anisotropy of elastic–plastic shears associated with
the various types of lattice defects (e.g. dislocations, twins,
martensite). Since its first introduction by Peirce et al. in
1982 [27] the CPFE method has matured into a whole fam-
ily of constitutive and numerical formulations that has
been applied to a broad variety of crystal mechanical prob-
lems (Table 1).

1.2. The crystal plasticity finite-element method as a

multimechanism and multiphysics platform

A conceptual advantage of the CPFE approach is that it
may not only include dislocations but also other mecha-
nisms which follow dyadic kinematics such as martensite
formation [74,80], shear band formation (e.g. in glassy
matter) [208,209], mechanical twinning [164–166,169] and
even superplastic grain boundary shear [41,45]. The CPFE
method allows the user to implement these shear mecha-
nisms including their interactions. But it also adds
complexity to the model: the use of different competing
crystallographic deformation mechanisms within a CPFE
model requires the formulation of local homogenization

Fig. 2. Schematical presentation of the growing complexity of grain-scale mechanics with respect to the equilibrium of the forces and the compatibility of
the displacements for different situations. (a and b) Single slip problem in a single crystal presented in stress space. (c) Part of a single-crystal yield surface
with two slip systems. (d) Multislip situation in a polycrystal where all different crystals have to satisfy an assumed imposed strain in their respective yield
corners. If the strain is homogeneous, this situation leads to different stresses in each crystal [1,2]. scrit: critical shear stress. rTBH : Taylor–Bishop–Hill stress
state (stress required to reach a yield corner).
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rules [1,142]. This means that at some material points only
one type of deformation mechanism (e.g. dislocation slip)
may occur, while in others a mix (e.g. dislocations and
twins) must be considered within the same volume portion.
The latter situation requires appropriate submodels that
describe the evolving fractions (e.g. of the twinned volume)
and the interactions of coexisting and competing deforma-
tion mechanisms at the same field point (Fig. 4). An aspect
that increases complexity in such cases is the possibility
that deformation martensite or twins may, after their for-
mation, undergo further plastic deformation or create
accommodation strains related to volume changes. Some
of these aspects will be discussed in Sections 5 and 6.

Another strength of the CPFE method is the close con-
nection between shape change, rotation and geometrically
necessary dislocations (GNDs) [210–213]. This allows one
to implement constitutive laws that treat mechanical size
effects in conjunction with local orientation gradients

[24]. This point is relevant for size-dependent plasticity
modeling, as the polarized portions of dislocation arrays
(which are often conceptually treated as GNDs),1 such as
anticipated in many size effect models, must necessarily
coincide with orientation gradients [210]. Such lattice rota-
tions are nowadays accessible to precise and high-resolu-
tion measurements in 2-D and 3-D so that corresponding
models can be tested [95,98,171,177,214–216].

Fig. 3. Experimental example of the heterogeneity of plastic deformation at the grain and subgrain scale using an aluminum polycrystal with large
columnar grains [14]. The images show the distribution of the accumulated von Mises equivalent strain in a specimen after 8% and 15% plane strain sample
thickness reduction (the deformation is given in % of Dd=d, where d is the sample extension along compression direction). The experiment was conducted
in a lubricated channel–die set-up. The strains were determined using digital image correlation. The high-angle grain boundaries indicated by white lines
were taken from electron backscatter diffraction microtexture measurements. The equivalent strains differ across some of the grain boundaries by a factor
of 4–5, giving evidence of the enormous orientation-dependent heterogeneity of plasticity even in pure metals.

1 It should be noted that a dislocation does actually not know whether it
is a geometrically necessary one or a statistical one unless its state is
specified in the context of an adequately defined Frank loop around a
material portion of interest. Furthermore, GNDs are, from a physics
standpoint, not a separate type of lattice defect when compared to
statistically stored dislocations, i.e. their evolution must be embedded in a
unified kinetic framework so that they can assume either state depending
on the local lattice defect configuration.
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CPFE simulations can be used both at microscopic and
macroscopic scales [1]. Examples for small-scale applica-
tions are inter- and intra-grain mechanics, damage
initiation, mechanics at interfaces, simulation of microme-
chanical experiments (e.g. indentation, pillar compression,
beam bending), or the prediction of local lattice curvatures
and mechanical size effects (see Table 1). Consequently,

CPFE methods gain momentum for the field of small-scale
material testing where the experimental boundary condi-
tions are difficult to control and/or monitor. In such cases
the experimental results may sometimes be hard to inter-
pret without corresponding CPFE simulations that allow
an experimentalist to simulate the effects of details in the
contact and boundary conditions. Miniaturization also

Table 1
Some examples for different applications of the CPFE method.

Application of the CPFE method Reference

Surface roughening, ridging, roping, thin film
mechanics

Becker [28], Raabe et al. [15], Zhao et al. [29], Yue [30], Siska et al. [31], Zhao et al. [32]

Grain boundary mechanics, Hall–Petch behavior,
grain interaction, grain size effects, strain
gradient effects, non-local formulations,
interface mechanics, superplasticity

Becker and Panchanadeeswaran [33], Mika and Dawson [34], Acharya and Beaudoin [35],
Meissonnier et al. [36], Barbe et al. [37], Raabe et al. [38], Evers et al. [20], Park et al. [39], Clarke et al.
[40], Wei and Anand [41], Fu et al. [42], Evers et al. [26], Evers et al. [21], Diard et al. [43], Bate and
Hutchinson [44], Wei et al. [45], Murphy et al. [46], Deka et al. [47], Ma et al. [24], Ma et al. [25],
Counts et al. [48], Gurtin et al. [49], Venkatramani et al. [50], Okumura et al. [51], Gerken and
Dawson [52], Gerken and Dawson [53], Kuroda and Tvergaard [54], Bitzek et al. [55], Borg et al. [56],
Li et al. [57]

Creep, high temperature deformation, diffusion
mechanisms

McHugh and Mohrmann [58], Balasubramanian and Anand [59], Hasija et al. [60], Bower and
Wininger [61], Venkatramani et al. [50], Agarwal et al. [62], Venkataramani et al. [63], Xu et al. [64]

Dislocation-based constitutive modeling Arsenlis and Parks [18], Arsenlis and Parks [19], Arsenlis and Tang [65], Arsenlis et al. [9], Evers et al.
[20], Evers et al. [21], Cheong and Busso [22], Ma and Roters [23], Evers et al. [26], Ma et al. [24], Ma
et al. [25], McDowell [66], Li et al. [57]

Martensite mechanics, phase transformation,
shape memory

Marketz and Fischer [67], Marketz and Fischer [68], Tomita and Iwamoto [69], Diani et al. [70],
Diani and Parks [71], Cherkaoui et al. [72], Cherkaoui et al. [73], Thamburaja and Anand [74],
Tomita and Iwamoto [75], Govindjee and Miehe [76], Anand and Gurtin [77], Turteltaub and Suiker
[78], Thamburaja [79], Lan et al. [80], Turteltaub and Suiker [81], Tjahjanto et al. [82], Geers and
Kouznetsova [83]

In-grain texture, grain-scale mechanics,
mesoscale, non-uniform deformation

Peirce et al. [27], Peirce et al. [84], Beaudoin et al. [85], Mika and Dawson [34], Sarma and Dawson
[86], Sarma and Dawson [87], Sarma et al. [88], Forest [89], Bhattacharyya et al. [90], Raabe et al. [38],
Miller and Turner [91], Raabe et al. [92], Sachtleber et al. [14], Kim and Oh [93], Clarke et al. [40],
Choi [94], Zaefferer et al. [95], Erieau and Rey [96], Sarma and Radhakrishnan [97], Roters et al. [98],
Kim et al. [99], Murphy et al. [46], daFonseca et al. [100], You et al. [101], Musienko et al. [102], Han
and Dawson [103], Zhao et al. [32], Zhang et al. [104]

Texture evolution, texture stability, in-grain
texture formation, anisotropy

Asaro and Needleman [105], Becker [106], Becker et al. [107], Bronkhorst et al. [108], Kalidindi et al.
[109], Beaudoin et al. [110], Bertram et al. [111], Becker and Panchanadeeswaran [33], Beaudoin et al.
[110], Mika and Dawson [112], Miehe et al. [113], Kalidindi [114], Balasubramanian and Anand [59],
Van Houtte et al. [115], Delannay et al. [116], Raabe et al. [117], Bate and An [118], Raabe et al. [119],
Li et al. [120], Sarma and Radhakrishnan [97], Anand [121], Roters et al. [122], Van Houtte et al.
[123], Li et al. [124], Van Houtte et al. [125], Delannay et al. [126], Tang et al. [127], Tikhovskiy et al.
[128], Lee et al. [129], Tikhovskiy et al. [130], Mayeur et al. [131], Delannay et al. [132]

Forming, deep drawing, process modeling, cup
drawing, spring-back, earing, wire drawing,
extrusion, anisotropy, design, fretting

Beaudoin et al. [133], Beaudoin et al. [134], Neale [135], Kalidindi and Schoenfeld [136], Nakamachi
et al. [137], Zhao et al. [138], Xie and Nakamachi [139], Raabe et al. [1] Goh et al. [140], McGarry
et al. [141], Raabe and Roters [142], Zhao et al. [13], Tugcu et al. [143], Delannay et al. [144], Li et al.
[124], Raabe et al. [145], Dick and Cailletaud [146], Tikhovskiy et al. [128], Delannay et al. [126],
Chen et al. [147], Raabe [148], Nakamachi et al. [149], Ocenasek et al. [150], Tikhovskiy et al. [130],
Mayeur et al. [131], Li et al. [151], Li et al. [152], Zhuang et al. [153], Delannay et al. [132], Zamiri
et al. [154]

Crystal plasticity and recrystallization Bate [155], Raabe and Becker [156], Raabe [157], Radhakrishnan et al. [158], Raabe [159], Takaki
et al. [160], Raabe [148], Semiatin et al. [161], Zambaldi et al. [162], Loge et al. [163]

Deformation twinning Kalidindi [164], Staroselsky and Anand [165], Marketz et al. [166], Staroselskya and Anand [167],
Marketz et al. [168], Salem et al. [169]

Nanoindentation, pillar testing, micro-bending,
micro-scale deformation and testing

Wang et al. [170], Zaafarani et al. [171], You et al. [101], Raabe et al. [172], Casals et al. [173],
Zaafarani et al. [174], Alcala et al. [175], Weber et al. [176], Xu et al. [64], Demir et al. [177]

Numerical aspects, FE shape effects, mesh
dependence, accuracy, robust integration
methods, texture discretization

Miehe [178], Bachu and Kalidindi [179], Harewood and McHugh [180], Amirkhizi and Nemat-Nasser
[181], Harewood and McHugh [182], Kuchnicki et al. [183], Melchior and Delannay [184], Zhao et al.
[185], Li et al. [186], Ritz and Dawson [187], Barton et al. [188], Gerken and Dawson [52]

Damage, fatigue, cyclic loading, void growth Bruzzi et al. [189], Turkmen et al. [190], Turkmen et al. [191], Kysar et al. [192], Sinha and Ghosh
[193], Potirniche et al. [194], Zhang et al. [195], Cheong et al. [196], Dunne et al. [197], Liu et al. [198],
Bieler et al. [199], Kumar et al. [200], Patil et al. [201], Watanabe et al. [202], McDowell [66], Mayama
et al. [203], Borg et al. [56]

Multiphase mechanics Hartig and Mecking [204], Tjahjanto et al. [205], Mayeur et al. [131], Inal et al. [206], Vogler and
Clayton [207]
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occurs in engineering design. Many products nowadays
have dimensions in the range of the grain scale, e.g. micro-
electromechanical systems (MEMS), bonding wires and
pillars, stents, and practically all materials in electronic
components. Design of such parts increasingly requires
consideration of grain-scale crystalline anisotropy. Some
applications along these lines are discussed in Section 9.

Macroscopic applications of the CPFE method occur
particularly in the fields of large-scale forming and texture
simulations. These problems usually require appropriate
homogenization schemes within a CPFE model since a lar-
ger number of crystals and/or phases must be considered in
each representative volume element mapped at a FE inte-
gration point. Primary engineering objectives of CPFE
applications in macroscopic forming simulations are the
prediction of the precise material shape after forming,

thickness distribution, material failure, optimization of
material flow, elastic spring-back, forming limits, texture
evolution and the mechanical properties of the formed part
[13,137–139,145,217]. Further related applications occur in
tool design, press layout and surface properties (see refer-
ences in Table 1). The latter aspect involves both macro-
scopic (e.g. wrinkling) as well as microstructural (e.g.
roping, ridging, orange peel) mechanisms that influence
the surface topography [15,28,29]. A recent development
is the use of the CPFE method as a virtual mechanical lab-
oratory. This approach uses crystal plasticity simulations
instead of complicated mechanical tests that are required
for fitting yield surface coefficients [217].

A further advantage of CPFE predictions is that they
can be compared to experiments in a very detailed fashion
probing a variety of quantities (Table 2). Corresponding
studies compared shape changes, forces, strains, strain
paths, rate effects, texture evolution, interface response,
local stresses and size effects one-to-one at different scales
(Table 2). Examples for applications and experimental val-
idation procedures are given in Section 9.

Beyond these metallurgical and mechanical consider-
ations numerical aspects also deserve attention. CPFE for-
mulations can be either fully integrated into FE codes or
implemented as user-defined subroutines into commercially
available solvers. The latter point is important because
engineering applications are often tackled using commer-
cial platforms. The use of standard solvers also helps to
make CPFE methods accessible to a broader community.
Since details of the FE method, the mesh and the integra-
tion procedures also play a significant role in CPFE simu-
lations, some of these aspects are discussed in Section 8.

In summary, this review intends to demonstrate that for
micro- and macro-scale mechanical problems containing
dyadic degrees of freedom for shear, the CPFE method is
an effective modeling platform as it can deal with the deli-
cate interplay of different effects such as complicated
boundary conditions (e.g. imposed by the surrounding
microstructure or by external fields), various deformation
mechanisms and their interactions (e.g. dislocation
mechanics at interfaces or twins and martensite), interface
properties (e.g. structural superplasticity or the Hall–Petch
effect) and details of slip localization (e.g. shear band for-
mation) at reasonable computational costs and by using
open source or commercial solvers.

2. Concise historical overview

The first FE simulation was performed by Courant in
1943 [218]. The breakthrough of the method came with the
publication of “The Finite Element Method in Structural
and Continuum Mechanics” by O.C. Zienkiewicz in 1967
[11]. The three succeeding volumes [12,219,220] are consid-
ered the most important monographs in the field to date.

Even though it has been known since 1934 [221–224]
that crystalline materials deform plastically by the slip of
dislocations on discrete slip systems, for a long time contin-

Fig. 4. Schematic presentation of the conceptual ingredients in CPFE
simulations. (a) Example of a case with one type of deformation
mechanism (lattice dislocations) and one phase. (b) Example of a case
with different deformation mechanisms, phases, orientations and homog-
enization schemes at the same integration point.
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uum mechanical FE simulations used isotropic material
models. The first CPFE simulations were performed by
Peirce et al. in 1982 [27]. Due to computational restrictions
they used a simplified set-up of two symmetric slip systems
in order to study the tensile behavior of a single crystal.
These simulations were later extended to a polycrystalline
arrangement by Harren et al. [225,226] using a 2-D set-
up with two or three slip systems. In 1991 Becker was the
first to perform simulations on the basis of the 12 slip sys-
tems of a face-centered cubic (fcc) crystal. Using a 3-D
model for the crystallographic degrees of freedom, he sim-
ulated channel–die deformation of a columnar polycrystal
aggregate [106] and of a single crystal [107]. Since that time
an ever-increasing number of CPFE simulations has been
performed, enabled by the increase in computational
power. In the field of direct or one-to-one crystal plasticity
models numerous grain- and subgrain scale problems have
been tackled using meshes with subgrain resolutions and,
in part, complex 2-D and 3-D grain arrangements
[14,32,34,86,88,110,179,185] (Section 9.2). On the macro-
scopic side, homogenization schemes were developed for
the application of the CPFE method to large-scale forming
operations. In this case the main problem was the correct
representation of the (statistical) crystallographic texture
of the material in the CPFE mesh. This can be achieved
in different ways using, for example, texture components
[138,142] or direct sampling of single orientations from
the orientation distribution function (ODF) [184,227,228]
(Sections 9.3 and 6.2).

All CPFE models mentioned so far used phenomenolog-
ical constitutive equations (see Section 4.2) and considered
dislocation slip as the only deformation mechanism. When
applying the CPFE method in new areas such as small-
scale deformation or interface mechanics existing phenom-
enological constitutive laws are often insufficient. Also,
new classes of materials such as twinning-induced plasticity
(TWIP) and transformation-induced plasticity (TRIP)
steels or shape memory alloys show additional deformation
and hardening mechanisms, i.e. twinning and/or deforma-
tion-induced phase transformations.

Size effects can be introduced into CPFE frameworks by
using phenomenological strain gradient theories which were
developed by Fleck et al. [229], Fleck and Hutchinson [230],
and Nix and Gao [231]. However, as strain gradients can be
associated with GNDs, new internal-variable constitutive
formulations were developed that incorporate dislocation
densities as physically based state variables [9,18,19,24,
25,232] instead of strain measures, which were often used
in phenomenological formulations (also see Section 4.3).
This most recent class of constitutive models also allows
one to incorporate additional metallurgical mechanisms
such as grain boundary mechanics [25,233] (Section 4.3.3)
or damage initiation [199] into the constitutive description.
Concerning additional deformation mechanisms such as
those that occur in TWIP or TRIP steels, extended CPFE
formulations have been suggested by Kalidindi et al.
[114,164], Salem et al. [169], Staroselskya and Anand [167]
and Suiker and Turteltaub [234] (also see Section 5).

Table 2
Examples of measurable quantities that can be predicted by CPFE models.

Prediction by CPFE methods Experimental access

Surface roughening Speckle interferometry, digital image correlation (photogrammetry), atomic force
microscopy, white-light confocal microscopy

Elasticity, interface mechanics, grain size effects, grain interaction, size
effects

Indentation testing, tensile and compression testing, mechanical tests at different
sample sizes, digital image correlation, electron backscatter diffraction, scanning
electron microscopy, ultrasonic testing, X-ray and synchrotron Bragg peak
broadening and shifting

Creep, high temperature deformation, superplasticity Tensile testing, texture measurement, in situ electron microscopy
Dislocation-based constitutive modeling Flow stress measurement, transmission electron microscopy, lattice orientation

measurements, electron channeling contrast imaging in the scanning electron
microscope

Martensite mechanics, phase transformation, shape memory Magnetic measurements, multiphase electron backscatter diffraction, X-ray and
synchrotron Bragg diffraction

In-grain texture, grain-scale mechanics, non-uniform deformation,
multiphase mechanics

Digital image correlation, indentation hardness testing, orientation determination
(Kikuchi diffraction in the transmission or scanning electron microscope; X-ray
Bragg diffraction), mechanical testing

Texture evolution, texture stability, in-grain texture formation,
anisotropy

Texture measurements using Kikuchi diffraction in the transmission and scanning
electron microscope or X-ray Bragg diffraction

Forming, deep drawing, process modeling, cup drawing, spring-back,
earing, wire drawing, extrusion, anisotropy, design, fretting

Shape analysis, cup drawing experiments, spring-back measurements, ultrasonic
measurement of elastic polycrystal constants

Crystal plasticity and recrystallization Hardness testing, metallography, electrical resistivity, X-ray and synchrotron
diffraction, electron backscatter diffraction, transmission electron microscopy,
grain size determination, kernel average orientation determination, calorimetry

Deformation twinning Metallography, X-ray and synchrotron diffraction, electron backscatter
diffraction, transmission electron microscopy, electron channeling contrast
imaging in the scanning electron microscope

Nanoindentation, micro-scale deformation, miniaturized mechanical
testing

Hardness and stiffness analysis using nanoindenter or nanomanipulator tests,
surface shape analysis using atomic force microscopy, electron microscopy
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3. Flow kinematics

This section presents a detailed discussion of the differ-
ent distortion measures that form the geometrical back-
bone of the CPFE framework. The review is given in
terms of finite deformation measures as the small distortion
case can always be derived from it. The kinematics of iso-
thermal finite deformation describes the process where a
body originally in a reference state (or “configuration”),
B � R3, is deformed to the current state, S � R3, by a com-
bination of externally applied forces and displacements
over a period of time, Dt. In this treatment we choose the
perfect single crystal as reference state. Other possible
choices of a reference state would be the state just before
deformation, or in an incremental formulation, the state
at any time t. The latter has the disadvantage of a con-
stantly changing reference state while the former might
contain an undefined amount of crystal defects.

In crystal plasticity one has to distinguish three coordi-
nate systems. The shape coordinate system is a curvilinear
system, based on the physical shape of the body, which
deforms congruently with the total changes in shape occur-
ring during deformation. In contrast, the lattice coordinate
system has coordinate axes fixed locally parallel to the crys-
tallographic directions, i.e. the nodes of the coordinate net-
work maintain a one-to-one correspondence with crystal
lattice points during deformation except where singularities
in the atomic array occur due to the defect cores. There-
fore, the space defined by the deformed lattice coordinate
system is connected to ordinary Euclidean space by func-
tions that depend on the defect content and distribution
[235]. The distinction between shape and lattice distortion
is critical when internal stresses are to be calculated [236].
Since these stresses arise from internal reaction forces gen-
erated when atoms experience a relative displacement from
their equilibrium positions, they can only be related to lat-
tice deformations because shape deformations do not nec-
essarily follow the deformation of the underlying crystal
lattice. Deformations in the two types of coordinates are
coincident only when no motion of crystal defects occurs,
which is the usual assumption made for calculating elastic
stresses from measurements of the small deformations of a
coordinate system deposited on the surface or embedded
within a body. Finally, it is often convenient to describe
the deformations of the overall shape of a body and its
associated lattice in terms of a third reference system, lab-
oratory coordinates, that does not deform with the body.
Computations of the deformation of both shape and lattice
coordinate systems can be made in terms of their compo-
nents in laboratory coordinates. This has the practical
advantage of providing a reference system that is fixed
throughout the deformation of the body.

To cast this in a formal way we represent the positions
of neighboring material points relative to an arbitrary ori-
gin in the reference configuration by the vector dx. As a
result of deformation, this vector is mapped into its image
in the current configuration, dy = dx + du, where du is the

differential total displacement vector. These vectors are
related by the total, or shape, deformation gradient, F:

dy ¼ @y

@x

� �
dx ¼ Iþ @u

@x

� �
dx ¼ Fdx ð1Þ

where I is the second rank identity tensor. The second rank
tensor formed from the partial derivatives of u with respect
to x is known as the shape (also total) distortion tensor, b
and is a perfect differential if the deformations that produce
it do not introduce any discontinuities, i.e. gaps or cleav-
ages, in the global body. That is, there exists a one-to-
one mapping of material points from the current state to
the reference state. The Lagrangian and Eulerian (Almansi)
finite strain tensors, E and E�, associated with a deforma-
tion (defined by the deformation gradient F), respectively,
are symmetric tensors defined by:

E ¼ 1

2
ðFTF� IÞ ð2Þ

and

E� ¼ 1

2
ðI� F�TF�1Þ ð3Þ

where the superscript (T and �T) indicates the transpose
and its inverse, respectively, and the superscript (�1) indi-
cates the inverse of the tensor. It is useful to note that any
deformation gradient, F, can be expressed as the product of
a pure rotation, R, and a symmetric tensor that is a mea-
sure of pure stretching. Two representations are possible,
depending on which operation occurs first:

F ¼ RU ¼ VR ð4Þ
where the symmetric tensors U and V are, respectively, the
right and left stretch tensors.

The shape deformation can be decomposed into two
components [7,211,213,237,238] (see also Fig. 5):

F ¼ FeFp: ð5Þ
The “elastic” deformation, Fe, is the deformation compo-
nent due to the reversible response of the lattice to external
loads and displacements (as well as rigid-body rotations)
while the “plastic” deformation, Fp, is an irreversible per-
manent deformation that persists when all external forces
and displacements that produce the deformation are re-
moved. In this sense, transformation of the reference state

Fig. 5. Decomposition of the total deformation gradient, F ¼ FeFp.
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by Fp leads to an intermediate configuration which is free
from external stresses and which is generally considered
to maintain a perfect lattice. However, this state requires
that none of the dislocations which produced the perma-
nent shape change any longer reside within the material
point neighborhood, but are located at its periphery. In
reality, this assumption is typically not fulfilled, such that
(balanced) internal stresses remain due to the (homoge-
neous) presence of dislocations within the neighborhood.

This decomposition differs from that proposed by Bil-
by et al. [239] in that their model requires that the stress-
free deformation producing the intermediate state does
not leave residual deformation in the lattice, hence does
not change the thermodynamic state of the material. In
their formulation, no residual dislocations are present
in the intermediate state regardless of the vanishing of
the net Burgers vector. Making this distinction, Bilby
et al. [239] refer to Fp as the “dislocation deformation”
and Fe as “lattice correspondence functions”. In this case
Fe also contains a component of lattice deformation due
to sources of internal stress distributed throughout the
body.

For example, consider the processes shown in Figs. 6
and 7 by which an initially perfect crystal undergoes the
same change in shape by shear, though involving different
contributions from dislocation slip. In Fig. 6 the crystal
lattice is unchanged in the reference and current states,
so all the work expended in the process is dissipated as
heat and the material remains in the same thermodynamic
state before and after the deformation. At the end of the
process the external loads can be removed and no lattice
deformation remains, F ¼ Fp. In contrast, the crystal
undergoes an purely elastic shape change in Fig. 7. In this

case there are no dislocations, the lattice is distorted con-
gruently with the external shape of the body, F ¼ Fe, and
the external cause for the deformation must be main-
tained in order to preserve the change in shape; removal
of the external boundary conditions causes the body to
revert to the reference state. Also the thermodynamic
states of the reference and current states are different
because of the stored elastic energy due to the lattice
deformation.

As for the total shape deformation, F, given in Eq. (1),
the elastic and plastic deformations can each be expressed
as sums of the identity tensor and second-rank tensors,
be and bp, called the elastic distortion and plastic distor-
tion, respectively. However these quantities need not be
integrable derivatives of displacement vectors for the elastic
and plastic deformations, since displacements associated
with these deformations can be incompatible, i.e. may
introduce discontinuities into the body.

When dislocation deformation occurs by slip on two or
more systems, the spatiotemporal order in which deforma-
tion occurs seems important in the kinematic treatment.
For example, Fig. 8 illustrates that a pure dislocation
deformation of a volume element by slip on two-slip sys-
tems that lead to the same Fp results in a different configu-
ration of the reference volume. In Fig. 8a dislocation
deformation initially causes the deformation component
Fp21, followed by Fp12, resulting in a state of pure shear.
In Fig. 8b the same final state is reached by reversing the
order of the dislocation deformation. The resulting surface
configuration of extra half planes results in two different
types of surface dislocation configuration upon subsequent
insertion into the original body. Denoting the dislocation
deformation due to the kth slip event as FðkÞ

p , the appropri-
ate expression for the multiplicative decomposition of n

successive events is:

F ¼ Fe FðnÞ
p Fðn�1Þ

p � � �Fð1Þ
p

� �
: ð6Þ

In Eq. (6) the index refers to the order in which the slip
event occurs. Different index values can apply to slip on
the same system occurring with intervening deformation
on other systems.

However, the distinction between different orders is gen-
erally not important, since the deformation carried by indi-
vidual slip events is small unless atomic dimensions are
concerned. This can be illustrated by expanding the plastic
distortion into its components on the active slip systems:

Fp ¼ FðnÞ
p Fðn�1Þ

p � � �Fð1Þ
p

¼ Iþ
Xn
k¼1

bðkÞ
p þO b2

p

� �
þO b3

p

� �
þ . . . ; ð7Þ

where the trailing terms on the right-hand side refers to
terms of order higher than 1. Since all components are
small in the usual sense of linear approximations, these
higher-order terms can be neglected, leaving only the sum
of first-order terms in bðkÞ

p . This sum of linear terms canFig. 7. Example of pure lattice deformation, F ¼ Fe.

Fig. 6. Example of pure dislocation deformation, F ¼ Fp.
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be rearranged to group the summands according to slip
system, leading to an expression for Fp that contains terms
from all active slip systems regardless of the order in which
slip on each occurs.

Development of the kinematics of finite deformations
requires an expression for the time rate of change of F.
The velocity of each material point of a body in motion
forms a vector field measured in the current state, v ¼ _u,
where the superimposed dot refers to the time derivative
of the quantity. The spatial gradient of the total velocity,
L, is defined as:

L ¼ v�ry ¼ _FF�1; ð8Þ
where the index, y, of the gradient operator refers to the
fact that it is evaluated at the current location of the mate-
rial point. The relationship of L to Le and Lp can be ob-
tained by combining Eqs. (5) and (8). Application of the
product rule of differentiation to the former gives:

_F ¼ _FeFp þ Fe
_Fp; ð9Þ

which, when applied to Eq. (8), yields the velocity gradient:

L ¼ _FeF
�1
e þ F e

_FpF
�1
p

� �
F�1

e ¼ Le þ FeLpF
�1
e ð10Þ

The term in parentheses in Eq. (10) is the plastic velocity
gradient, which is evaluated in the intermediate configura-
tion and must therefore be mapped into the deformed con-
figuration by Fe.

4. Constitutive models

4.1. Introduction

The preceding section on kinematics discussed the mul-
tiplicative decomposition of the deformation gradient F:

F ¼ FeFp: ð11Þ
As shown there the plastic deformation evolves as:

_Fp ¼ LpFp ð12Þ
and in case of dislocation slip as the only deformation pro-
cess, according to Eq. (7) and using first-order terms only,
Lp can be formulated as sum of the shear rates on all slip
systems:

Lp ¼
Xn
a¼1

_cama � na ð13Þ

where vectors ma and na are, respectively, unit vectors
describing the slip direction and the normal to the slip
plane of the slip system a; _ca is the shear rate on that same
system. n is the number of (active) slip systems.

This section is about the constitutive equations that define
these shear rates as a function of the external stress, r, and
the microstructural state of the material, S. In other words
the kinematic formalism describes the geometrical aspects
of the anisotropy of crystal mechanics without considering

Fig. 8. When dislocation deformation occurs by slip on two or more systems, the order in which deformation occurs makes a difference in the kinematic
treatment. The figure illustrates that a pure dislocation deformation of a volume element by slip on two slip systems that results in the same Fp results in a
different configuration of the reference volume. A dislocation deformation initially causes the deformation component Fp21, followed by Fp12, resulting in a
state of pure shear. The same final state is reached by reversing the order of the dislocation deformation. The resulting surface configuration of extra half
planes results in two different types of surface dislocation configuration upon subsequent insertion into the original body.
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stresses, while the constitutive equations capture the physics
of the material behavior, in particular of the dynamics of
those lattice defects that act as the elementary carriers of
plastic shear. How the microstructural state of the material,
S, is defined and how it evolves during loading depends on
the kind of constitutivemodel used. In the followingwe pres-
ent two classes of constitutive models, namely phenomeno-
logical models and physics-based models.

4.2. Phenomenological constitutive models

Phenomenological constitutive models mostly use a criti-
cal resolved shear stress, sac , as state variable for each slip
system a. Therefore, the shear rate, _ca, is formulated as a
function of the resolved shear stress, sa ¼ 0:5 C FT

e Fe � I
� �

:
ma � na, and that critical resolved shear stress:

_ca ¼ f sa; sac
� 	 ð14Þ

and the evolution of the material state is formulated as
function of the total shear, c, and the shear rate, _ca:

sac ¼ gðc; _cÞ ð15Þ
Prominent formulations along these lines were suggested
by Rice et al. [16], Hutchinson [240], Peirce et al. [27,84]
for fcc metallic crystals. In this framework the kinetic law
on a slip system is:

_ca ¼ _c0
sa

sac





 



1msgnðsaÞ ð16Þ

where _ca is the shear rate on slip system a subjected to the
resolved shear stress sa at a slip resistance sac ; _c0 and m are
material parameters that determine the reference shear rate
and the rate sensitivity of slip, respectively. The influence of
any set of slip system, index b, on the hardening behavior
of a (fixed) slip system a is given by:

_sac ¼
Xn
b¼1

habj _cbj ð17Þ

where hab is referred to as the hardening matrix:

hab ¼ qab h0 1� sbc
ss

� �a� �
ð18Þ

which empirically captures the micromechanical interac-
tion among different slip systems. In this formulation
h0; a and s s are slip hardening parameters, which are as-
sumed to be identical for all fcc slip systems owing to the
underlying characteristic dislocation reactions. The param-
eter qab is a measure for latent hardening; its value is taken
as 1.0 for coplanar slip systems a and b, and 1.4 otherwise,
which renders the hardening model anisotropic. In the lit-
erature a number of variations of Eqs. (16) and (17) can
be found. Some authors [106] use the sinh function instead
of a power-law in Eq. (16), while others [88] use modified
hardening laws such as a generalized Voce equation
[241,242] instead of Eq. (17).

These types of kinetic formulations are currently the
most frequently used ones in CPFE models although they

suffer from the drawback that the material state is only
described in terms of the critical resolved shear stress, sc,
and not in terms of lattice defect populations [243,244].
The latter approach, however, is required to render crystal
plasticity models path- and size-dependent as will be dis-
cussed in the following.

4.3. Physics-based constitutive models

In contrast to the phenomenological constitutive mod-
els, the physically based ones rely on internal variables.
In the case of plasticity the most important microstructural
state variable certainly is the dislocation density as the dis-
locations are the carriers of plastic deformation.2 Models
that treat the evolution of dislocation densities and cal-
culate the flow stress from them have been proposed by
various authors [9,19,22,24,25,232]. In the following sub-
sections we present the dislocation-based model by Ma
et al. [23–25] in more detail. It should be noted that even
though the dislocations are the most important internal
variable measure, more parameters are required for a full
characterization of the microstructure, e.g. grain size and
shape, second phase fractions, precipitate morphology,
etc. However, only a few of these additional parameters
have been introduced into dislocation-based CPFE models
so far.

4.3.1. Dislocation-based constitutive laws in CPFE models

The dislocation density-based constitutive model intro-
duced by Ma et al. [23–25] uses mobile dislocations, qa

m,
gliding along the slip system a to accommodate a part of
the external plastic deformation. In order to do so they
must overcome the stress field of the parallel dislocations,
qa
P, which causes the passing stress. In addition, they must

cut the forest dislocations, qa
F, with the aid of thermal acti-

vation. In this framework we define the parallel dislocation
density, qa

P, and the forest dislocation density, qa
F, for each

slip system a in the following way: qa
P are the dislocations

parallel to the slip plane, and qa
F are the dislocations per-

pendicular to the slip plane. Considering the immobile dis-
location density, qa

SSD for fcc crystals, the following
projections can be used:

qa
F ¼

XN
b¼1

vabqb
SSD cos na; tb

� 	

 

 ð19Þ

qa
P ¼

XN
b¼1

vabqb
SSD sin na; tb

� 	

 

: ð20Þ

In these equations we introduce the interaction strength,
vab, between different slip systems, which includes the
self-interaction strength, coplanar interaction strength,

2 It should be noted that in some models dislocation densities are
calculated by using the Taylor relation s / ffiffiffi

q
p� 	

. These approaches must
also be regarded as phenomenological models as they do not treat the
evolution of the dislocation densities explicitly.
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cross-slip strength, glissile junction strength, Hirth lock
strength, and Lomer–Cottrell lock strength. In this formu-
lation only edge dislocations are considered owing to their
limited out-of-plane mobility. Their line direction is de-
noted by tb.

In a dislocation-based model the Orowan equation typ-
ically serves as kinetic equation instead of Eq. (16) as it
couples shear rates to mobile dislocations, i.e. it allows
one to translate a continuum mechanical term into the
physics of dislocations

_ca ¼ qa
mbv

a ð21Þ
where qm is the density of mobile dislocations, b the mag-
nitude of the Burgers vector and v the average velocity of
the mobile dislocations. According to [23] the mobile dislo-
cation density can be calculated from the statistically
stored dislocation density by a simple scaling law:

qa
m ¼ BT

ffiffiffiffiffiffiffiffiffiffi
qa
Pq

a
F

p ð22Þ
where T is the absolute temperature and B is given by:

B ¼ 2kB
c1c2c3Gb

3
; ð23Þ

where kB is the Boltzmann constant and G the shear mod-
ulus; c1 to c3 are constants introduced in the dislocation
density evolution laws below.

Under the assumption of forest cutting as the rate-deter-
mining process, the velocity of the mobile dislocations can
be calculated as:

va ¼ kamattack exp �Qslip

kBT

� �
sinh

saeffV
a

kBT

� �
sgnðsaÞ ð24Þ

where ka is the jump width which is inversely proportional
to the forest dislocation spacing, mattack is the attack fre-
quency, Qslip is the effective activation energy for disloca-
tion glide, and V a the activation volume, which can be
calculated as:

V a ¼ c3k
ab2 ð25Þ

with c3 being a fitting constant of order unity.
Finally, the effective shear stress saeff can be calculated

from the resolved shear stress and the passing stress as:

saeff ¼
jsaj � sapass ¼ jsaj � c1Gb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa
P þ qa

m

p
for jsaj > sapass

0 for jsaj 6 sapass

(
ð26Þ

The phenomenological description of hardening in Eq. (17)
is substituted by the evolution of the dislocation densities.
For this purpose rate equations are formulated based on
individual dislocation reactions. In Ref. [23] four such pro-
cesses are taken into account, namely lock and dipole for-
mation as processes increasing the dislocation density, and
both athermal and thermally activated annihilation as
recovery processes. Detailed derivations of these rate equa-
tions can be found in Ref. [23]. In the following we summa-
rize the results:

� Lock formation

_qaþ
SSD ¼ c4

b

ffiffiffiffiffi
qa
F

p
_ca ð27Þ

� Dipole formation

_qaþ
SSD ¼ c5

b
da

dipoleq
a
m _c

a ð28Þ

ddipole ¼
ffiffiffi
3

p
Gb

16pð1� mÞ jsaj � sapass

� ��1

ð29Þ

� Athermal annihilation

_qa�
SSD ¼ �c6qa

SSD _c
a ð30Þ

� Thermal annihilation due to climb of edge dislocations

_qa�
SSD ¼ �c7

D0b
3

kBT
exp �Qbulk

kBT

� �
qa
SSD

2jsaj _ca

_cref

� �c8

ð31Þ

where c4; . . . ; c8 are fitting constants, ddipole the critical dis-
tance for dipole formation, D0 the diffusion coefficient,
Qbulk the activation energy for dislocation climb and _cref a
reference shear rate.

4.3.2. Introduction of geometrically necessary dislocations

Most of the constitutive laws reported in the literature
can be attributed to the group of local models in which
the total deformation gradient has been multiplicatively
decomposed into elastic and plastic parts, and where the
constitutive behavior can be fully described from the load-
ing history. For stress–strain curves and texture predictions
of polycrystals, local models have been shown to be power-
ful and efficient [108]. However, when the simulation scale
becomes smaller such as in studies focusing on nanoinden-
tation [170,171,174], micropillar compression [172], or
small-scale beam bending [176], local models can be insuf-
ficient due to their inability to describe mechanical size
effects.

The grain size dependence of the flow stress was first
described by Hall and Petch by an empirical equation
[245,246]. Numerous studies have since then shown that
the strengthening effect by a smaller grain size is due to a
higher volume fraction of heterogeneous plastic deforma-
tion in the vicinity of grain boundaries. There are several
explanations in the literature based on dislocation mecha-
nisms such as pile-ups of mobile dislocations in front of
the grain boundaries causing stress concentrations that
increase the slip resistance or strain gradients near those
interfaces. These strain gradients are assumed to produce
an extra increment of dislocation densities which increase
the slip resistance [20]. Beyond the grain size effect different
types of micro-scale experiments (torsion, bending, inden-
tation) have also revealed a length-scale dependence of
the flow stress [232]. In these experiments typically non-
uniform plastic deformation occurs which may lead to ori-
entation and strain gradients in the vicinity of a material
point. These gradients can be associated with GNDs
[212]. In phenomenological models it is not straightforward
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how to integrate GNDs into the constitutive model. In con-
trast, in dislocation density-based models GND concepts
can be easily integrated as part of the constitutive frame-
work [210].

However, the calculation of strain gradients renders a
constitutive model non-local, which makes it more difficult
to implement. The main reason for this is that in a non-
local model a material point is strongly coupled with its
neighboring points during the evolution of GNDs. This
means that strain gradient calculations have to converge
for a set of neighboring material points in the same time
increment. In order to achieve this some authors [9,26]
use the divergence theorem for formulating new differential
equations using GNDs and SSDs as additional degrees of
freedom for every node in an element. These algorithms
require supplying additional boundary conditions for the
dislocation density flux. While this is not complicated for
simple calculations, it is difficult for complex load cases.
An alternative and more general integration algorithm
was therefore introduced by Ma et al. [24] to solve any
non-local constitutive model in material subroutines such
as offered by commercial finite-element solvers (e.g. Marc,
Abaqus).

This section shows how GNDs can be introduced in the
dislocation model presented above. As mentioned above,
Nye’s dislocation tensor [210] can be used to translate the
strain gradient into GNDs:

K ¼ � 1

b
rx � FT

p

� �T
ð32Þ

where the nabla operator rx is defined as the derivative
with respect to the reference coordinate rx ¼ @=@x. Using
Eq. (32), the resultant Burgers vector for an arbitrary ori-
ented surface can be calculated. In general this tensor is
non-symmetric with nine independent values. Therefore,
the calculation of the exact GND content for every slip sys-
tem requires additional assumptions as although there are
12 slip systems for the fcc crystal structure only 6 of them
are geometrically independent [247].

Using the material time derivative of Eq. (32) in con-
junction with Eqs. (12) and (13), the change of the GND
density can be derived [24]:

_qa
GND ¼ 1

b
rx � _caFT

pn
a

� �


 





 


: ð33Þ

The integration of the GNDs into the constitutive model is
now simply a matter of extending the projection into forest
and parallel dislocations (Eqs. (19) and (20)). To render
this projection more convenient _qa

GND is decomposed into
three groups: one group of screw dislocations with tangent
vector parallel to the slip direction da, the other two groups
of edge dislocations with tangent vectors parallel to na and
ta, respectively

_qa
GNDs ¼

1

b
rx � _caFT

pn
a

� �h i
� da ð34Þ

_qa
GNDet ¼

1

b
rx � _caFT

pn
a

� �h i
� ta ð35Þ

_qa
GNDen ¼

1

b
rx � _caFT

pn
a

� �h i
� na ð36Þ

which satisfy

_qa
GND

� 	2 ¼ _qa
GNDs

� 	2 þ _qa
GNDet

� 	2 þ _qa
GNDen

� 	2
: ð37Þ

Eqs. (34)–(36) are a set of evolution equations for qGND,
just like those for qSSD derived in the previous section. Fi-
nally the extended projection reads:

qa
F ¼

XN
b¼1

vab qb
SSDj cosðna; tbÞj þ qb

GNDs cosðna; dbÞ


 

�

þ qb
GNDet cosðna; tbÞ



 

þ qb
GNDen cosðna; nbÞ



 

� ð38Þ

qa
P ¼

XN
b¼1

vab qb
SSDj sinðna; tbÞj þ qb

GNDs sinðna; dbÞ


 

�

þ qb
GNDet sinðna; tbÞ



 

þ qb
GNDen sinðna; nbÞ



 

� ð39Þ
where absolute values of GNDs are used, so that the signs
of their Burgers vectors are neglected. A direct result of this
treatment is that no kinematic hardening can be predicted,
which is acceptable for single-phase material and unidirec-
tional loading.

4.3.3. Interface models

Grain boundaries act as obstacles to dislocation motion.
At the onset of plastic deformation of polycrystals, mobile
dislocations are first created on the slip system with the
largest local resolved shear stress in the grain with the most
favorable orientation. When encountering a grain bound-
ary these mobile dislocations accumulate in front of that
interface. Such events lead to stress concentrations at the
interface that add to the external stress field at this material
point. These microplastic effects, where the local arrange-
ment of dislocations determines the local stress, cannot
be treated one-to-one in a crystal plasticity continuum
mechanical framework because such models map the
underlying dislocation mechanics in a phenomenological
statistical or even empirical form. However, homogeniza-
tion is admissible at larger plastic strains where most of
the slip activation processes can be captured by long-range
stresses rather than by local ones [249]. This means that the
dislocation mechanics can, beyond the microplastic regime,
be homogenized in the form of statistical dislocation pop-
ulations, which in turn can be embedded as constitutive
rate equations in a crystal plasticity theory [19,20,25].

Two approaches for including grain boundary mechan-
ics into dislocation-based constitutive CPFE models can be
found in the literature. In the first type of models the grain
boundaries are treated as being partially transparent to dis-
locations [25]. In the second type of models interfaces
appear as perfect obstacles that do not allow dislocation
penetration events [21]. The latter assumption can be
implemented in FE simulations as an additional set of
boundary conditions, namely as a zero shear condition per-
pendicular to interfaces. While the latter approach appears
to be relatively straightforward at first view it can be rather
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intricate when meshing complicated grain aggregates
[14,38,85,95]. As shown by Evers et al. [21] these additional
boundary conditions result in an increased hardening of
the material, however, they do not result in an increase
of the initial yield stress, i.e. the Hall–Petch effect is not
captured. In order to overcome this drawback Evers
et al. [21] suggested introducing grain boundary disloca-
tions (GBDs) as an initial content of GNDs at the position
of the grain boundaries. These GBDs are calculated by
Evers et al. [21] from the crystallographic misorientation
across the interface in the following way: When considering
two crystals with orientations QI and QII with slip systems
ðda;b; ta;b; na;bÞ; a; b ¼ 1; 2; . . . ; 12,3 and a grain boundary
with a normal vector nGB, which separates these two crys-
tals (Fig. 9), one obtains the density of GBDs as:

qa
GBD ¼ sign na0 � nGB0

� 	 ðjna � nGBj � jnb � nGBjÞ2
b2

ð40Þ

The slip system b has to be chosen to minimize qa
GBD.

In the second type of approach Ma et al. [25] assume
partial transparency of the interface to dislocations. The
transmission probability of incoming mobile dislocations
to penetrate a grain boundary can be treated in terms of
an activation concept. The enthalpy for this activation
process stems from the elastic energy that is required for
the formation of misfit dislocations which remain as debris
in the interface upon slip penetration. This activation
enthalpy enters as an additional contribution into the acti-
vation term for the slip of mobile dislocations (Eq. (24)). It
is likely that each transmission event will occur at the
smallest possible energy consumption. This condition pro-
vides a selection criterion for the slip systems involved. The
main task in this model, therefore, consists in identifying
the outbound slip system on the other side of the bound-
ary, which provides the closest geometrical match to the
inbound slip system. The smallest misalignment between
the active inbound and the expected outbound slip systems
leads to the smallest possible energy barrier.4 For an arbi-
trary transmission event, it is obvious that some incoming
slip system does not, as a rule, match a corresponding one
on the outbound side exactly, i.e. the shear is usually not
coherent on the two sides of a grain boundary. Therefore,
in order to meet the conservation of the lattice defect vector
sum when crossing an interface, misfit dislocations will be
created in the grain boundary. The additional energy
required to produce such an extra misfit dislocation acts
as an energy barrier for the thermally activated slip trans-
mission event. This barrier, hence, acts as a penalty energy
for such a situation. However, it should be interpreted in a
somewhat more statistical manner. This means that it is not
required to yield a strict one-to-one correlation between

incoming and outgoing dislocations rather than a match
in the overall shear on either side. Moreover, it is conceiv-
able that the transmission event only rarely takes place
owing to the local stiffening effect that it introduces. Along
with this grain boundary hardening effect the accumulation
of GNDs in front of the interfaces acts as an additional
stiffness effect. The mathematical treatment of this disloca-
tion-based approach to grain boundary effects in the CPFE
framework shown in Ma et al. [25] leads to the following
equation for the penalty energy b that minimizes the activa-
tion energy:

Ea
GB ¼ min

b
c09
1

2
Gb2laRa

� �
: ð41Þ

where c09 is a fitting constant, la is the length of the incom-
ing dislocation and Ra is a geometrical factor describing the
correlation of the incoming system a and the outgoing sys-
tem b.

It is worth mentioning that while the absolute magni-
tude of Ea

GB can be changed by the choice of c09, the ratio
of the activation energies for different boundaries is not
affected by this value.

As an example, the activation energies of an incoming
dislocation with a length b are calculated for twist bound-
aries which are characterized by rotations about the [111]
and [110] crystal directions, respectively, under the addi-
tional constraint that the grain boundary plane is perpen-
dicular to the rotation axes. The calculations apply for
the fcc crystal structure. The results are shown in Figs. 10
and 11, where the activation energy has been normalized
by the factor 1

2
Gb3 and the constant c09 was chosen to be

equal to 1. Both figures show also the average of the energy
barrier for better comparison. From these curves it is clear
that a grain boundary is a strong obstacle to dislocation
motion, as the average activation energies for the forma-
tion of the misfit dislocations easily reach the order of mag-
nitude of the activation energy for cutting forest lattice
dislocations.

It is observed that the energies for slip penetration are
periodic. This effect arises from the octahedral symmetry
of the slip systems in the crystal. The activation energy
for the penetration shows a complicated relationship with
the misorientation, especially when the rotation angle is
larger than about 20�. One can see that the energy barrier
strongly depends on the misorientation of the two crystals.
However, the average activation energies show a much
more constant behavior, which implies that the strong
effects for single slip systems will be averaged out to some
extent in macroscopic experiments.

In most CPFE implementations grain boundaries coin-
cide with element boundaries. In the dislocation-based
approach discussed above, a special type of bimaterial ele-
ment crossing the grain boundary is introduced. In this ele-
ment one-half of the Gauss points belongs to one crystal,
while the other half belongs to the other crystal, see
Fig. 12. In this new type of element one can use a modified
version of Eq. (24), namely:

3 The indices a and b always refer to crystals I and II, respectively.
4 It is not actually checked whether or not this slip system can be

activated by the local stress but it is anticipated as a likely situation as the
outbound slip system orientation is close to the inbound one.
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va ¼ kamattack exp �Qa
eff

kBT

� �
sinh

saeffV
a

kBT

� �
sgnðsaÞ ð42Þ

where Qa
eff is the modified effective activation energy

Qa
eff ¼ Qslip þ Qa

GB: ð43Þ
When comparing this equation with the one specified in
Section 4.3.1, the only difference is the use of Qa

eff instead
of Qslip. According to Eq. (41) the energy Qa

GB is calculated
by finding the outgoing slip system b that minimizes it:

Qa
GB ¼ Ea

GB

� 	
la¼b

¼ min
b

c9
1

2
Gb3Ra: ð44Þ

where c9 is a dimensionless fitting parameter that is a func-
tion of c09 and the grain boundary element thickness LGB.

5. Displacive phase transformations in CPFE modeling

5.1. Introduction

The preceding sections focused on dislocations as carri-
ers of plastic shear. However, materials such as austenitic
steels, TRIP steels, brass, TWIP steels and shape memory
alloys deform not only by dislocation slip but also by dis-
placive deformation mechanisms (also referred to as displa-
cive transformations). These mechanisms are characterized
by a diffusionless collective motion of clusters of atoms
where each atom is shifted by only a small distance relative
to its neighbors. Such transformations create shears with
kinematics similar to that of dislocations. Two such mech-
anisms and their incorporation into the CPFE framework
will be discussed here, namely martensite formation
[74,80] and mechanical twinning [164–166,169]. Martensite

Fig. 9. Schematic drawing of penetration events for mobile dislocations
through a grain boundary. The experimentally obtained micrograph is
taken from the work of Shen et al. on steel [248]. Here la0; lb0 and laGB are
the tangent vectors of the dislocations, and ba; bb and baGB are their
Burgers vectors.
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Fig. 10. Normalized activation energy for a twist grain boundary with
rotations about the [111] direction using c09 ¼ 1 in Eq. (41). The
normalization factor is 1

2
Gb3.
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Fig. 11. Normalized activation energy for a twist grain boundary with
rotations about the [110] direction using c09 ¼ 1 in Eq. (41). The
normalization factor is 1

2
Gb3.

(a) (b)
X

Y

X

Y

Fig. 12. Two-dimensional schematic drawing of the bulk element (a) and
of the grain boundary element (b) for the initial case. During the
deformation, for the bulk element GNDs should keep the continuity of the
lattice in the X and Y directions, while for the grain boundary element the
lattice continuity is only kept in the X direction. In the Y direction the
penetration energy is introduced.
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formation takes place via a shear-induced change of the
crystal structure which, as a rule, involves a volume
change. Mechanical twinning proceeds by a shear mecha-
nism, which reorients the volume affected into a mirror ori-
entation relative to the surrounding matrix. We discuss
how the CPFE approach can be modified to include these
mechanisms and how the interactions among the compet-
ing shear carriers can be considered in the constitutive
formulations.

5.2. Martensite formation and transformation-induced

plasticity in CPFE models

The presence of metastable retained austenite grains is
responsible for the strength–ductility characteristics of
TRIP-assisted multiphase steels [250]. Upon mechanical
and/or thermal loadings, retained austenite may transform
into martensite and generate the TRIP effect. The investi-
gation of the TRIP effect was initiated by Greenwood
and Johnson [251] in 1965, where in a test specimen, irre-
versible plastic deformations were observed at a stress
lower than the theoretical yield stress of the material. It
has been suggested that the additional plastic deformation
of the material is induced by the volumetric growth accom-
panying the transformation of retained austenite into mar-
tensite (e.g. Fischer et al. [252]). In the same year, Patel and
Cohen [253] observed that during transformation, martens-
ite develops in a preferred orientation that maximizes the
transformation driving force.

Wechsler et al. [254] proposed a crystallographic model
for the kinematics of martensitic transformations. This
concept was refined by Ball and James [255], who further
developed the modeling concept within the energy minimi-
zation landscape. During the last decades, various constitu-
tive models for martensitic transformations have been
proposed, such as the 1D model of Olson and Cohen
[256], which was extended into a 3D model by Stringfellow
et al. [257]. Lately, more complex micromechanical models
have been proposed (e.g. [67–73,75,83,258–262]), which
have been used in particular for simulating TRIP steels.
However, the models mentioned above have some draw-
backs, i.e. most of them were derived for a small-strain
framework This can lead to inaccurate predictions as mar-

tensite transformations induce locally large elastic and
plastic deformations, even if the effective macroscopic
deformation is relatively small. Furthermore, an isotropic
elastoplastic response is often assumed. This constraint is
quite strong, especially at the single-crystal scale, where
the effect of crystallographic anisotropy cannot be
neglected.

The following sections present the development of a
crystallographically based thermomechanical model for
simulating the behavior of multiphase TRIP-assisted steels.
The austenitic phase is described by a single-crystal elasto-
plastic transformation model.

The phase transformation model of Suiker and Turtel-
taub [78,234,263] is applied to simulate the transformation
of fcc austenite into body-centered tetragonal (bct) mar-
tensite. This model is developed within a multiscale frame-
work and uses the results from the crystallographic theory
of martensitic transformations [254,255]. The martensitic
transformation model is coupled to a single-crystal plastic-
ity model for fcc metals in order to account for plastic
deformation in the austenite. The coupling between the
transformation and plasticity models is derived using a
thermodynamically consistent framework.

5.2.1. Decompositions of deformation gradient and entropy

density

The total deformation gradient F and the total entropy
density g can be decomposed into the elastic, plastic and
transformation parts, in accordance with:

F ¼ FeFpFtr and g ¼ ge þ gp þ gtr; ð45Þ
where Fe; Fp and Ftr are, respectively, the elastic, plastic
and transformation contributions to the total deformation
gradient, while ge; gp and gtr are, respectively, the revers-
ible part of the entropy density, the entropy density related
to the plastic deformation and the entropy density associ-
ated with the phase transformation (see Fig. 13).

The transformation part of deformation gradient, Ftr,
and the transformation entropy density, gtr, are, respec-
tively, given by:

Ftr ¼ Iþ
XM
i¼1

ni bi � di and gtr ¼
XM
i¼1

ni
kitr
htr

; ð46Þ

X

Fp

Fe

Reference
configuration

Current
configuration

Intermediate I
configuration
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y(x)
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nA

Ftr

Intermediate II
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Martensitic
transformation
system i bd

x

Slip system α
of FCC austenite

i i

α

α

Fig. 13. Schematic representation of the four configurations and the corresponding decomposition of deformation gradient F into the elastic, plastic and
transformation parts.
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where vectors bi and di are, respectively, the transformation
shape strain vector and the normal to the habit plane of
transformation system i (measured in the reference config-
uration), I is the second-order identity tensor, htr is the
(theoretical) transformation temperature, at which trans-
formation occurs instantaneously at zero stress (no energy
barrier, no dissipation), and kitr is the latent heat of a trans-
formation system i, which measures the heat required per
unit mass during a complete transformation at the trans-
formation temperature htr. In equation (46), ni represents
the volume fraction of martensitic transformation system
i measured in the reference configuration, which satisfies
the following requirements:

0 6 ni 6 1; 0 6
XM
i¼1

ni 6 1 and nA ¼ 1�
XM
i¼1

ni; ð47Þ

with nA the volume fraction of the austenite measured in
the reference configuration. In the case of the transforma-
tion from fcc austenite to bct martensite, the total number
of possible transformation systems is M ¼ 24.

It is assumed that dislocation plasticity only occurs in
the austenite but not in the martensite owing to its high
yield resistance. Furthermore, plastic deformations that
occurred in the martensitic subdomains prior to transfor-
mation (if any) are assumed to be inherited to the martens-
itic phase. Accordingly, the evolution of the plastic
deformation gradient Fp (given in terms of the plastic
velocity gradient Lp) and of the plastic entropy density gp
are, respectively, described by (in rate forms):

Lp ¼ _FpF
�1
p ¼

XNA

a¼1

_cama
A � naA and _gp ¼

XNA

a¼1

_ca /a
A;

ð48Þ
where the vectors ma

A and naA are, respectively, unit vectors
describing the slip direction and the normal to the slip
plane of the corresponding system in the fcc austenite, mea-
sured in the second intermediate configuration, and /a

A is
interpreted as the entropy density related to plastic defor-
mation per unit slip in system a. In the above expressions,
_ca can be interpreted as the “effective” plastic slip rate of
the austenitic slip system a, which is given by _ca ¼ nA _caA=
J tr, with _caA the rate of slip on a system a in the austenite
and J tr ¼ detFtr.

5.2.2. Constitutive relations of stress–elastic strain and

temperature-reversible entropy

The constitutive relations between conjugated variables,
i.e. stress–elastic strain and temperature-reversible entropy,
are defined by:

S ¼ CEe and ge ¼ h ln
h
htr

� �
þ grev; ð49Þ

where S is the second Piola–Kirchhoff stress in the second
intermediate configuration, which is conjugated to the elas-
tic Green–Lagrange strain, Ee; h is the temperature and
grev is the reversible entropy measured at the transforma-

tion temperature, i.e. h ¼ htr. Furthermore, the effective
elasticity tensor C and the effective specific heat h comprise
the contributions from the elastic stiffness and the specific
heat of the individual austenitic and martensitic phases:

C ¼ 1

J tr

nACA þ ð1þ dtrÞ
XM
i¼1

niCi

 !
and

h ¼ nAhA þ
XM
i¼1

nihi; ð50Þ

where dtr ¼ bi � di gives the volumetric growth associated
with each transformation system i, which is constant for
all i ¼ 1; . . . ;M . Note that the effective elasticity tensor C

and the effective specific heat h evolve with the martensitic
volume fractions ni during transformation.

5.2.3. Driving forces and kinetic relations for transformation

and plasticity

The driving force for the phase transformation, denoted
as f i, can be written as:

f i ¼ f i
m þ f i

th þ f i
d þ f i

s ; ð51Þ
where f i

m; f i
th; f i

d and f i
s summarize, respectively, the

mechanical, thermal, defect and surface energy contribu-
tions to the transformation driving force. The mechanical
part of the transformation driving force, f i

m, is computed
as:

f i
m ¼ J trF

T
p F

T
e FeSF

-T
p FT

tr � ðbi � diÞ

þ 1

2
ðCA � ð1þ dtrÞCiÞEe � Ee; ð52Þ

which comprises the contribution of the resolved stress and
the elastic stiffness mismatch between the martensite prod-
uct phase and the austenite parent phase with stiffness CA.
The thermal part of the transformation driving force, f i

th,
describes the contribution of the transformation latent heat
as well as the mismatch of the specific heat between mar-
tensite and austenite:

f i
th ¼ q0ðhA � hiÞ h� htr � h ln

h
htr

� �� �
þ q0

kitr
htr

ðh� htrÞ;

ð53Þ
with q0 being the mass density in the reference configura-
tion. The defect and surface energies contributions are,
respectively, given by:

f i
d ¼

xA

2
ðlA � ð1þ dtrÞliÞb2 and f i

s ¼
v
‘0
ð2ni � 1Þ;

ð54Þ
with xA a scaling factor for the defect energy, b the micro-
strain parameter related to the density of dislocations in the
austenitic/martensitic region, v an interfacial energy per
unit area and ‘0 a length-scale parameter representing the
volume-to-surface ratio of a circular platelet of martensite
within a spherical grain of austenite. In Eq. (54)2, lA and li

represent the (equivalent) shear moduli of the austenite and
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martensitic system i, respectively. The evolution of the mar-
tensite fraction during transformation follows the rate-
dependent kinetic formulation:

_ni ¼
_n0 tanh

f i�f icr
mf icr

� �
if f i > f i

cr;

0 otherwise;

(
ð55Þ

where f i
cr stands for the critical value of the transformation

driving force. The parameters _n0 (maximum transforma-
tion rate) and m (viscosity-like parameter) determine the
rate dependence of the transformation kinetic law.

The driving force, gaA, for plastic slip in the austenitic
phase is obtained from the thermodynamic formulation as:

gaA ¼ FT
e FeS � ma

A � naA
� 	þ q0 h/

a
A � xA lbwa; ð56Þ

where l is the effective shear modulus, which is computed
using a similar technique as used for the effective elasticity
tensor:

l ¼ 1

J tr

nAlA þ ð1þ dtrÞ
XM
i¼1

nili

 !
: ð57Þ

Furthermore, wa is a function that relates the rate of micro-
strain _b to the plastic slip rates _ca as _b ¼PN

a¼1w
a _ca. Finally,

the evolution of plastic slip in the austenitic phase is de-
scribed using a power-law kinetic relation in the form:

_caA ¼ _cA0
ga
A

sa
A

� �ð1=mAÞ � 1

� �
if gaA > saA;

0 otherwise;

8<: ð58Þ

where saA is the resistance against plastic slip in system a.
The evolution of the slip resistance is described through a
hardening law where _cA0 and mA are the reference slip rate
and the rate-sensitivity exponent, respectively. More details
on the austenite elastoplastic transformation model can be
found elsewhere [82].

In order to simulate the behavior of multiphase TRIP-
assisted steels, a rate-dependent crystal plasticity model is
additionally applied for the ferritic phase. Similar to the
austenite elastoplastic transformation model, the kinemat-
ics of the model is constructed within a large deformation
framework where the total deformation gradient is multi-
plicatively decomposed into elastic and plastic deformation
gradients. Most of the formulation for the ferrite can be
derived in a similar way as for the elastoplastic transforma-
tion model of the austenite, but without the transformation
contribution.

Moreover, at the atomic scale, the plastic deformation in
bcc metals involves complex mechanisms due to the non-
planar spreading of the screw dislocation cores [264,265].
In order to take these effects into account, the approach
of Bassani et al. [266] and Vitek et al. [267] is adopted,
where the effect of non-glide stress is incorporated in the
model by modifying the critical resolved shear stress
according to:

~saF ¼ saF � ~aa~saF: ð59Þ

where ~aa is a coefficient that gives the net effect of the non-
glide stress on the effective resistance, and ~saF is the non-
glide stress of slip system a, given by:

~saF ¼ FT
e FeS � ma

F � ~naF
� 	

: ð60Þ
The kinetic law is constructed through inserting the modi-
fied critical Schmid stress instead of the classical slip resis-
tance into a power-law expression for the plastic slip rate.
More details on the model for the bcc ferrite are in [82,268].

5.3. Mechanical twinning in CPFE models

Arbitrary permanent changes of shape of a single crystal
require the operation of any five linearly independent shear
systems [4]. However, the number of easily activated slip
systems of a given crystal structure may be insufficient to
fulfill this requirement. Thus alternative displacive modes,
e.g. mechanical twinning, can also participate in the overall
plastic deformation. Low-symmetry crystal structures, e.g.
hexagonal crystals with large c=a, are typical examples for
this situation. Also, cubic metals may exhibit mechanical
twinning due to a relatively strong increase in the critical
shear stress at low temperatures and the rate dependence
of slip in the case of bcc materials and due to the low value
in the stacking fault energy in the case of fcc materials
[269]. A mechanical twin formally corresponds to a sheared
volume for which the lattice orientation is transformed into
its mirror image across a so-called twin/composition/habi-
tus plane (Fig. 14). A vector of the initial lattice is moved
into its new position in the twin through a transforma-
tion/rotation matrix Q. The same expression for Q was
derived for bcc and fcc twins [269,270], exploiting the
equivalence of rotating half of the crystal by an angle p
either around the twin direction or around the twin normal

Q ¼ 2n� n� dij ð61Þ
where n is the twin plane unit normal and dij is Kronecker’s
symbol. Alternatively, twinning can be viewed as unidirec-
tional shear on the habit plane, i.e. formally similar to bidi-
rectional dislocation slip. In this framework, fcc twins are
of type f111gh112i, bcc twins of type f112gh111i and
hcp twins of type f10�12gh10�11i. Although strain-induced
twinning has been investigated for years [271], most of its
governing physical mechanisms still remain unclear.
Numerous studies have aimed at identifying the influence

Fig. 14. Under an applied stress, one-half of the initial volume (dashed
lines) shears to form a twin (solid lines) (after Hirth and Lothe [269]).
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of the boundary conditions on mechanical twinning, focus-
sing on temperature, grain size and stacking fault energy
and their respective influence on twin nucleation and
growth. Some of the results which are required for deriving
corresponding micromechanical models are summarized in
the following.

� Temperature and strain rate. In most crystal structures
twinning gains relevance as the temperature is lowered
and/or the strain rate increased. The temperature depen-
dence is often explained by the fact that the flow stress
increases steeply with decreasing temperature (in bcc
metals), so that finally the twin stress is reached [269].
The temperature dependence of the twin stress is under
debate in the literature. Bolling and Richmann [272] and
Koester and Speidel [273] found a negative temperature
dependence of the twinning stress in fcc crystals, while
Mahajan and Williams [274] suggested for the same
structure the opposite trend. Contradictory observations
have also been reported for other crystal structures, so
that the current state of knowledge seems insufficient
to reach a definitive conclusion, as pointed out by Ven-
ables [275]. Only a few investigations have addressed the
strain rate dependence on the twinning stress [276–278].

� Grain size. Armstrong and Worthington [279] were the
first to propose a link between the increase in the twin-
ning stress and the decrease in the grain size by means of
a Hall–Petch-type relation. Later experimental studies
on different materials and structures [280–283] sup-
ported this suggestion. It is worth noting that the so-
called twin slope, i.e. the dependence of twin activation
on the grain size, is often found to be much higher than
the corresponding slope for dislocation slip [279].

� Stacking fault energy. It is well established that twinning
occurs preferentially in low stacking fault energy materi-
als. With decreasing stacking fault energy it is easier to
separate partial dislocations from each other. This leads
to a wider stacking fault, which may eventually trigger a
deformation twin. Concerning the effect of other param-
eters, it was proposed that the stacking fault energy
increases with increasing temperature [284]. This might
explain the apparent temperature dependence of
mechanical twinning. Alternatively, the notion of an
effective stacking fault energy was introduced in order
to consider the effect of the orientation on the splitting
length between partial dislocations [285,286].

The preceding list of relevant parameters affecting
mechanical twinning is, of course, not complete since other
factors, such as chemical composition, strain and stress
state, and precipitates, also influence strain-induced twin-
ning [271].

The motivation for modeling mechanical twinning in a
CPFE framework echoes practical as well as fundamental
demands. Interest in TWIP steels has grown rapidly over
the last years as these grades simultaneously provide high
strength and good ductility. Similar aspects hold for stain-

less steels, magnesium alloys and some intermetallic com-
pounds where deformation twinning plays a role. In each
of these cases there is an interest in predicting the mechan-
ical response, the microstructure evolution and the texture
by using advanced CPFE models.

To our knowledge, the first phenomenological introduc-
tion of mechanical twinning into the CPFE framework was
accomplished by Doquet [287], followed by Schlögl et al.
[288] and Mecking et al. [289]. The corresponding imple-
mentation into a FE scheme was proposed by Kalidindi
[114,164] and further developed in [290].

5.3.1. A modified CPFE framework including deformation

twinning
The CPFE framework discussed in this section follows

the outline introduced above. However, adding mechanical
twinning as a possible plastic shear mode requires intro-
duction of some additional model ingredients. The activa-
tion of a twin system b implies that a fraction df b of the
single-crystalline parent volume (matrix) reorients by Qb.
Fig. 15 illustrates the decomposition of the global deforma-
tion gradient F when a twin system operates. Considering
the formal similarity between slip and mechanical twin-
ning, the velocity gradient Lp is extended by the contribu-
tion due to the characteristic twin shear ctwin, e.g.

ffiffiffi
2

p
=2 for

fcc and bcc crystal structures:

Lp ¼ 1�
XN twin

b¼1

f b

 !XN slip

a¼1

_cama � na

þ
XN twin

b¼1

c twin
_f bmb

twin � nbtwin; ð62Þ

where N slip is the number of slip systems and N twin the num-
ber of twin systems. It should be noted that the present
description does not explicitly account for the morphology
and topology of the deformation twins. Instead a twinned
region is specified by its volume fraction and by the bound-
ary condition that no explicit plastic deformation gradient
is prescribed within twinned regions. The Cauchy stress �r
of the composite, i.e. matrix plus twins, is related to the
volume average of the stress over all constituents:

Fig. 15. Schematic representation of the three configurations and the
corresponding decomposition of the deformation gradient F into elastic
and plastic contributions, modified by Kalidindi to account for mechan-
ical twinning [114,164].
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�r ¼ Fe

J e

1�
XN twin

b¼1

f b

 !
Cþ

XN twin

b¼1

f bCb

" #
EeF

T
e ; ð63Þ

where C
b
ijkl ¼ Qb

imQ
b
jnQ

b
koQ

b
lpCmnop is the elasticity tensor of

the matrix rotated into the respective twin orientation
and Ee the Green–Lagrange strain derived from the non-
plastic deformation gradient Fe. It is worth noting that a
small homogenization error may occur when following this
procedure, which is due to the generation of an orientation
dispersion in the twinned fraction. This deviation occurs
whenever the plastic spin of a twin variant is not equal to
the plastic spin of the matrix. In the current case this effect
does indeed take place because no plastic velocity gradient
is given in the twinned regions.

The present expression for Lp does not consider subse-
quent dislocation slip within twins. This approximation is
often suitable for extremely thin fcc and bcc twins. How-
ever, experimental evidence for dislocation activity in
mechanical twins has been reported when twins are larger,
e.g. in high-Mn TWIP steels [291] (due to large strains) and
in hexagonal metals (Mg, Zr due to small twin shear). It
may, therefore, be useful to allow for dislocation slip in
twinned regions. In that case, Kalidindi [114] proposed
modifying the plastic velocity gradient as follows:

Lp ¼ 1�
XN twin

b¼1

f b

 !XN slip

a¼1

_cama � na þ
XN twin

b¼1

ctwin _f
bmb

twin

� nbtwin þ
XN twin

b¼1

f b
XN slip

a¼1

_caQbma � naQbT : ð64Þ

Furthermore, secondary twinning, i.e. the twinning of pri-
mary twins, might be considered as well. At first sight the
modification of Lp appears rather straightforward. How-
ever, difficulties arise from the increase in the number of
shear rates or twin volume fractions that have to be han-
dled in this approach, rendering the model highly imprac-
tical. The time-integration scheme, presented in Section 8,
remains essentially unchanged. The non-linear equation is
still expressed in terms of the second Piola–Kirchhoff stress
tensor, written in the intermediate configuration, for a gi-
ven microstructure, i.e. for state variables that refer to both
slip and twinning. Details on the numerical implementation
can be found elsewhere [109].

5.3.2. Phenomenological approach to mechanical twinning

The plastic velocity gradient is defined in terms of all
shear rates _ca and all volume fractions created by the twin-
ning rates _f b. Phenomenological expressions of the shear
rate on a slip system have been introduced above. How-
ever, no theory is currently available to provide a clear
function for the evolution of the twinned volume fraction
for an active twin system. For this reason Kalidindi [164]
proposed to use the analogy between slip and twin systems
while preserving the unidirectionality of the twinning
mechanism. The twin volume fraction of a system b then

evolves according to a phenomenological power-law
equation:

_f b ¼ _f 0
sb

sbc

� � 1
mt

if sb > 0;

0 otherwise:

8<: ð65Þ

The computation of this flow rule requires the specification
of a critical twinning shear stress (shear resistance) sbc for
each twin system. This is a critical point since experimental
observations support the idea that mechanical twins have a
“double” impact on the global strain hardening of the
material. First, an increasing amount of twins leads to an
increasing hardening effect on slip systems since moving
dislocations stop at twin–matrix interfaces. This concept
is illustrated in Fig. 16 for the fcc case. A moving matrix
dislocation will most likely encounter twins that lie on
planes that are non-coplanar with its glide plane, i.e. only
non-coplanar twin systems act as obstacles for dislocation
motion. Second, the production of new twins is impeded by
already existing twins, which is referred as the hardening
behavior for the respective twin systems. Following the first
idea, Kalidindi proposed modifying the phenomenological
slip hardening rule according to:

_sac ¼ ha~a _c~a


 

 ð66Þ

where the hardening matrix ha~a now depends on the twin
volume fractions through the saturation value s~as :

ha~a ¼ qa~a h0 1� s~ac
s~as

� �a� �

with s~as ¼ s0 þ st
X

b non-coplanar with ~a

f b

 !1
2

ð67Þ

Dislocations tend to accumulate in front of twin bound-
aries, which justifies the changes in the saturation value for
the slip resistances. The Hall–Petch-like formulation that
quantifies the contribution due to deformation twinning
in the saturation value is derived naturally from the anal-
ogy with grain boundary hardening. It is worth noting that
some later works [169] suggest not only modifying the sat-
uration values but also h0 in order to account for the Basin-
ski effect [169,292]. The second idea refers to a kind of
“twin–twin” hardening behavior of the material and origi-
nates from the sequential activation of twin variants during
deformation. It was often observed that in fcc metals only

Fig. 16. Illustration of the selective role of twin boundaries during
dislocation motion for fcc structures, as proposed by Kalidindi.
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coplanar twins initially form in a grain. Upon a strain
threshold, deformation twins, that are non-coplanar with
the first ones, form, leading to a ladder-like microstructure.
This sequential activation, described in Fig. 17, is phenom-
enologically translated in terms of two monotonic mathe-
matical power functions depending on either strain rate
[169] or twin volume fraction rates [114]. The two functions
cross at a given point. Below that point, existing twins pref-
erentially harden non-coplanar twin systems. Beyond that
point, existing twins preferentially harden coplanar twin
systems. This model approach is easy to handle and has
been successfully applied to a-brass [114], a-Ti [169], and
TiAl [288].

5.4. Guidelines for implementing displacive transformations

in CPFE constitutive models

This section discussed the basic constitutive and kine-
matic ingredients for implementing displacive shear mech-
anisms as additional carriers of crystallographic plastic
deformation in CPFE frameworks. The challenges of ren-
dering such models physically sound and at the same time
numerically tractable seem to lie in two areas: (i) the appro-
priate formulation of nucleation and growth models and
(ii) the identification of appropriate homogenization meth-
ods. The first point means that nucleation and growth
models should be designed in a way to capture the basic
dependence of displacive transformations on thermody-
namic and microstructural parameters such as tempera-
ture, grain size, strain rate and stacking fault energy. The
second point refers to the desired level of discretization.
This means that in some cases multiple and repeated trans-
formations may occur at the same integration point. This
requires defining an adequate approach for tracking and
homogenizing the volume portions and interaction mecha-
nisms for different twin or martensite lamellae or corre-
sponding higher-order transformations (e.g. twinning of
twins)—see Fig. 4b.

6. Homogenization methods in CPFE analysis

6.1. Introduction

In contrast to the direct crystal plasticity method of
modeling aggregates of grains one-to-one, FE analysis is
often used to predict the mechanical behavior of engineer-
ing structures. This is typically done at the component or
design scale using homogenized material properties (indi-
cated by an overbar). At the continuum scale, material
points �x in the reference configuration B � R3 are pro-
jected by the non-linear deformation map �yð�xÞ : �x 2 B !
�y 2 S onto points �y in the current configuration S � R3.
The corresponding tangent map or deformation gradient
is then given by F ¼ r�x�y. In order to derive the work-con-
jugate stress P (first Piola–Kirchhoff stress) and solve the
equilibrium conditions within the FE analysis, a constitu-
tive law which connects P to F is required. However, a
direct formulation of PðFÞ and @P=@F is in general difficult
to impossible, since the mechanical response of (metallic)
materials is determined by their underlying microstructure.
This microstructure cannot be regarded as a homogeneous
continuum but it typically contains grains with differing
properties. As a rule, in engineering parts the grain scale
is orders of magnitude smaller than the component scale,
thus ruling out the possibility of including all degrees of
freedom presented by a huge grain aggregate. Therefore,
a two-level approach is pertinent. Each material point �x
is linked to a domain B � R3 containing a finite number
of microstructure constituents, e.g. grains, for which the
individual constitutive behavior can be modeled, i.e. the
constitutive relation between P and F is known. This con-
stitutive relation is in general dependent on the state of the
material, most notably on its thermomechanical history.
Since the macroscopic quantities F and P are related via
the volume averages:

F ¼ 1

V

Z
B
FdV and P ¼ 1

V

Z
B
PdV ; with V ¼

Z
B
dV ;

ð68Þ

to the corresponding microscopic quantities F and P inside
B, this “numerical zoom” shifts the constitutive assump-
tions between F and P from the macro-scale to the mi-
cro-scale.

The term “homogenization” now refers to the transition
between the micro-scale and the macro-scale defined in a
general fashion by Eq. (68). In physics such procedures
are also referred to as coarse graining. In the next section
we first review methods of how to select grain aggregates
in each domain B such as to ensure that they reflect the
overall crystallographic texture of the material in question
in a statistically representative way. After this, the follow-
ing sections outline three routes which are mainly followed
when it comes to the homogenization of viscoplastic poly-
crystalline materials in the framework of component scale
FE analysis.

Fig. 17. Sequential activation of twin systems and its mathematical/
numerical treatment for fcc structures: at small strains, the hardening
evolution of existing twins is mainly governed by the activity of non-
coplanar twins. Beyond a critical point, existing twins are strongly
hardened by coplanar twins, phenomenologically triggering formation of
non-coplanar twins. (sbc critical twinning shear stress, F, Fcp, Fncp:
cumulative twin volume fraction of all twin systems, only those systems
which are co-planar, and those which are non-coplanar to system b,
respectively.
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6.2. Statistical representation of crystallographic texture

Crystallographic texture is quantified by the crystallite
orientation distribution function (CODF) which defines
the probability f ðQÞ that a volume fraction, dV =V , of
the polycrystalline aggregate is taken up by crystallites fall-
ing into an infinitesimal neighborhood around orientation
Q:

t 	 dV
V

¼ f ðQÞdQ: ð69Þ

The crystal orientation is described by a proper orthogonal
matrix Qij ¼ gi ej 2 SOð3Þ which maps the reference basis e
onto the crystal basis g. Using the notation introduced by
Bunge [293], i.e. parameterizing Q by Euler angles
fu1;/;u2g, the infinitesimal volume, dQ, of orientation
space follows as:

dQ ¼ 1

8p2
du1 du2 d cos/: ð70Þ

The normalization factor of 1=8p2 arises due to the require-
ment that

H
dV =V 	 1. (Note that f ðQÞ 	 1 for a random

texture.)
The orientation distribution reflects any symmetry pres-

ent in the crystal lattice and/or the sample geometry. This
implies the following symmetry relations:

f ðQÞ ¼ f ðQHLÞ 8 H L 2 SL # SOð3Þ ð71Þ
f ðQÞ ¼ f ðHSQÞ 8 H S 2 SS # SOð3Þ ð72Þ
with SL and SS being the symmetry group of the lattice and
sample, respectively. Therefore, the CODF is fully deter-
mined from f ðQÞ within any one of the independent re-
gions of Euler space (also addressed as fundamental
zones) resulting from Eqs. 71 and 72.

For practical reasons, the CODF is frequently stored in
a discrete fashion by subdividing the fundamental zone Z

of Euler space into N boxes of equal angular extension—
typically 5� 5� 5 cubic degrees—and recording discrete
values, f i, for each box. Ideally,

f i ¼
Z
boxi

f ðQÞdQ
�Z

boxi
dQ ¼ ti

�Z
boxi

dQ; ð73Þ

i.e. the f i values correspond to the CODF average within
the ith box with volume ti.

The task now consists of selecting a finite number, N �, of
discrete orientations such that the overall texture is still
represented as accurately as possible by the limited set.
Depending on the requirements of the intended simulation,
the individual volume fractions assigned to each selected
orientation may be either equal or differ from one another.

With respect to the first option, Eisenlohr and Roters
[228] recently combined a deterministic scheme with a
probabilistic scheme to sample a given number of equally
weighted orientations from a discrete CODF. While the
probabilistic scheme accepts a randomly chosen orienta-
tion in proportion to the respective value of f i, the deter-
ministic part is based on the integer:

ni ¼ roundðC tiÞ ð74Þ
which gives the number of times the orientation i should be
selected into the representative set. To yield an overall set
of N � samples the constant C has to be iteratively adjusted
to fulfill:

XN
i¼1

ni ¼! N �: ð75Þ

This iterative procedure is easily solved, for instance, with a
binary search algorithm in a matter of seconds on a stan-
dard single-CPU computer. Regarding reconstruction
quality, it could be demonstrated that for N � > N the set
resulting from Eqs. (74) and (75) is much closer to the ori-
ginal CODF than probabilistic sets using ti as the probabil-
ity to include orientation i (see Eq. (73)). However, for
N � < N a systematic overweighting of the large original
ti, and thus pronounced sharpening of the reconstructed
texture, is observed. To overcome this inherent problem,
the deterministic method is modified as follows: if the re-
quested number, N �, of sampled orientations is less than
the number of boxes in the (fundamental zone of the) ori-
ginal CODF, i.e. if N � < N , one nevertheless generates a
population of N discrete orientations according to Eqs.
(74) and (75) but then selects a random subset containing
only the requested N � < N orientations from the popula-
tion of N orientations. By this modification the achieved
reconstruction quality is always at least as good as proba-
bilistic sampling but it becomes clearly superior with
increasing N �=N .

Melchior and Delannay [184] tackled the problem of
assigning orientations to an aggregate of N � differently
sized grains which constitute a representative volume ele-
ment. They started from a large set of probabilistically
selected, equally weighted orientations [227] and intro-
duced an algorithm to divide this set into N � collections
of similar orientations. Each collection represents a single
grain (of average orientation) and comprises as many ori-
entations as is required to match the respective volume
fraction of this grain. By allowing this additional degree
of freedom in the relative weight of assigned (average) ori-
entations, the reconstruction quality resulting from a fixed
number of orientations can be dramatically increased in
comparison to equal-weight probabilistic sampling.

Böhlke et al. [294] presented a possible solution to the
problem of approximating the CODF by a random back-
ground plus a small and fixed number of texture compo-
nents of variable weight. First, a grid of equal angular
extension in fu1;/;u2g is constructed within the funda-
mental zone. An approximation then results from superpo-
sition of (at most) N � von Mises–Fisher distributions,
gðQ;Qa;wÞ, each centered on a distinct grid point Qa with
fixed half-width w:

�f ðQÞ ¼
XN�

a¼1

ma gðQ;Qa;wÞ: ð76Þ
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The difficulty arises from selecting appropriate Qa out of
the available grid points and assigning respective variable
weights ma such that the distance

D ¼
Z
Z
ðf ðQÞ � �f ðQÞÞ2 dQ ð77Þ

between the original CODF and its approximation is min-
imized. This corresponds to a mixed integer quadratic pro-
gramming (MIQP) problem for which robust solvers exists.

6.3. Computational homogenization

Within each region B containing a microstructure
attached to a certain material point �x one defines the defor-
mation map yðxÞ : x 2 B ! y 2 S which translates the ref-
erence configuration B of that microstructure to its current
configuration S. The associated deformation gradient is
given by F ¼ r�x�y. The deformation map is expressed as
the homogeneous deformation �Fx, inherited from the
material point, and a superimposed fluctuation field ~w:

y ¼ Fxþ ~w: ð78Þ
Thus the microscopic and macroscopic deformation gradi-
ents are related by:

F ¼ Fþ eF with eF ¼ r�x~w: ð79Þ
Combining Eqs. (79) and (68) results in the constraint that
the deformation gradient of the fluctuation field vanishes
on average:Z
B
eF dV ¼

Z
@B

~w�NdA

¼
Z
@B�

~w� �N� dAþ
Z
@Bþ

~wþ �Nþ dA ¼ 0 ð80Þ

The three equivalent integral terms of Eq. (80) indicate the
three possible boundary conditions of different rigorous-
ness. One might rule out any fluctuations at all, i.e. ~w ¼ 0

in B (i). However, homogeneous boundary conditions, i.e.
~w ¼ 0 on @B (ii), also satisfy Eq. (80). Still more relaxed
(periodic) boundary conditions are possible if the boundary
is decomposed into two opposite parts @B ¼ @B� [ @Bþ

with @B� \ @Bþ ¼ ;. Periodicity of the domain B is then as-
sured by requiring for each point xþ 2 @Bþ, that the associ-
ated point x� 2 @B� has an opposite normal Nþ ¼ �N�

and equal values of the fluctuation field ~w� ¼ ~wþ (iii). Thus
the degrees of freedom offered to the microstructure inside
B, and hence its compliance, increase from condition (i) to
(iii). For the microcontinuum a static equilibrium is as-
sumed, which, in the absence of body forces, is governed
by the field equation:

div P ¼ 0 in B: ð81Þ
Computational homogenization now refers to the numeri-
cal solution of the boundary value problem in ~w posed
by Eqs. (79) and (81) in connection with a constitutive rela-
tionship P(F) per individual phase. For this solution, in
general, a number of techniques can be employed. The

majority of recent contributions discretized the boundary
value problem by means of the FE method, see e.g.
[113,295–298], or by using a Fourier series approach on a
regular grid [299,300]. In addition, the boundary element
method or meshless schemes are equally applicable.

6.4. Mean-field homogenization

Within the mean-field approach the microstructure pres-
ent in the domain B is considered as a system of inclu-
sion(s) in a matrix. Here, the boundary value problem
outlined in the preceding section is not solved rigorously,
but only in a volume-averaged sense. This means that the
spatial variation in P and F is no longer resolved, and thus
only spatially averaged quantities per phase a are consid-
ered. Hence, macroscopic quantities valid for the material
point equal the volume-weighted sum of the respective
quantities over all microstructural constituents. The
mean-field counterpart of Eq. (68) then reads:

F ¼ 1

V

X
a

Z
Ba
FdV ¼ 1

V

X
a

V ahFia

P ¼ 1

V

X
a

Z
Ba
PdV ¼ 1

V

X
a

V ahPia with V a ¼
Z
Ba
dV

ð82Þ
The most basic assumptions regarding the partitioning of
stress or strain would be either uniform stress hPia ¼ P

or uniform deformation gradient hFia ¼ F among all
phases/grains a ¼ 1; . . . ;N present in the microstructure.
These extremal cases were introduced by Reuss [301] and
Voigt [302] for elasticity. The fully constrained Taylor [4]
assumption corresponds to uniform strain in the case of
plasticity. Both assumptions disregard the shape and local
neighborhood of the inclusions and generally violate com-
patibility and equilibrium, respectively. More sophisticated
assumptions make use of the solution to the problem of an
elastic ellipsoidal inclusion in an infinite elastic matrix gi-
ven by Eshelby [303]. A recent review of the now well-
established laws that govern strain partitioning in a linear
elastic composite has been given by Nemat-Nasser and
Hori [304]. Out of those, the most frequently employed
are the self-consistent approach originally suggested by
Kröner [305], and the scheme introduced by Mori and Ta-
naka [306] (see also [307]). In the former, each inclusion is
treated like an isolated one within a matrix having the (un-
known) overall stiffness of the composite. The latter em-
beds each inclusion into the original matrix but considers
the average matrix strain to act as far-field strain on the
overall composite.

However, extension of such homogenization schemes
from the linear to the non-linear case faces difficulties, most
significantly because the stiffness, i.e. strain(rate)-sensitivity
of stress, is typically inhomogeneous for a given phase due
to its heterogeneous strain. The stiffnesses are usually
homogenized by using the average strain per phase as a ref-
erence input into the respective constitutive law. In order to
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establish a link between stress and strain per phase, secant
(connecting total stress to total strain) and tangent (con-
necting stress increments to strain increments) formula-
tions for the moduli are employed. The latter has some
advantages since it is not restricted to monotonic loading
and generally performs better for anisotropic material
behavior. Hill [308] originally introduced this incremental
scheme together with a self-consistent approach. Leben-
sohn and Tomé [309] later proposed a self-consistent inte-
gral formalism which links total stress to strain rate.
Further self-consistent schemes are, for example, due to
Berveiller and Zaoui [310], who employed a secant modu-
lus tensor, while Masson et al. [311] proposed an affine for-
mulation. Recent developments in the incremental tangent
formalism can be found, for instance, in [312,313].

6.5. Grain-cluster methods

Grain-cluster models are an intermediate approach
between the mean-field schemes and spatially resolved solu-
tions of a representative volume element outlined above.
They reduce the high computational cost of the latter by
restricting the degrees of freedom to a small number of
regions with (typically) homogeneous strain inside each
zone. Those regions are identified with grains or parts of
grains, thus extending the mean-field approaches by taking
into account direct neighbor–neighbor interactions among
the constituents of a (multiphase) polycrystal. The intro-
duction of grain aggregates now allows relaxation of the
assumption of homogeneous strain in each constituent
(Taylor)—which generally led to an overestimation of the
polycrystalline strength and rate of texture evolution—by
enforcing compatibility only in an average sense for the
aggregate as a whole.

The basic concept of a partial relaxation of the Taylor
hypothesis has been presented in the works of Van Houtte
[314,315], Honneff and Mecking [316] and Kocks and
Chandra [317].

In his LAMEL model Van Houtte [314,315] considers a
stack of two grains subjected to an imposed velocity
gradient:

ry _y ¼ L ¼ WL þ
X
a

_ca b̂a � na ð83Þ

which is accommodated through lattice rotation WL and
crystallographic slip on systems a slipping at shear rates of
_ca. b̂a is the unit vector along the slip direction of system al-
pha. In each of the two grains—connected by an interface
with normal n—the local (homogeneous) velocity gradients
la and lb are allowed to deviate from the global one by a
number of “relaxation” (shear) modesKr that do not alter n:

la ¼ Lþ
X
r

Kr _cr ð84Þ

lb ¼ L�
X
r

Kr _cr: ð85Þ

Depending on assumptions of the grain shape, typically
one or two relaxation modes are considered. In the case

of an interface normal along the macroscopic x3 direction
and for grains which are flat along n ¼ ð001Þ, two relaxa-
tion modes are considered where the only non-zero compo-
nent in K1 is K1

31 ¼ 1 and in K2 is K2
32 ¼ 1. By distributing

the shear relaxation in a symmetric fashion (see Eqs. (84)
and (85)), the bicrystal as a whole fulfills the Taylor
hypothesis; however, locally different slip systems can be
active.

The activity of the real slip systems a and those attrib-
uted to the relaxation modes r are determined by minimiz-
ing the plastic dissipation

P ¼
X
a

sa j _caj þ
X
r

sr j _crj ð86Þ

with suitably chosen penalty terms for each sr.
A certain drawback of the original LAMEL model con-

sists in its restriction to deformation modes which are com-
patible with the presumed grain aspect ratio, e.g. pancake-
like grains in rolling. This restriction is overcome by two
recent models [20,318] that focus on the boundary layer in
between two neighboring grains. Both models apply a relax-
ation in the plane of the grain boundary (having normal n).
The ALAMEL model, introduced by Van Houtte et al.
[318], symmetrically relaxes two local velocity gradient com-
ponents among the neighboring grains such that

P
rK

r ¼
a� n with a ? n. This is identical to the LAMEL case of
pancake grains discussed above. As a result, stress equilib-
rium at the boundary is maintained except for the normal
component [318]. The relaxation proposed by Evers et al.
[20] is slightly different, as they, firstly, symmetrically relax
the deformation gradient on both grains by DF ¼ 
a� n,
and secondly, determine the components of a by prescribing
full stress equilibrium at the grain boundary, which is equiv-
alent to a minimization of deformation energy. A real grain
structure can then be mimicked by enclosing each grain with
bicrystalline contacts towards its neighbors. The distribu-
tion of interface orientations reflects the (evolving) grain
morphology thus decoupling grain shape from the deforma-
tion mode under consideration.

An extension of the monodirectional, thus anisotropic,
two-grain stack considered in above-mentioned LAMEL
model to a tridirectional cluster of 2� 2� 2 hexahedral
grains is due to Crumbach et al. [319] based on work by
Wagner [320]. In this scheme, termed the grain interaction
(GIA) model, the overall aggregate is subdivided into four
two-grain stacks with the stacking direction aligned with
the shortest grain direction j0 and another set of four stacks
with the stacking direction aligned with the second-shortest
grain dimension j00. Relaxation of �ij0 ði ¼ 1; 2; 3Þ and
�ij00 ði–j0Þ is performed in the spirit of LAMEL, i.e. via
mutually compensating shear contributions of both
stacked grains, such that each two-grain stack fulfills the
external boundary conditions—and in consequence the
cluster as a whole. To maintain inter-grain compatibil-
ity—possibly violated by different strains in neighboring
stacks—a density of GNDs is introduced, which forms
the basis for the evaluation of the mismatch penalty energy
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in Eq. (86). The profound advance of the GIA approach is
that it connects the inter-grain misfit penalty measure to
material quantities such as the Burgers vector, shear mod-
ulus, work-hardening behavior and grain size. The GIA
model formulation is compatible with arbitrary deforma-
tion modes and is, hence, not confined to plane strain. It
was recently used in conjunction with a FE solver where
it served as a texture-dependent homogenization model
[321].

6.6. Guidelines for implementing homogenization models in

CPFE frameworks

This section presented different types of homogenization
concepts. They all have the common aim of describing
the local mechanical interaction of clusters of crystals
(including also different phases if required) that are
jointly exposed to fixed boundary conditions. Relaxations
may occur inside these clusters depending on model
complexity.

It must be emphasized that no homogenization model is
principally correct or incorrect. For instance, the use of an
equal-stress hypothesis (same stress in all grains) can be
sensible when two sequentially arranged crystals are
stressed, and a Taylor–Bishop–Hill hypothesis (same strain
in all grains) may be adequate when two crystals are
arranged parallel to each other and are jointly exposed to
the same displacement. This means that the homogeniza-
tion model may be chosen according to the expected
boundary conditions. Even simple homogenization models
can provide decent results for certain loading situations
while failing for others.

Another important aspect in selecting the right
homogenization model is the property that is to be pre-
dicted. For instance, the simulation of certain micro-
structure features such as grain misfit quantities (e.g.
GNDs), internal strains or crystallographic textures typ-
ically require a higher level of detail in the underlying
homogenization model than the prediction of a poly-
crystal flow curve.

An essential step in the development and implementa-
tion of homogenization models is the validation procedure.
According to the experience of the authors the best way to
test homogenization models lies in the prediction of crystal-
lographic textures. The reason for this recommendation is
that, first, deformation-induced texture changes are very
sensitive to model and boundary condition details, and
second, textures can be quantitatively measured and
compared one-to-one with corresponding predictions.
Homogenization models that predict wrong textures will
most likely also predict wrong mechanical properties. In
contrast, a model providing satisfying mechanical results
does not necessarily predict correct textures.

Finally, it is an obvious requirement that the chosen
homogenization model must be suited for the size of the
simulated part in order to reduce computation time to a
reasonable level.

7. CPFE approaches to local damage analysis

7.1. Continuum approaches to modeling damage

Continuum damage and fracture mechanics have pro-
vided a wealth of methodologies for modeling the evolu-
tion of damage, but these methods all depend on
knowing where the damage nucleated; hence a pre-existing
void or crack is normally introduced. Although this offers
no cognizance of micro-scale processes, it has been effective
in modeling stochastic aspects of failure for problems
involving multiple phases. When damage sites are ran-
domly distributed in a continuum material, isotropic FE
models can predict how shear localization develops within
a particular arrangement of damage sites: holes close
together and align with directions of maximum shear stres-
ses coalesced by shear localization at small strains, subse-
quently developing into a crack path. For example, for
voids or hard particles located in random positions, Becker
[106], Nicolaou and Semiatin [326,327], Horstemeyer et al.
[328] and Pardoen et al. [329] investigated the effects of
damage location on shear localization that precedes crack
propagation. Given that shear localization can be simu-
lated in continuum models, it is important to identify the
locations of damage nucleation with respect to microstruc-
tural features and slip systems (e.g. Fig. 18).

While this approach can model the effect of specific
damage sites on the surrounding material, damage can also
be embedded into the material constitutive model without
modeling damage sites explicitly. The effects of clustering
of hard phases in metal matrix composites, and deforma-
tion of porous materials, have been modeled using Eshelby
inclusions [330].

Another well-developed way to model homogenized
damage is based on the observation that damage reduces
the bulk elastic modulus [331], hence damage is introduced
into the elastic part of the problem:

Fig. 18. Influence of crystal orientation on grain or phase boundary
damage nucleation. The grain on the right has two widely spaced damage
sites that are favorably oriented for shear localization between them. In
contrast, the grain on the left has two closely spaced damage sites that are
not favorably oriented for shear localization, but an intragranular crack
can develop from the cracked particle.
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r ¼ C : �eð1� DÞ ð87Þ
where D is a scalar quantity ranging from 0 (no damage) to
1 (fully damaged) (the plastic response follows as a conse-
quence). Many authors have recognized that damage repre-
sented by the parameter D is not isotropic, and have
introduced vectorial and tensorial modifications to this
idea to simulate failure processes associated with crystallo-
graphic planes, intergranular fracture or distortion and
growth of voids—see e.g. Luccioni and Oller [332], Menzel
et al. [333] or Voyiadjis and Dorgan [334].

As continuum approaches are valuable for design and
modeling at the component scale, it is desirable to develop
a method by which the continuum anisotropic damage for-
mulations can be informed by physically modeled plastic
processes. Thus, if models of microstructures using CPFE
methods can identify how dislocation-based deformation
processes cause damage nucleation and evolution, then
these can be expressed in forms that are ready for use in
continuum scale models.

7.2. Microstructurally induced damage

Micromechanics studies imply that shear localization at
the micro-scale occurs as a result of microstructure charac-
teristics such as inclusion morphology and distribution,
grain boundary character, texture, grain shape, and the
operation of slip systems coupled with damage site loca-
tions. Fig. 18 illustrates how two cavities that are close
together may not coalesce preferentially if the slip systems
are not favorably oriented. Thus, shear localization, and
hence the toughness, will depend upon anisotropic micro-
structural details. This anisotropic effect is observed at
the macro-scale by 25% variations in KIc with respect to
direction in rolled sheet material [335]. However, there
has been limited study of how the crystallographic pro-
cesses lead to failure mechanisms that depend on local
grain and grain boundary orientations, making damage
modeling using CPFE approaches an important area for
future study. In particular, CPFE allows the direct model-
ing of experimentally characterized microstructures where
damage has been observed, in order to evaluate theories
of damage nucleation and early growth stages.

Grain boundaries are often sources of critical damage
nucleation, even when pre-existing cracks may be present
within a grain. In Al alloys, the primary mechanisms for
grain boundary crack nucleation are void coalescence
between grain boundary precipitates [336,337]. In fatigue
conditions, subcritical short cracks either pre-exist due to
cracked inclusions (such as constituent particles, see
Fig. 18) or from cracking early during fatigue cycling,
but do not propagate past a limiting grain boundary or
past a triple line [338,339]. When short cracks are able to
penetrate a grain boundary, they make the transition to
longer cracks that can then be modeled with established
continuum fracture mechanics. This penetration event
often takes place late in the cycling process, indicating that

crack penetration of the grain boundary may control fati-
gue life.

7.2.1. Heterogeneous plastic deformation

Both experimental and computational studies suggest
that damage nucleation occurs in locations of large strain
concentrations, which develop in locations of substantial
heterogeneous deformation near microstructural features
such as grain or phase boundaries. However, if a large local
strain is effective in accommodating a required local geom-
etry change (due to boundary conditions imposed by differ-
ential deformation amounts in the local neighborhood) a
locally large strain may prevent damage nucleation. In con-
trast, damage may nucleate where an insufficient amount of
strain occurs to accommodate a locally required shape
change, such that opening a free surface may require less
energy than further intragranular deformation. Clearly,
not all large strain sites are damage sites, and damage
may develop where strains are modest.

It is well known that strain varies from grain to grain due
to the effects of differing deformation processes in neighbor-
ing grains (Fig. 3). The spread of deformation within a grain
does not only depend on the orientations of the neighboring
grains, but also on the constraints provided by neighboring
grains that diminish but are still significant several grains
away [106,197,340]. Within a given grain, slip traces of
deformation systems with high Schmid factors may extend
across grains, while planes with moderate Schmid factors
may reveal slip traces that extend part way from a boundary
into the grain interior. Experimentally measured surface
strain maps on high-purity copper polycrystals show that
heterogeneous strains extend 20–100 lm into the grain inte-
rior [322,341]. Local lattice rotations have been measured
using orientation imaging microscopy, which has allowed
direct comparisons between experiment and CPFE models
[14,38,90,342,343]. Simulations of local rotations measured
using high-resolution strain mapping and local strain accu-
mulation effects can be better understood at the grain scale
when a local micromechanical Taylor factor is used to iden-
tify the activated slip systems [38].

Because damage originates from strain incompatibilities
in specific sites, it is most appropriate to investigate condi-
tions that lead to damage nucleation using CPFE methods
that model experimentally realistic microstructures (e.g.
Hao et al. [344], Clayton and McDowell [322], Bhattachar-
yya et al. [90], Raabe et al. [38], Ma and Roters [23], Ma
et al. [24,25], Zaafarani et al. [171], Cheong and Busso
[22], Dawson et al. [345], Kalidindi and Anand [346]). As
damage events reflect interactions between the microstruc-
ture scale and the atomic scale, they are intrinsically nano-
scopic. Thus, multiscale modeling approaches that include
atomistic scale computations are under development by a
number of groups [322,347–350].

7.2.2. Interfaces

Interfaces represent a profound challenge to modeling
heterogeneous deformation and damage nucleation. The
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cohesive strength of the boundary in real polycrystals var-
ies according to the atomic scale arrangement; some
boundaries have more disorder than others [351], leading
to lower interfacial cohesive strength. Many studies have
correlated properties of boundaries with their interfacial
structure through coincident site lattice (CSL, or low R)
boundaries. Because low R boundaries have less free vol-
ume due to better packing efficiency, these boundaries are
assumed to be strong. Materials with large numbers of
low R boundaries [352–354] that are well connected as net-
works [355] exhibit higher flow stress and ductility than
materials with few low R boundaries (a weak boundary
percolation can occur if there are less than 78% low R
boundaries [356]). Because low R boundaries are less able
to absorb lattice dislocations than random boundaries
[357], many researchers have attributed material strength,
and/or resistance to damage nucleation, to the presence
of low R boundaries [358]. This characterization of the
boundary state is useful in computational modeling, as
the grain boundary energy used in a Griffith criterion pro-
vides a criterion for nucleating a crack.

7.2.3. Cohesive zone boundary modeling

The energy-based definition of the grain boundary char-
acter has been modeled in CPFE modeling using the cohe-
sive force model first presented by Needleman [359,360],
who described the cohesive energy as an empirical scalar
function that relates displacement to normal and shear
traction evolution in the boundary plane (Fig. 19). Such
formulations have been adopted in damage nucleation
models [361,344]. Clayton and McDowell [322] used non-

local models to accurately predict local stress–strain his-
tory, and hence tractions, on the boundary. From this anal-
ysis, they identified a parameter which could be used to
predict damage nucleation locations, based upon how
much accommodation by void damage is required by the
material to deform to a given strain level. This model
assumed isotropic interfacial energy for all boundaries
(molecular dynamics modeling can overcome this, but at
a much smaller scale). Such models have been evaluated
to identify how nucleation and growth of voids affects sub-
sequent deformation processes (e.g. Fig. 20). Cohesive
interface energy models are appealing in that they are
two-dimensional, but they do not use the available infor-
mation regarding operating slip systems to examine or ana-
lyze damage evolution.

Low R boundary attributes are not a sufficient definition
of a strong or weak boundary. First, the beneficial effect of
low R boundaries cannot be exclusively ascribed to lower
solute content, because solute atoms can also strengthen
grain boundaries, e.g. B doping in aluminides. Second,
even though the benefit of low R boundaries is statistically
convincing, some low R boundaries do develop damage,
while many more random boundaries do not, e.g. Lehoc-
key and Palumbo [325], Fig. 21, suggest that additional cri-
teria for identifying strong and weak boundaries exist, such
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Fig. 19. Cohesive zone interfacial strength models: the vertical axis is a
normalized tensile (a) or shear (b) strength, and the horizontal axis is a
normalized displacement. The arrows indicate unloading/reloading paths
[322].

Fig. 20. Influence of cohesive zone interfacial strength models coupled
with non-local CPFE microstructure models on plastic strain development
with and without use of boundary strength models; representative 2-D
plane strain microstructure (experimental, left) and mesh for a two-phase
W–(Ni, Fe) alloy (a), and effects of fracture criteria on stress and strain
obtained in simulations (b) Clayton [323,324].
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as the influence of active deformation systems. Third, some
general boundaries have special properties based upon the
rotation axis [362], or “plane-matching boundaries”, which
are statistically more common than low R boundaries [363].
Fourth, the benefit of low R boundaries has rarely been
examined in non-cubic materials, even though the structure
of low R boundaries is known (e.g. hcp, [364]; L10, [365]).
Finally, grain boundary dislocations are also important,
as they are interrelated with the structure of the boundary,
and they affect how slip can be transferred across a bound-
ary, as discussed in the next section. Much of the grain
boundary engineering literature is more focused on creat-
ing networks of low-angle boundaries with heat treatments
than examining why they are effective.

7.2.4. Grain boundary slip transfer

The analysis of heterogeneous strain near boundaries
was initiated by Livingston and Chalmers [366], who
observed that more slip systems are active near bicrystal
grain boundaries than in the grain interiors. However,
bicrystals with arbitrarily oriented grains generally activate
only one slip system in the grain interior (unless orienta-
tions are chosen that have the same Schmid factor for mul-
tiple slip systems), unlike polycrystals that generally require
activation of two or more slip systems due to compatibility
constraints. While bicrystal deformation provides insights
about mechanisms of deformation transfer, the results can-
not be directly transferred to general grain boundaries in
polycrystals.

Studies of deformation transfer have led to identification
of some rules by which a dislocation in one grain can pen-
etrate into a neighboring grain [249,367]. These rules have
been confirmed with atomistic scale simulations by de Kon-
ing et al. [368]. The slip transmission process often leaves
residual dislocations in the boundary and requires a change
in direction of the Burgers vector along with a change in
the plane orientation, resulting in two intersecting lines in
the grain boundary plane. This geometry is illustrated in
Fig. 22, and the three “rules” that summarize conditions
for slip transfer are:

� The angle between the lines of intersection between the
grain boundary and each slip system ðHÞ must be a
minimum.

� The magnitude of the Burgers vector of the dislocation
left in the grain boundary (correlated to the magnitude
of j) must be a minimum.

� The resolved shear stress on the outgoing slip system
must be a maximum.

Semi-quantitative geometrical expressions describing the
likelihood of a slip transmission event have been devel-
oped. Luster and Morris [369] noted that large values of
cosw cos j, were correlated with observed instances of slip
transmission. Slip transmission criteria depend strongly on
the degree of coplanarity of slip systems engaged in defor-
mation transfer (H will be small if w is small). Other studies
of deformation transfer have focused more on the misalign-
ment of the Burgers vector colinearity (cos j in Fig. 18),
such as Gibson and Forwood [370], who found that twin
impingement at boundaries in TiAl is accommodated by
a/2h110] ordinary dislocation slip on a variety of planes
on both sides of the boundary, with residual dislocations
left in the boundary.

The process of slip transfer is also dependent on grain
boundary dislocations. Grain boundary dislocation Bur-
gers vectors may or may not reside in the boundary plane,
making them mobile or sessile, respectively. Even if bound-
ary dislocations are mobile, they face barriers at triple lines,
where they may or may not be able to continue to propa-
gate. Triple lines are often described as I- or U-lines
[371], where I-lines are typically intersections of R bound-
aries. Dislocation transmission without development of
dislocation debris is possible through I-lines, so that they
permit slip transfer, whereas U-lines providing sources or
sinks for lattice dislocations during deformation. Thus, tri-
ple line characteristics affect properties [371,372], e.g. cavi-
tation and cracking are more likely at U-lines [373].

There is an interesting disconnect between the slip trans-
parency of I-lines, and the fact that networks of such
boundaries may even increase the strength [374,375].
Clearly, the influence of low R boundaries and associated
I-lines on damage nucleation mechanisms is only partially

Fig. 21. While the intact boundary fraction is very high in the low R
boundaries, many higher R boundaries are also intact [325].

Fig. 22. Angles and vectors used to evaluate the geometrical efficiency of
strain transfer at a grain boundary [199].
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understood. However, it appears important to focus atten-
tion on damage nucleation mechanisms in high R and ran-
dom boundaries that are more likely to develop damage,
because there will always be a significant number of ran-
dom boundaries in polycrystals.

Consideration of the geometry of slip transfer suggests
that there are three classes of boundaries with respect to
their mechanical behavior:

(I) The grain boundary acts as an impenetrable interface
which leads to the operation of additional intragran-
ular (self-accommodating) slip systems that generate
localized rotations [95] in order to maintain boundary
continuity.

(II) The boundary is not impenetrable, and slip in one
grain can progress into the next grain with some
degree of continuity (leaving residual boundary dislo-
cations, and perhaps only partial ability to accommo-
date a shape change).

(III) The boundary is transparent to dislocations, and
(near) perfect transmission can occur (e.g. low R
boundaries related to I-lines, [376] or low-angle
boundaries [95,375], this type of boundary is most
naturally modeled with CPFE methods).

Further complications are suggested from experimental
observations. From nanoindentation experiments it is
known that grain boundaries impose a threshold stress
effect, such that strain bursts through a boundary occur
with increasing stress–strain due to achieving a stress suffi-
cient to activate a grain boundary source [377]. The misori-
entations of boundaries, and hence their properties, change
with strain [378]. For example, a change in boundary char-
acter that affects dislocation absorption or emission from
the boundary will affect the localized rotation gradients
arising from GNDs.

This discussion clearly shows that before damage nucle-
ation can be predicted, deformation transfer mechanisms
must be modeled in a reasonable manner. Further, if a rela-
tionship between deformation transfer and damage nucle-
ation can be developed, this would provide an effective
bridge between atomistic and continuum scale models.

To make computational modeling of damage nucleation
possible in the CPFE paradigm, grain boundary elements
that allow physically realistic deformation transfer are nec-
essary. Two approaches of modeling grain boundary defor-
mation have been proposed by Ma et al. [25] and Ashmawi
and Zikry [379]. In both cases, grain boundary elements
with finite thickness were used. Ashmawi and Zikry [379]
used the grain boundary element to track the evolution
of dislocation density in elements in an envelope fanning
into the grain interior on either side of the boundary.
The most active slip system in this envelope was evaluated,
and then this density was tracked. Grain boundary ele-
ments accumulated the impinging dislocation density as a
damage factor in a continuum element similar to D in
Eq. (87) above; this is interpreted as a pile-up that causes

cavitation to develop, and hence the reduction in stress-car-
rying capability. The density was reduced if slip transfer
occurred, i.e. ifH < 15� and j < 35� in Fig. 22 (based upon
experimental observations of Werner and Prantl [367]),
then slip transfer was permitted in proportion to the geo-
metrical factor cosH cos j to reduce the accumulated dislo-
cation density in the grains on either side. This formulation
used arbitrary square crystal plasticity elements in square
grains with thinner grain boundary elements using the con-
tinuum-based damage nucleation model, so it was not
examined using practical microstructures.

In contrast, Ma et al. [25] developed a boundary element
with crystal plasticity components with an increased resis-
tance to flow stress based upon the fractional dislocation
debris left in a boundary when slip transfer occurs (see
details in Section 4.3.2). This increase in flow resistance is
expressed as an increase in the activation energy barrier
for dislocation slip within the grain boundary element,
and hence the deformation process in the boundary is kept
crystallographic. However, in both cases, the process of
what happens to dislocations that retain some sense of their
identity as they penetrate into the neighboring grain is
neglected for simplicity in the interest of capturing at least
some of the physics of the process. There is clearly an
opportunity for further insightful development of a practi-
cal grain boundary element that can capture both the
dislocation slip transfer and the damage nucleation pro-
cesses in practical and realistic ways.

7.2.5. Experimental studies of fracture initiation criteria
While much research in CPFE has focused on ductile

cubic metals, damage nucleation is much more critical in
low-ductility metals and intermetallics, at both ambient
and high-temperature conditions. Due to more limited slip,
it is easier to experimentally identify relationships between
slip, twinning and damage nucleation in slip-limited mate-
rials. After making unsuccessful attempts to correlate dam-
age with slip transfer using only geometric parameters,
Simkin and Bieler [380] developed a fracture initiation
parameter (fip) that is based upon the activity of slip and
twinning systems in a stressed condition for adjacent grains
in TiAl. The fip is analogous to a probability statement
about how likely it is that a given grain boundary will crack
when subjected to a stress field. A fip consists of several
physical/geometrical factors that could enhance crack
nucleation due to localized shear strain concentrated at
the boundary. Variations of this idea are presented in equa-
tions as F i, where i is a label [380–384]. For example, the fip
parameter F 1 is the product of three terms:

F 1 ¼ mtwjb̂tw � t̂j
X
ord

jb̂tw � b̂ordj ð88Þ

The first term is the Schmid factor of the most highly
stressed twinning system in a grain pair, mtw, which identi-
fies twins that cause the largest shear discontinuity at a
grain boundary. The second term is the scalar product of
the unit vector of this twin’s Burgers vector direction,
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b̂tw, and the unit vector pointing in the direction of the
maximum tensile stress t̂, i.e. b̂tw � t̂, which identifies the
strength of a mode I opening component at the boundary.
This term is the part of the Schmid factor related to the slip
direction. The third term,

P
ordjb̂tw � b̂ordj, is the sum of sca-

lar products between the Burgers vector of a highly stressed
twin system in the initiating grain (with Schmid factor mtw)
and the Burgers vector of available ordinary slip systems in
either the same grain or the neighboring (responding)
grain. This term describes how well the local shear direc-
tion at the boundary can be accommodated by dislocation
activity in the neighboring or initiating grain, i.e. the scalar
product defined by the angle j in Fig. 22. This quantita-
tively expresses one of the three requirements identified
by Clark et al. [249] for slip transfer. The sum term is max-
imized when two or more slip systems have a modest value
of j, because when the scalar product is near 1 for one slip
system, the scalar product is much smaller for the rest.
Thus, the sum is large when the opportunity for imperfect
slip transfer is large.

From experimental measurements, the fip is larger for
cracked boundaries than intact boundaries, implying that
imperfect slip transfer (which leaves residual dislocation
content in the boundary) is strongly correlated with crack
nucleation. This approach has been shown to be statisti-
cally significant in two different materials under different
loading and temperature conditions: ambient temperature
deformation in equiaxed (duplex) TiAl, and during creep
in high stress creep of a Co-based superalloy [384]. While
this suggests that the fip concept may be a robust predictor
of damage nucleation, further examination of this concept
in other material systems is needed.

7.2.6. Strain energy as a criterion for damage

Strain energy is a commonly used criterion for damage.
A recent example that illustrates this approach in crystal
plasticity studies is in the work of Dunne et al. [340],
who used cumulative plastic slip as a means to predict dam-
age sites in CPFE studies of Ni and Ti alloys in low-cycle
fatigue studies. In the maximum stress region of a contin-
uum model of a three-point bend specimen, they inserted
a crystal plasticity section with the same grain configura-
tion as a carefully analyzed experiment. Planes with highly
active slip corresponded to planes with high Schmid factors
and observed slip bands in the experiment. With a one-
dimensional damage model similar to Eq. (87), they were
able to simulate the locations of persistent shear bands
and crack positions in a three-point fatigue bending speci-
men. However, the details of the crack nucleation differed
between the experiment and simulation. This was in part
due to simplifying assumptions regarding the stress state.
This work showed that shear bands and cracks are very
sensitive to the actual local geometry of grains.

The importance of local geometry was further empha-
sized in a systematic computational study of fatigue facet
(crack) formation in hard orientations of titanium in poly-
crystals [340]. Particular orientations of adjacent crystals

and particular grain boundary inclinations were found to
be most likely to generate slip penetration from the adja-
cent soft grain into the hard grain such that tensile stresses
developed normal to basal planes. Such conditions facili-
tate formation of facets that develop into fatigue cracks.
This computational study was consistent with features in
deeply characterized experiments of Sinha et al. [385] and
Bieler et al. [386].

CPFE is particularly valuable for identifying micro-
structural conditions where strain incompatibility develops
(this is exaggerated in slip-limited materials). These incom-
patibilities develop due to activation of slip systems that
cause shears in very different direction in adjacent grains,
leading to significant local triaxial stress states and load
shedding to harder orientations. Self-consistent modeling
of generic microstructural characteristics have been used
to estimate plausible stress states (e.g. [386]), but as the
prior examples show, the actual grain geometry leads to
very significant variations around such estimates. It is clear
that strain energy is an important metric for predicting
locations where damage is possible, but clearly there are
additional criteria that must be considered (and identified)
to account for the fact that not all sites with potentially
dangerous characteristics actually develop damage.

7.3. Assessment of current knowledge about damage

nucleation

CPFE modeling is an enabling tool for examining condi-
tions that lead to damage nucleation. However, the physical
understanding that is needed to develop computationally
efficient and robust criteria is relatively undeveloped.
Rather than stating what only may be true on the basis of
recent studies, relationships between heterogeneous strain
and damage nucleation can be provided as a list of hypoth-
eses that can be explored in combined experimental and
CPFE computational modeling research programs.

1. Damage nucleation always occurs at locations of
maximum strain energy density (maximum area
under the local stress–strain curve).

2. Large local strains can provide geometric accommo-
dation that can prevent damage nucleation.

3. Damage nucleation arises from slip interactions
resulting from imperfect slip transfer through a
boundary, which leaves residual dislocation content
in the boundary plane.

4. Damage nucleation occurs in particular boundaries
where unfavorable slip interactions take place at the
boundary to weaken the boundary.

5. Slip interactions at the boundary are more (or less?)
important than the magnitude of local strain for pre-
dicting damage nucleation.

6. Damage nucleation occurs in locations where there is
maximum geometric incompatibility arising from
highly activated slip systems that cause dominant
shears in very different directions (e.g. [387]).
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7. Damage nucleation is highly correlated with severe
local strain heterogeneity, e.g. lattice curvature.

8. Dislocation density-based (non-local) formulations of
crystal plasticity models are necessary to adequately
predict the local strains, and hence the slip system
activity needed to predict damage nucleation.

9. Damage nucleation depends upon the cohesive
strength of the boundary, i.e. the energy needed to
separate an existing interface—Griffith criterion.

10. Damage nucleation probability is proportional to
local hydrostatic tensile stress.

11. Damage nucleation is more likely at triple lines than
along boundaries, especially along U-lines.

12. Slip directions are more influential on damage nucle-
ation than slip planes.

13. Low R boundaries are less likely to accumulate dam-
age than random boundaries.

14. Twin boundaries resist damage because they repel
dislocations from the boundary.

15. Twin boundaries resist damage because they allow
efficient slip transfer.

16. Twin boundaries are schizophrenic (sometimes resis-
tant, sometimes susceptible to damage nucleation).

17. Fatal flaws are located where there is the highest den-
sity of local damage sites.

18. Fatal flaws are located where the size of nucleated
damage grows the fastest.

8. Numerical aspects associated with the CPFE method

8.1. General remarks

As far as the FE method is concerned, CPFE
approaches can be regarded as a class of constitutive mate-
rial models. Therefore, they can be implemented directly
into an FE code when it is available in source form. In
the case of commercial FE codes, CPFE constitutive laws
are implemented in the form of a user subroutine, e.g.
HYPELA2 in MSC.Marc [388] or UMAT/VUMAT in
Abaqus [389]. Depending on whether the FE code is impli-
cit or explicit, the purpose of a material model is one- or
twofold: (i) calculate the stress r required to reach the final
deformation gradient (implicit and explicit); (ii) calculate
the Jacoby matrix J ¼ dr=dE (implicit only, E is the sym-
metric strain tensor).

The stress calculation is usually implemented using a
predictor–corrector scheme. Fig. 23 visualizes the set-up
of the clockwise loop of calculations to be performed. In
principle, one could start predicting any of the quantities
involved, follow the circle and compare the resulting quan-
tity with the predicted one. Subsequently the prediction
would be updated using, for instance, a Newton–Raphson
scheme. Various implementations were suggested, using
either the elastic deformation gradient Fe [390], the plastic
deformation gradient Fp [391], the second Piola–Kirchhoff
stress S [109] or the shear rates _ca [84] as a starting point.

While they certainly all should lead to the same results,
there are two numerical aspects to consider: (i) the inver-
sion of the Jacoby matrix occurring in the Newton–Raph-
son algorithm; (ii) the character of the equations to
evaluate.

Regarding the first point, one has to realize that the
dimension of the Jacoby matrix is equal to the number of
independent variables of the quantity that is used as predic-
tor. These are nine variables for Fe, eight for Fp (due to vol-
ume conservation) and six for S (due to the symmetry of
the stress tensor). However, if the _ca are chosen, there are
at least 12 variables (slip systems in fcc crystals), up to 48
(slip systems in bcc crystals), or even more in the case of
additional twinning. Inverting such large matrices (i.e.
48� 48) is numerically quite demanding, which is the rea-
son why such implementations require some effort in reduc-
ing the number of (active) slip systems [392].

The second point concerns the numerical convergence
behavior of the overall system. When starting an iteration
from any other quantity than _ca, the procedure involves
calculating the slip rates from the stress. This is usually
done using a power or exponential law. The slope of these
functions is rapidly increasing, i.e. small variations in stress
lead to increasingly larger deviations in the strain rate.
Therefore, for large deformations, where convergence
becomes a main issue, the iteration behavior of the stress
loop becomes worse. However, when starting from _ca, the
inverse tendency applies, i.e. stress variations with varying
shear rates get smaller and smaller. This is why the second
approach promises a better numerical stability at large
strains, at the cost, however, of dealing with a large Jacoby
matrix.

8.2. Explicit vs. implicit integration methods

When discussing explicit vs. implicit integration schemes
one has to distinguish between two aspects. Firstly, the FE

Fig. 23. Clockwise loop of calculations during stress determination.(S
second Piola–Kirchhoff stress, _ca shear rate, Lp plastic velocity gradient,
ma slip direction, na slip plane normal, Fp plastic deformation gradient, Fe

elastic deformation gradient, C elasticity tensor, I identity matrix).
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solver can follow an explicit or implicit approach, and sec-
ondly the material model can be iterated using explicit or
implicit integration schemes. Concerning the first point,
Harewood and McHugh [182] recently compared the effi-
ciency of both methods when applying crystal plasticity
models to forming problems. As could be expected, to
some extent the outcome of this comparison is problem-
dependent. As a rule the explicit scheme generally seemed
favorable when contact is involved.

Regarding the material model itself, e.g. the material
subroutine in the case of commercial FE solvers, anything
from explicit to fully implicit integration methods is possi-
ble. The task of the material model is twofold. Firstly, the
stress necessary to achieve the prescribed deformation has
to be determined. Secondly, the material state has to be
updated. In most codes first the stress is determined implic-
itly for a fixed state of the material and in a subsequent step
the material state is updated. In the case of a fully implicit
implementation the stress then has to be determined again
until convergence is achieved, while in a semi-implicit code
the calculation is stopped after the state was updated. An
advantage of the fully implicit scheme is that it truly con-
verges to the correct solution (if it converges at all),
whereas the explicit solution converges generally but not
necessarily to the correct solution. Since explicit schemes
typically use very small time steps, semi-implicit integration
schemes should generally work satisfactorily with respect
to precision, while they are at the same time faster than a
fully implicit scheme.

8.3. Element types

CPFE constitutive models as introduced in Section 4 are
formulated in a tensorial way to account for material
anisotropy. Therefore, they are based on a 3-D stress ten-
sor. In terms of FE design this means that crystal plasticity
works best for 3-D models and, when used for 2-D models,
is restricted to plane strain boundary conditions. However,
it does not work for plane stress boundary conditions.

Most CPFE simulations use linear elements, i.e. ele-
ments using linear interpolation functions for the displace-
ments. Therefore, these elements cannot describe strain
gradients within one element. When the resolution of the
FE mesh is reasonably fine, this can be tolerated for sin-
gle-phase materials. However, when strong strain gradients
occur, either due to boundary conditions or due to the
presence of multiple phases, linear elements are usually
not sufficient to correctly capture these strong gradients.
In such cases higher-order elements should be used.

In cases with advanced CPFE material models, such as
introduced in Section 4.3.2, that include strain gradients,
the situation becomes more complicated. The standard ele-
ment formulations are only continuous in the displace-
ments (C0-continuous). This implies that strains can be
calculated as displacement gradients, but strain gradients
might be undefined. To overcome this problem one has
to use enhanced element formulations as in Evers et al.

[26], Arsenlis et al. [9]. However, the definition of boundary
conditions becomes rather complicated in the case of com-
plex loadings for such element formulations. Therefore,
many authors still use standard elements for such simula-
tions and derive the necessary gradients from multi-element
patches as described, for example, in Han et al. [393].

9. Experimental validation and application

9.1. Introduction

CPFE simulations can be validated by experiments in a
detailed way, with respect to both mechanical and micro-
structure observables. Measures of the former group can
be monitored in terms of forces, elastic stiffness (including
spring-back effects), stresses, mechanical size effects,
mechanical anisotropy, shape changes, hardness, strain
paths, strain rates, and strains including local strain maps
obtained by digital image correlation or speckle methods.
Quantities based upon microstructure observations can be
mapped in terms of crystallographic texture, grain shapes,
dislocation substructures and densities, internal stresses,
and surface roughness. Many such comparisons can be
conducted one-to-one and at different scales (Table 2). In
addition to these well-established methods, novel tomo-
graphic experiments allow one to compare CPFE predic-
tions to real microstructures also in three dimensions, for
instance by synchrotron orientation tomography [214,394],
and EBSD tomography (3-D EBSD) [171,174,177,216,
395,396]. Other new techniques to validate CPFE predic-
tions are microscopic mechanical tests conducted on
micrometer- or nanometer-sized samples prepared by
electrochemical or focussed ion beam methods [397–400].
In this section we review a selection of some literature exam-
ples which document applications of the CPFE method
from microscopic to macroscopic scales.

9.2. Microscopic and mesoscopic examples

9.2.1. Orientation stability in aluminum under plane strain

deformation

During plastic deformation crystals can gradually build
up in-grain orientation scatter under gradient-free boundary
conditions [92,110]. This phenomenon depends on the orien-
tation, on neighbor grains and on the external boundary
conditions (e.g. friction, tool alignment) [119,172,401,402].
Basically, the tendency for orientation stability can be
expressed in terms of the divergence behavior of the reorien-
tation field (which is sometimes also referred to as flow field)
for an orientation under a given load [92]. Using CPFE sim-
ulations and classical homogenization theory it was found
that the orientation stability (under plane strain loading)
in aluminum (as an example of fcc material with high stack-
ing fault energy) can fall into one out of three basic catego-
ries. The first group of orientations is stable and does not
build up substantial in-grain orientation scatter even for
minor variations in the initial orientation spread or in the
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boundary conditions (e.g. change in the friction coefficient).
Typically, such orientations show a very symmetric arrange-
ment of the active slip systems. Their reorientation behavior
is characterized by negative divergence of their reorientation
field (for a given load tensor). They are stable and not prone
to build up internal orientation scatter. Examples are the
{001} [110] orientation in bcc crystals or the Goss orienta-
tion {011} [100] in fcc crystals under plane strain load (roll-
ing, mid-thickness layer). Under shear load both texture
components become unstable (warm rolling, subsurface
layer or torsion). The second group is extremely unstable
and builds up strong in-grain orientation scatter. These ori-
entations show positive divergence of the reorientation field.
Examples are the Goss orientation {011} [100] in bcc crys-
tals and the rotated cube orientation {001} [110] in fcc crys-
tals under plane strain load. When subjected to simple shear
loads both texture components become stable and are hence
referred to as shear components for the respective crystal
structure [92,119,403]. Crystals that fall into the third cate-
gory reveal very small divergence of their reorientation field
which means that they have the same tendency for orienta-
tions changes as their neighborhood. Figs. 24 and 25 show
an example of the stability of the cube orientation in fcc
material exposed to plane strain load for different boundary
conditions and different initial orientation spread. Similar
CPFE simulations on the stability of cube grains were also
conducted by Bate [155].

9.2.2. Texture and dislocation density evolution in a bent

single-crystalline copper-nanowire
This section presents an investigation of a bending test

using experiments and CPFE simulations. A 23 lm long
single-crystalline copper nanowire was produced by
focused ion beam fabrication (FIB) [176]. The average
cross-section of the specimen was 750� 750 nm2. The
nanowire was bent in situ using a micromanipulator. Char-

acterization was done using scanning electron microscopy
(SEM) and electron backscatter diffraction (EBSD). The
experiment was compared to simulations conducted by a
CPFE analysis using a dislocation density-based constitu-
tive hardening law [23,24,174]. The simulations were
required for studying the influence of the boundary condi-
tions on the results since they can have substantial influ-
ence on the evolution of the texture during bending. The
simulations and the experimental results reveal good agree-
ment in terms of texture evolution and elastic spring-
back as long as the boundary conditions were reflected
accurately. The model provides information about the
microstructure evolution in terms of particular material
parameters such as the evolution of the dislocation density
(Fig. 26). Similar CPFE simulations on the deformation of
pillars by micro-scale compression tests were presented by
Raabe et al. [172]. The motivation for selecting this exam-
ple is to document the capability of the CPFE approach to
yield good texture predictions even at small scales where
the constitutive law, which is built on a statistical disloca-
tion model [23,24,404], reaches its limits due to the small
size of the elements.

9.2.3. Texture and microstructure underneath a nanoindent

in a copper single crystal

This example concerns the origin of deformation-induced
orientation patterns below nanoindents in a {111}-oriented
copper single crystal. The experiments and the simulations
were conducted using a conical indenter with spherical
tip [170,171]. The patterns were characterized by neighbor-
ing crystalline zones with opposite rotations rates. The
approach to analyze and understand the phenomenon
was as follows. First, the deformation-induced orientation
patterns were investigated in 3-D using a high-resolution
tomographic EBSD technique [174,177]. This method
works by a fully automated alternating serial sectioning

Fig. 24. Accumulated misorientations in gray scale coding (light values indicate large misorientations) for aluminum grains together with {111} pole
figures after 50% plane strain deformation for different orientations. The simulations used 12 slip systems. The open squares in the pole figures show the
initial orientation (which was the same at all integration points) and the black dots show the orientations after the deformation.
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and EBSD mapping procedure in a SEM-FIB set-up (3-D
EBSD) [216,395,396]. Second, the problem was modeled
using a CPFE method which is based on a constitutive
model that uses dislocation densities as state variables
[23,405]. It was found that the rotation pattern induced
during indentation were well predicted by the CPFE
model. The change of the crystal rotation directions
could be explained by the different slip system combina-
tions that were activated due to the geometry of the inden-
ter causing a gradual change in the loading axis that
evolved differently at different locations during indentation
(Fig. 27).

9.2.4. Application of a non-local dislocation model including

GNDs to shear tests of aluminum single crystals
The non-local dislocation-based CPFE constitutive

model presented in Section 4.3 was implemented in the
commercial FE code MSC.Marc200x using the subroutine
HYPELA2 [388]. The model includes GNDs. The predic-
tions of this non-local model were compared to simple
shear experiments on commercially pure aluminum single
crystals and to conventional viscoplastic CPFE simulations
(Fig. 28) [24,98,406].

In the experiments the maximum equivalent deforma-
tion is always observed in the lower left corner of the single

Fig. 25. Orientation stability of cube orientation after 50% plane strain compression for different internal and external boundary conditions predicted by
CPFE simulations. Left: starting condition—exact cube orientation without initial orientation scatter, Coulomb friction coefficient 0.1. Center: starting
condition—cube orientation with 2.5� initial orientation scatter, Coulomb friction coefficient 0.1. Right: starting condition—cube orientation with 2.5�
initial orientation scatter, Coulomb friction coefficient 0.3.

Fig. 26. (a) Predicted density of the GNDs during nanowire bending in units of lm�2. (b) Experimentally determined GND density, quantified in terms of
the average local orientation gradient determined via high-resolution EBSD. (c) Subsequent scenes taken during bending. (d) Pole figures of the bent
nanowire obtained from experiment and simulation. The predictions were used to determine the exact boundary conditions that occurred during testing.
The crosses indicate the initial orientation. CD, cross direction; BD, bending direction.
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crystal and extends diagonally across the crystal. While this
behavior is correctly reproduced by the non-local approach
the phenomenological viscoplastic model predicts the high-
est strains in the upper left corner of the specimen. One can
assume that the better prediction yielded by the non-local
model is mainly a consequence of the physically based
latent hardening law and the introduction of the GNDs.
This assumption is supported by the data presented in
Fig. 30b which reveal that substantial densities of GNDs
are generated close to the sample borders. For better com-
parison of the relative contributions of the two types of dis-
locations, Fig. 30b and c show both the distributions of the
GNDs and the densities of statistically stored dislocations
on the crystal surface.

Another advantage of the use of GNDs in a CPFE con-
stitutive law is that the model is rendered length scale
dependent. Therefore, the shear simulation presented
above was repeated for a set of three cases which were
characterized by different height-to-length ratios. For this
purpose the height H of the sheared sample was changed
to one-half and one-tenth of the original height H 0, respec-
tively. The resulting shear stress–shear strain curves are
shown in Fig. 29. Eqs. (26), (27), (38), (39) reveal that the
GND density contributes to the passing stress and to the
multiplication term of the immobile dislocation. For this
reason one would expect higher predicted stresses for the
thinnest sample owing to the relative increase of zones

which are mechanically affected by the presence of inter-
faces. This is indeed confirmed by Fig. 29. Fig. 30b, e,
and h show how the relative size of the zone that is influ-
enced by the GNDs increases with decreasing sample
height. This increased GND density leads also to an
increase in the statistically stored dislocation density as
expected and shown in Fig. 30c, f, and i. Additionally,
Fig. 30a, d, and g reveal that the predicted texture evolu-
tion of the crystal is affected by the non-local model. This
results in an intersection of the stress–strain curves for
H ¼ H 0 and H ¼ H 0=2 in Fig. 29. The strong influence of
incorporating GNDs into the CPFE framework on the pre-
dicted reorientation rates is due to the penalty effect they
impose. This means that each reorientation step which
introduces an orientation divergence with respect to the
neighborhood [117] is impeded owing to the corresponding
introduction of additional GNDs.

9.2.5. Evolution of crystallographic dislocation density in a

crystal plasticity modeling framework

Arsenlis and Parks implemented dislocation-based con-
stitutive laws into a CPFE simulation framework [19]. The
basics and further developments along these lines were
published in a sequence of works where the recent empha-
sis is placed on extracting constitutive information, for
instance, on strain hardening form discrete dislocation
modeling [9,18,19,65]. They suggested a constitutive for-

Fig. 27. Comparison between crystal rotation about the direction ½11�2� in the sample reference system underneath the indent at different sections between
experiment and simulation (positive values indicate counter-clockwise rotation) [171,174,177].
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mulation where dislocation density variables gradually
evolve from initial conditions according to a set of struc-
ture evolution formulations considering basic dislocation
mechanics, such as the continuity of dislocation line and

Burgers vector conservation in a set of generic multiplica-
tion and annihilation processes [19]. The density evolution
equations use three classes of internal variables, namely the
average dislocation mobility, the average segment length
and the capture radii. The model used a set of 18 discrete
dislocation densities comprising 12 edge and 6 screw
components.

The model was implemented in a CPFE framework to
study the polyslip behavior of aluminum single crystals of
different initial crystallographic orientation under tensile
loading (Fig. 31). The results do not only yield reasonable
mechanical stress–strain response for the differently ori-
ented crystals, but also provided insight about the develop-
ment of the dislocation structure responsible for the
respective plastic behavior observed. A similar approach
where conventional viscoplastic hardening rules were
replaced by dislocation density evolution laws including
also GNDs was suggested by Ma et al. [23–25,404].

9.2.6. Application of a grain boundary constitutive model in

CPFE bicrystal simulations

This example presents the use of a dislocation-based
constitutive model to incorporate the mechanical interac-
tion between mobile dislocations and grain boundaries into
the CPFE framework. The approach is based on the intro-
duction of an additional activation energy into the rate
equation for mobile dislocations in the vicinity of grain
boundaries. The energy barrier is derived by using an elas-
tic model for thermally activated dislocation penetration
events through grain boundaries. The model was presented
in detail in Section 4.3.3 and in [24,25]. The approach is
applied to the case of 50% (frictionless) simple shear defor-
mation of three aluminum bicrystals with a small-, interme-
diate- and high-angle grain boundary, respectively, parallel
to the shear plane. The simulations are compared to exper-
iments with respect to equivalent surface strain and texture.
The constitutive parameters were fitted by using the stress–
strain response of a single-crystal simple shear test illus-
trated in Figs. 28 and 29.

Figs. 32–34 show the comparison of the von Mises strain
patterns obtained from the experiment (left column), from
the simulation with a viscoplastic law (no interface model;
center column), and from the dislocation-based CPFE sim-
ulation including GNDs and a geometrical model for the
grain boundary resistance as introduced in section 4.3.3
(right column). The figures show the von Mises strain dis-
tributions for five stages of shear with a constant increase
of 10% per load step. The experiments reveal in all cases
the strong constraint imposed by the grain boundary. Even
for the small-angle grain boundary (7.4�) the experiment
indicates strain separation among the two crystals. With
increasing grain boundary misorientation, the heteroge-
neous distribution of the strain between the grains becomes
more pronounced. The corresponding viscoplastic CPFE
simulation (local law, central column of Figs. 32–34) does
not adequately reproduce the influence of the grain bound-
aries on the strain distribution. This applies in particular

Fig. 28. Comparison of the von Mises equivalent strain on the surface of
an aluminum single crystal (3.1 mm long, 2.0 mm thick and 2.2 mm high)
for a simple shear test. The left column shows experimental results
obtained by strain measurements via digital image correlation (DIC). The
central column shows results obtained by using a conventional viscoplastic
formulation. The right column shows results obtained by using an
enhanced non-local model (see Section 4.3) which considers GNDs.
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Fig. 29. Simulated shear stress–strain curves for samples with different
height-to-length ratios, demonstrating the size sensitivity of the non-local
dislocation model.
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for the two bicrystals which have a small- and intermedi-
ate-angle grain boundary, respectively. For the bicrystal

with the high-angle grain boundary (Fig. 34), the empirical
(local) model is capable of predicting some, although not
all, characteristics of the strain separation between the
two crystals. The partial success of the simulation with
the empirical viscoplastic hardening law in the case of the
high-angle grain boundary is attributed to the strong effect
of the change in the Schmid factor across the interface, i.e.
kinematic effects prevail over dislocation density effects in
this case.

Bate [155] conducted a similar CPFE simulation of
bicrystal deformation. He observed not only orientation
splitting and strain separation among the abutting grains
but also severe deformation banding in both crystals at
an oblique angle to the grain boundary. This work demon-
strates very nicely the far reaching effect of a grain bound-
ary causing substantial deformation heterogeneity in the
grain interior.

9.2.7. Modeling of the grain size dependence of polycrystal

mechanics
The group of Evers, Brekelmans and Geers investigated

the way that size dependent effects are associated with

Fig. 30. Comparisons of dislocation densities and misorientation for different samples after a 30% shear deformation. Heights of samples are
H ¼ H 0; H ¼ H 0=2 and H ¼ H 0=10 (all plots are scaled to the same height for a better comparison), respectively. GND, geometrically necessary
dislocation density; SSD, statistically stored dislocation density.

Fig. 31. CPFE simulated and experimentally observed orientation
dependence of the stress–strain profile of aluminum single crystals during
tensile loading [19].
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interfaces and GNDs in CPFE and Taylor-type homogeni-
zation frameworks [20,21,26,83]. For instance in [20], a
local plastic strain-gradient-dependent crystal plasticity
model was suggested which is capable of describing the
grain-size-dependent mechanical response of polycrystals.

This approach consists of assigning GND populations
to intragranular incompatible deformations that arise as
a result of the existence of grain boundaries between abut-
ting crystals. The polycrystal appears in this model as a sta-
tistical set of bicrystal aggregates which altogether provide
an orientation-dependent density of misfit dislocations,
which in turn provide extra hardening to the system. As
the intragranular heterogeneous deformation is related to
the grain size, the amount of GND-enhanced hardening
grows as the crystal size drops (Fig. 35).

The conventional slip system hardening through statisti-
cally stored dislocations is described by a system of phe-
nomenological equations that capture the influence of
self- and latent hardening. The model provides a crystallo-
graphically and physically motivated hardening depen-
dence in polycrystals based on their grain size. The
morphological texture can be incorporated through the
inclination and crystallographic distribution of the grain
boundaries and their mutual weights.

9.2.8. Three-dimensional aspects of oligocrystal plasticity

Zhao et al. [32] conducted a study of plastic strain local-
ization and deformation-induced surface roughening in an
aluminum polycrystal consisting of a small set of coarse
grains (oligocrystal). A dog-bone specimen is plastically
deformed under uniaxial tensile loading. During deforma-
tion, the history of strain localization, surface roughening,
microstructure and in-grain fragmentation is recorded.
Using a CPFE model, corresponding one-to-one high-reso-
lution simulations are conducted (Fig. 36). The study
reveals that the grain topology and microtexture have a sig-
nificant influence on the origin of strain heterogeneity.
Moreover, it suggests that the final surface roughening pro-
files are related both to the macrostrain localization and to
the intra-grain interaction. Finally slip lines observed on
the surface of the samples are used to probe the activation
of slip systems in detail.

Particular attention in the analysis is placed on the
ability of the CPFE model to capture the fine details of
the surface roughening effects, orientation-dependent strain
localization, and the pattern of activation of slip systems in
the grains. It was observed that the grain stretching over
the whole width of the dog-bone specimen was remarkably
soft. The absence of dislocation barriers provided by grain

Fig. 32. Simple shear test of a bicrystal with a 7.4� low-angle grain
boundary (3.1 mm long, 2.0 mm thick and 2.2 mm high). Comparison of
the von Mises strain patterns as obtained from the experiment via digital
image correlation (DIC, left column), from the simulation with a
conventional viscoplastic constitutive law (central column), and from the
simulation which uses an advanced dislocation-based non-local model (see
Section 4.3) (right column).

Fig. 33. Simple shear test of a bicrystal with a 15.9� intermediate-angle
grain boundary (3.1 mm long, 2.0 mm thick and 2.2 mm high). Compar-
ison of the von Mises strain patterns as obtained from the experiment via
digital image correlation (DIC, left column), from the simulation with a
conventional viscoplastic constitutive law (central column), and from the
simulation which uses an advanced dislocation-based non-local model (see
Section 4.3) (right column).
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boundaries promotes strain localization owing to a single
isolated soft grain. Due to the significant thickness reduc-
tion, a severe surface roughening is particularly observed
in the soft region of the sample.

Similar studies on the mechanical heterogeneity and the
texture evolution in coarse-grained samples were presented
by [14,110]. Common to these works is that they show,

depending on grain orientation, substantial in-grain orien-
tation fragmentation and strain localization.

Beaudoin et al. [110] idealize in their study a simple
polycrystal as a 3-D arrangements of eight grains, each
consisting of many elements per crystal. Non-uniform
deformations within individual grains lead to the develop-
ment of domains that are separated by boundaries of high
misorientation. Also, localized shearing is seen to occur at
the microscopic grain scale. The authors also discuss the
importance of such plastic and orientation localization
phenomena for recrystallization nucleation (see also next
section). In particular, the landmark paper of Beaudoin
et al. [110] motivated further investigations on in-grain ori-
entation scatter (grain fragmentation) and corresponding
approaches to classify grains according to their kinematic
stability upon loading. The aim of these works was to sys-
tematically learn which types of grains (texture compo-
nents) tend to build up large orientation gradients under
certain loading states [92,117] (Fig. 37).

9.2.9. Simulation of recrystallization using CPFE

micromechanical results
In this section we present approaches for predicting pri-

mary static recrystallization and related grain-coarsening
phenomena by combining CPFE simulations with Monte
Carlo, cellular automaton or network models [148,155,156,
159,162,163,407]. Such combined methods can predict
microstructures and texture evolution during thermome-
chanical treatment. The advantage of the approach is that
they consider the material heterogeneity of the deformation
microstructure and recrystallization phenomena as opposed
to classical statistical approaches which are based on the
assumption of material homogeneity.

Bate [155] assumed that the von Mises stress obtained
from a CPFE bicrystal model is linearly related to the
substructure density in deformed metals that undergo
extensive dynamic recovery. From the CPFE results he
constructed a cell structure and used it as input to a 2-D
network model for recrystallization simulation. Cell centers
are included at random coordinates, with specific exclusion
rules to ensure that the cell size is inversely proportional to

Fig. 35. Stress–strain curves for average grain diameters of 14, 33 and 220 lm, represented by the upper, middle and lower slide line curves (of each type),
respectively. The dashed lines indicate results from earlier FE calculations of Arsenlis and Parks [18] and the bullets are experimental results from Hansen
(1979). (a) Results using the assumption of SSD and GND strength addition. (b) Results using the assumption of SSD and GND density addition [20],
showing a closer agreement with experimental data.

Fig. 34. Simple shear test of a bicrystal with a 33.2� high-angle grain
boundary (3.1 mm long, 2.0 mm thick and 2.2 mm high). Comparison of
the von Mises strain patterns as obtained from the experiment via digital
image correlation (DIC, left column), from the simulation with a
conventional viscoplastic constitutive law (central column), and from the
simulation which uses an advanced dislocation-based non-local model (see
Section 4.3) (right column).
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the local von Mises stress. Cell orientations are interpo-
lated from the CPFE results and the initial network is set
up via Dirichlet tessellation. Fig. 38 reveals two stages in
the simulation. At an early phase of annealing, the essential
features of the deformed structure remain apparent. The
crystallite size is larger, and more high-angle grain bound-
aries emerge, near the original grain boundary. There are
some high-angle boundaries associated with the deforma-
tion inhomogeneity in the upper grain. At the later stage,
considerable strain-induced boundary migration has
occurred. Some of the new grains have orientations corre-
sponding to a cube texture rotated by 15� about the exten-
sion direction (circled points in Fig. 38).

Raabe and Becker used a method in which the results of
a CPFE simulation serve as a starting microstructure for a
subsequent discrete cellular automaton recrystallization
simulation. The CPFE model simulated plane strain com-
pression of aluminum with a columnar coarse grain struc-
ture to a total logarithmic strain of 0.434 [156,408]. The
values of the state variables (dislocation density, crystal
orientation) given at the integration points of the FE mesh
were mapped on the cellular automaton lattice. The origi-
nal size of the specimen which provided the input micro-
structure to the CPFE simulation gave a lattice point
spacing of 61.9 lm. The maximum driving force in the
region arising from the stored dislocation density was
about 1 MPa. The annealing temperature was 800 K.
High-angle grain boundaries were characterized by an acti-
vation energy for the mobility of 1.3 eV. Small-angle grain
boundaries were assumed to be immobile. The nucleation
process during primary static recrystallization has been
explained for pure aluminum in terms of discontinuous
subgrain growth. According to this model nucleation takes
place in areas which reveal high misorientations among
neighboring subgrains and a high local driving force for
curvature-driven discontinuous subgrain coarsening. The
present simulation approach works above the subgrain
scale, i.e. it does not explicitly describe cell walls and sub-
grain coarsening phenomena such as the approach of Bate
[155]. Instead, it incorporates nucleation on a more phe-
nomenological basis using the kinetic and thermodynamic
instability criteria of classical recrystallization theory.
Kinetic instability means that nucleation leads to the for-
mation of a mobile high-angle grain boundary which can
sweep the deformed matrix. Thermodynamic instability
means that the stored energy changes across the new
high-angle grain boundary give a net driving force. Nucle-
ation in this simulation is performed in accord with these

Fig. 36. Study by Zhao et al. on plastic strain localization and deformation-induced surface roughening in a 3-D aluminum polycrystal consisting of a
small assembly of coarse grains (oligocrystal) [32].

Fig. 37. Simulation of Beaudoin et al. of a grain cluster consisting
originally of S-oriented crystals (fcc). Results are shown after a thickness
reduction of 85%: (a) section with stable S orientations; (b) section with
cube bands. Images are scaled by a factor of 10 in the thickness (N)
direction [110].
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two criteria [408] (Fig. 39). A similar approach of applying
a cellular automaton model to CPFE simulation data of a
deformed superalloy for the prediction of local recrystalli-
zation phenomena was used by Zambaldi et al. [162]
(Fig. 40).

9.2.10. Simulations of multiphase TRIP steels

The mechanical behavior of a TRIP-assisted steel is sim-
ulated for an uniaxially loaded sample composed of a sin-
gle austenitic grain surrounded by a matrix of ferritic
grains. The purpose of the present simulation is to study
the TRIP effect as a function of crystallographic orienta-
tions, i.e. the orientation of the austenitic and ferritic grains

with respect to the applied load as well as the orientation
mismatch between neighboring grains.

In the present analysis, a cubic sample of size a3 (see
Fig. 41) that represents a single grain of austenite sur-
rounded by a matrix of ferrite is considered. In the unde-
formed state, the polyhedral austenitic grain occupies
approximately 13% of the total volume of the sample.
The sample is initially stress-free and is subsequently sub-
jected to a uniaxial tensile loading, which is prescribed
through the following boundary conditions. (i) The normal
displacement and the tangential traction on the external
faces 2, 3 and 5 are set to zero. (ii) The normal displace-
ment on the external face 1 equals to u1 ¼ 10�4a t, with time

Fig. 38. Results of Bate from a network annealing model with the initial representation of microstructure derived from a CPFE simulation [155]. The
initial number of crystallites was 900. Only grain boundaries with misorientations greater than 3� are shown. Darker grains are near the cube orientation.
The configuration at 400 remaining crystallites is shown in (b). The resulting grain orientations are given in the {001} pole figure [155].

Fig. 39. 2-D simulation of recrystallization in deformed aluminum on the basis of CPFE data. Dislocation density in terms of the driving force (top) and
microtexture (bottom) at an intermediate recrystallization step for different nucleation conditions. The texture is given in terms of the magnitude of the
Rodriguez vector. The gray regions indicate recrystallization. The maximum occurring driving force is 1 MPa. The thick white lines indicate grain
boundaries above 15�. The thin green lines indicate misorientations between 5� and 15�. The simulation parameters are: 800 K; thermodynamic instability
criterion: site-saturated spontaneous nucleation in cells with at least 50% (a), 60% (b), and 70% (c), respectively, of the maximum occurring dislocation
density (threshold value).
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interval 0 < t 6 2000 s, and the tangential traction is set to
zero. (iii) The remaining faces (4 and 6) are traction-free.
The applied boundary conditions correspond to an axial
straining rate of 10�4 s�1. The simulation is performed at
a constant temperature of 300 K. The parameters used in
the model for the ferrite are the same as those used in
[82], which are representative of a ferrite-based matrix in
typical multiphase TRIP steels. The model parameters for
the austenite are the same as those used in [82], which are
calibrated from a TRIP steel with an austenite carbon con-
centration of 1.4 wt.%. In the simulations, four TRIP steel
microstructures with different austenitic and ferritic crystal-
lographic orientations (textures) are considered, namely (1)

½100�A–½100�F, (2) ½100�A–½111�F, (3) ½111�A–½100�F and
(4) ½111�A–½111�F-loaded samples.

Figs. 42a and b illustrate the effective stress–strain
response and the evolution of the austenitic volume frac-
tion of the TRIP steel samples 1–4. In general, samples 2
and 4 (with ½111�F-loaded ferritic matrix) show a higher
axial stress response than samples 1 and 3 (with ½100�F-
loaded ferritic matrix), which indicates that ferrite loaded
in ½111�F direction is stronger than that loaded in ½100�F
direction (an analysis of the Schmid stress suggests that
½111�F-loaded ferrite gives the highest stress response under
uniaxial tensile loading). Furthermore, samples containing
a ½111�A-loaded austenitic grain give a relatively high initial

Fig. 40. Simulation results, showing evolving recrystallization microstructures around an indent in a Ni-base superalloy, compared to EBSD
measurements. The normal Miller indices are indicted in terms of an inverse pole figure color scheme. The arrows indicate the orientation of the parent
single crystal. White lines in the experimental results indicate first-order annealing twins, black lines are used for high-angle grain boundaries with a
misorientation of more than 15� [162].
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yield stress in comparison to the corresponding samples
with a ½100�A-loaded austenitic grain. As reported in Refs.
[78,82,263], ½100�A-loaded austenite is a more favorable
orientation for transformation. In other words, ½100�A-
loaded austenite transforms at a low stress level, whereas
transformation of the ½111�A-loaded austenite occurs at a
relatively high stress level. This is in agreement with exper-
imental observations for TRIP steels (see e.g. [409,410]). In
addition, the ½100�A-loaded austenitic grain (in samples 1
and 2) transforms at a higher rate than the austenitic grain
loaded in ½111�A direction (samples 3 and 4), as depicted in
Fig. 42b. At about 0.08 axial strain, the austenitic grain in
samples 1 and 2 has been (almost) fully transformed into
the harder martensitic phase. Consequently, the axial stress
response of samples 1 and 2 increases rapidly after about
0:08 axial strain. Furthermore, Fig. 42b shows that trans-
formation behavior in the austenitic grain is dependent
not only on the orientation of the austenitic grain itself
but also on the orientation of the surrounding ferritic
matrix. The effect of the mismatch between the orientation
of the transforming austenitic grain and the surrounding
matrix can be quite significant (cf. e.g. samples 3 and 4).

9.2.11. Evaluating CPFE results for damage prediction

At present, the fracture initiation parameter (fip) intro-
duced in Section 7 is a static metric; an evolving fip has
not yet been developed. However, it is clear that CPFE
modeling provides the information necessary to evaluate
an evolving fip. Preliminary CPFE modeling (using phe-
nomenological hardening relationships) of one of the
microstructures used to develop the fip showed greatly
enhanced activation of the secondary twining system
responsible for the observed microcrack where it occurred
(see Figs. 43 and 44). Only spatially resolved crystal plastic-
ity could predict such a result. Remarkably, elements sur-
rounding this boundary had only a modest stress–strain
history (i.e. modest strain energy). The twinning system
responsible for the crack appeared to geometrically accom-
modate a strain concentration that occurred on the other
(upper left) side of grain 14. Thus, damage developed in
response to a nearby local strain concentration at the left
edge of grain 14, where strain transfer across a grain
boundary some distance from the strain concentration led

to weakening of the boundary. This example suggests that
while large local strains may be the ultimate driving force
for damage, the failure event may not be nucleated where
the large strains occur.

9.3. Macroscopic examples

9.3.1. Using elastic constants from ab initio simulations for

predicting textures and texture-dependent elastic properties
of b-Ti

This section presents applications on the prediction of
textures and texture-dependent elastic properties using
multiscale CPFE simulations where the elastic constants
are obtained by ab initio simulations (density-functional
theory) [411]. We apply this approach to binary Ti–Nb bio-
material alloys that can be used for human implants. The
two models we combine (ab initio, CPFE) work at very dif-
ferent length and time scales. The strength of this combina-
tion for predicting certain polycrystal properties lies in the
fact that continuum-based theoretical models such as
CPFE rely on a number of ground state properties (e.g.
elastic tensor). The use of texture data is in such cases (elas-
ticity) sufficient to predict realistic data also for complex
polycrystalline aggregates irrespective of their thermome-
chanical process history. A particular advantage of using
an FEM-based method rather than an analytical or semi-
analytical approach for obtaining the polycrystal stiffness
from corresponding ab initio single crystal data is that it
allows one to consider any kind of crystallographic texture,
including also intra- or in-grain interactions. Most homog-
enization methods for obtaining the elastic modulus of a
polycrystal such as the Voigt, Reuss, Hill or Hershey
[301,302,412,413] models usually either neglect texture or
assume highly simplified boundary conditions. A further
important aspect of using ab initio elastic results in con-
junction with crystal mechanical simulations is the fact that
for the elastic constants of single crystals (which are a nec-
essary input to CPFE simulations) experimental data are
often lacking [414,415]. Details about the ab initio calcula-
tions used in this section are given in [416].

The goal of the first example is to investigate the depen-
dence of the rolling texture evolution of two b-Ti–Nb bin-
ary alloys on the elastic properties. For this purpose we

Fig. 42. Axial stress response (a) and the evolution of austenitic volume fraction (b) as a function of the axial logarithmic strain of TRIP steel samples
consisting of an austenitic grain embedded in a ferritic matrix.
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used different elastic constants in terms of the magnitude of
the tensor components and the elastic anisotropy. These
elastic constants, which were obtained from ab initio elec-
tronic structure calculations [416], served as constitutive
input variables in a CPFE simulation in conjunction with
a viscoplastic hardening law [415].

b-Ti alloys have bcc crystal lattice structure. At room
temperature the structure can be stabilized by the addition
of Nb or Mo. As slip systems we used {110}, {112} and
{123} slip planes, and h111i=2 Burgers vectors [417,418].
Two alloys were investigated, namely Ti–18 at.%Nb and
Ti–31 at.%Nb. The elastic constants for Ti–18 at.%Nb as
calculated by the ab initio method were C11 ¼ 49:8 GPa;
C12 ¼ 21:4 GPa and C44 ¼ 33:1 GPa. The Zener anisotropy
ratio, which is defined as 2C44=ðC11 � C12Þ, amounts to 2.4.
The predicted elastic constants for Ti–31 at.%Nb were
C11 ¼ 72:6 GPa;C12 ¼ 31:1 GPa and C44 ¼ 19:3 GPa, giv-
ing a Zener ratio of 1.1. The rolling texture simulation
was conducted using plane-strain compression boundary
conditions and random initial texture. Fig. 45 shows the
predicted crystallographic textures in terms of a set of

u2 ¼ 45� sections through Euler space for the two cases.
The results show that there is no pronounced relationship
between slip system selection and the magnitude and anisot-
ropy of the elastic constants.

A second (elastic) example of using ab initio elastic stiff-
ness constants in a CPFE framework is shown in Fig. 46.
The two diagrams present the distribution of the equivalent
elastic stress and strain values in a randomly textured poly-
crystalline aggregate consisting of 200 grains and
32� 32� 32 elements for three different elastic tensors
(magnitude, anisotropy) of three b-Ti alloys. The speci-
mens were subjected to a unidirectional, purely elastic ten-
sile load. The data show that an increase in the elastic
anisotropy (quantified here in terms of the Zener ratio)
leads to a remarkable increase in the spread of the stress–
strain distribution. This means that local elastic loads
(hot spots) among neighboring grains become more fre-
quent as the elastic anisotropy increases. This effect may
play a role in such diverse fields as internal stress evolution
and stress corrosion cracking.

9.3.2. Grain meshing strategies in CPFE modeling
Delannay et al. [126] tested a set of different simulation

approaches for the prediction of texture development and
microscopic strain heterogeneity in cold-rolled ultra-low-
carbon and multiphase steels under uniaxial tension
(Fig. 47). The polycrystalline sample is represented by a
FE mesh that is loaded under periodic boundary condi-
tions. The individual crystals are shaped as cubes or as
truncated octahedrons, defining three different levels of
mesh refinement. Simulations rely on a simplified imple-
mentation of crystal plasticity, in which elastic strains are
considered infinitesimal. The constitutive law is integrated
fully implicitly in a reference frame that is tied to the crystal
lattice. The results of the micro–macro modeling are com-
pared to experimental data. The authors observe that the
simulations with truncated octahedral grains yield
improved predictions compared to those with cuboidal
grains. This result is of relevance particularly for engineer-
ing applications of CPFE models where economical mesh
and texture mapping strategies must be used owing to time
and mesh size constraints.

9.3.3. Simulation of earing during cup drawing of steel and

aluminum

This section presents examples of the CPFE method in
the field of engineering forming problems at the macro-
scopic scale. The first example is about the prediction of
earing during forming of a ferritic 17% Cr (X6Cr17, AISI
430) stainless steel sheet considering through-thickness gra-
dients of the crystallographic texture. A texture component
CPFE method (TCCP-FEM) [13,119,128,130,142] is used
for the simulation of cup drawing. The simulation includes
the through-thickness texture gradient of the starting hot
band [419,420]. The simulation predicts the development
of the orientation distribution and the earing profile during
cup forming considering f110gh111i; f112gh111i and

Fig. 43. Microcracks arising from twin interactions with a grain boundary
in TiAl. Ellipses represent tilted unit circles on slip planes identified by
poles, with slip or twinning vectors as indicated, with shaded half below
the surface. Schmid factors are based upon the global (vertical) stress
direction. The surrounding microstructure was modeled using CPFE.

F. Roters et al. / Acta Materialia 58 (2010) 1152–1211 1195



f123gh111i slip systems [417]. The results are compared to
another FE simulation (based on a Hill48 yield surface
[421]) and to experimental data.

Fig. 48 shows the predicted and the measured earing
profiles in terms of the relative ear height (normalized by
the average height). The ear profile predicted by the simu-
lation with the texture components of only the center layer
ðs ¼ 0:0Þ reveals a shape with a broad maximum around
45�. On the other hand, the profile simulated with the tex-
ture of only the subsurface layer ðs ¼ 0:8Þ is characterized
by a broad minimum in the same region (45�). The reason
for this difference is that the texture components fitted from
each respective layer of the material reproduced various
initial textures and, consequently, different anisotropy.
The course of the ear profile calculated by using only the
texture components of the subsurface layer, s ¼ 0:8, can
be presumably explained by the influence of the relatively
weak intensity of the f111gh112i component of the start-
ing texture in this layer. The high orientation density of the
f111gh112i texture component in the initial texture of the

mid-thickness layer ðs ¼ 0:0Þ is responsible for the ear
shape with the strong peak at 45� observed for the simula-
tion that was performed by using the texture components
of this layer. The results also show that the texture compo-
nent CPFE simulation which used the gradient texture (1/3
of the through-thickness volume occupied by the center
layer texture ðs ¼ 0:0Þ and 2/3 of the volume occupied by
the subsurface layer texture (s = 0.8) where 1/3 accounts
for the bottom and 1/3 for the top surface region, respec-
tively) fits the experimental data better than that obtained
from the Hill48 yield surface prediction. The second exam-
ple, Fig. 49, shows a similar comparison between experi-
ment and simulation for a cube-textured aluminum sheet
after cup drawing. In this case no through-thickness texture
gradients existed.

9.3.4. Virtual material testing for stamping simulations based

on crystal plasticity simulations
In the modern practice of simulating complex industrial

stamping operations, the prediction of spring-back still

Fig. 44. Effective stress and equivalent strain (upper left) had modest values where microcracks were observed (ellipse). In the elements where microcracks
were observed, the secondary twinning system was more activated than the primary twin system, consistent with experimental observations in Fig. 43.
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lacks accuracy. In commercial software packages currently
used, for instance, in the automotive industry, various
empirical constitutive laws for stamping are available. As
these approaches provide only limited empirical access to
the material anisotropy they do not properly take into
account the effects of microstructure and texture and their
evolution during deformation. The CPFE method bridges
the gap between the polycrystalline texture and macro-
scopic mechanical properties and opens the path to a more
profound consideration of metal anisotropy in stamping
process simulations.

The example in this section presents an application of
the CPFE method for the concept of virtual material test-
ing using a representative volume element (RVE) approach
[217]. By using such numerical test protocols it becomes
possible to determine the actual shape of the yield locus
as well as corresponding Lankford parameters through
CPFE simulations, and to use this information to calibrate
empirical constitutive models used, for example, in the
automotive industry. Along with standard uniaxial tensile
tests, other strain paths can be numerically monitored,
such as biaxial tensile, compressive or shear tests. In the
present example the use of the CPFE method for virtual
testing is demonstrated for a low-carbon steel grade. The
parameters of an empirical yield surface function were cal-

ibrated using CPFE predictions and a commercial stamp-
ing part was simulated (Fig. 50).

10. Challenges and open questions

This review showed that the CPFE method offers a com-
prehensive theoretical approach for the inclusion of micro-
mechanical models and concepts in a unified theory of
crystal plasticity including proper boundary condition
treatment. However, there are critical gaps in the frame-
work and in the experimental information that is required
to support further development. The open questions can be
grouped into issues of microstructure patterning; homoge-
nization; physics and statistics behind constitutive models;
damage mechanics; multiscale approaches; numerical sta-
bility; coupling to experiments; and alternative solution
methods for crystal plasticity constitutive models.

The first category (microstructure patterning) refers to
the fact that, during deformation, defects in crystals tend
to self-organize into patterns which often reveal hierarchi-

Fig. 45. u2 ¼ 45� sections of the orientation distribution functions
obtained for deformation texture simulations of two b-Ti–Nb binary
alloys to various strains (given in terms of the engineering thickness
reduction) using two different sets of elastic constants. Top row: Young’s
modulus surface diagram of Ti–18 at.%Nb (left) and Ti–31 at.%Nb
(right). The Zener ratio is defined as 2C44=ðC11 � C12Þ. Units for the
modulus surface plots are in GPa. Units for the textures are in orientation
densities, f(g).

Fig. 46. Crystal elasticity finite element (CEFE) predictions of the
distribution of elastic equivalent stress and strain values in three randomly
textured polycrystalline b-Ti alloy aggregates each consisting of 200 grains
and 32� 32� 32 finite elements. Each polycrystalline aggregate is
characterized by a specific elastic tensor which was calculated using ab
initio methods. The (nearly) isotropic case yields practically no internal
mechanical spread, while the most anisotropic case leads to pronounced
local stress–strain concentrations. The samples were subjected to tensile
loading (purely elastic).
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cal structure. Different types of lattice defects reveal in part
different deformation-induced pattern characteristics which
often change in character and size scale as deformation
proceeds (dislocation cells, subgrains, microbands, shear
bands, martensite lamellae, twins packages, faceting, raf-

ting). Presently there is no adequate description of these
processes within CPFE models linking the properties and
dynamics of individual defects to a quantitative description
of patterns in a form suitable for inclusion in non-local
continuum theories, although promising energy minimiza-
tion approaches have been discussed by Müller [422], Ortiz
and Repetto [423], Bhattacharya [424], Aubry and Ortiz
[425], Conti et al. [426] and Dmitrieva et al. [427].

The second category (homogenization) refers to the pro-
cess by which the properties of a certain aggregate volume
are derived from the local properties of its constituents by
averaging over space and/or time. Homogenization is a
most critical aspect for successful applications of the CPFE
method at the mesoscopic scale and for macroscopic form-
ing applications. It is clear that the microstructure and crys-
tallographic texture of large parts cannot be presented via
grain-by-grain maps (e.g. transferred from EBSD data onto
a FE mesh). Instead, homogenized averages, formulated as
separate submodels, must provide the mechanical response
of a representative volume element [1,138,142,428]. These
submodels deal with complex deformation mechanisms
concerning the details of the interaction among competing
deformation carriers, grains and phases at a simplified
level. Typical approaches in this domain follow Taylor–
Bishop–Hill or self-consistent model assumptions. Recent
ideas for a more realistic treatment of local interactions in
the field of multicrystal homogenization are advanced

Fig. 47. Representation of the FE meshes used by Delannay et al. [126].
(a) Initial mesh in the simulation where brick shapes were used. (b) Result
of plane-strain compression (periodic boundary conditions, 70% thickness
reduction along 3�). (c) Representation of one grain in the simulation as
truncated octahedron [126].

Fig. 49. Comparison of the earing profile between experiment and texture
component CPFE simulation for a cube-textured aluminum sheet after
cup drawing.

Fig. 48. Simulations and experimental data of the earing profile (ear
height/average height) after cup drawing of a ferritic stainless steel
(X6Cr17, AISI 430) with texture gradients. Different cases were simulated:
in one case the texture component CPFE used only the texture
components observed in the mid-thickness layer of the material as starting
texture for all elements (at s = 0). A second simulation used the subsurface
texture components (at s = 0.8) as starting texture for all elements. A third
simulation used a mixture of mid-thickness texture components (at
s = 0.0) for the center element layer (1/3 of all mesh elements) and the
subsurface texture components (at s = 0.8) for the two surface element
layers (2/3 of all mesh elements). In all cases the mesh consisted of three
finite elements across the sheet thickness. Additionally, a Hill 48 yield
surface calculation was performed where the coefficients were fitted from
experimentally obtained r-values for this sheet.
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grain-interaction Taylor–Bishop–Hill-type model variants
as introduced by the groups of Gottstein [319], Van Houtte
[429] and Eisenlohr [430]. Alternatively, homogenization
can also be conducted in two subsequent steps in the form
of a hybrid approach. The first one consists in the assembly
of virtual polycrystalline (and, if required, multiphase) spec-
imens and the subsequent simulation of their integral
response under load. The second step consists in feeding
these results into simpler constitutive laws (e.g. as fitting
constants into a yield surface polynom) which do not
require a CPFE framework (Fig. 50). These techniques
are, for instance, currently under development for engineer-
ing applications in the automotive industry [217].

The third category (physics and statistics) refers to open
questions behind constitutive CPFE model formulations.
Some issues in this context involve the treatment of nucle-
ation and growth phenomena of twins and martensite
lamellae. In this field even some of the fundamental metal-
lurgical mechanisms are not yet fully understood. Exam-
ples are nucleation models for deformation twins which
are based on cooperatively acting configurations of partial
dislocations or the nucleation of martensite plates at shear
bands or existing interfaces. Furthermore, the degree of
plastic deformation of martensite in an austenitic environ-
ment is not yet well understood. Methods need to be devel-
oped to efficiently model the formation of ultra-thin twins,
twin packages and repeated twinning (higher-order defor-
mation twins). Another issue is the constitutive formula-
tion of misfit stresses around martensite lamellae. A
further challenge associated with the consideration of mul-
tiple crystallographic deformation mechanisms within the
same volume element lies in the degree of local homogeni-
zation that is required to tackle their interactions. This
means that for some cases only one type of deformation

mechanism (e.g. dislocation slip) may prevail, while in oth-
ers a mix (e.g. dislocation slip and deformation twinning)
must be considered at the same integration point. The lat-
ter situation requires definition of a submodel (homogeni-
zation model) that describes the interaction of coexisting
deformation mechanisms at the same field point. In addi-
tion to developing better models for mechanistic details,
approaches for alloy element effects will also be a strategic
area of further research. Future efforts in this direction
must aim at capturing elementary chemical details in con-
stitutive laws. Most CPFE simulations which are compared
to experimental data have, for good reasons, been con-
ducted on (commercially) pure metals or certain well-char-
acterized simple alloys. Future formulations should
consider changes caused by solid–solution effects and
coherent or incoherent precipitations [162] on a sound
physical and systematic basis so that variations in the
mechanical response among similar alloys can be investi-
gated [431]. Incorporation strategies that transfer the out-
comes of phase-field modeling are a promising means to
connect alloying and microstructure evolution to assess
mechanical response. Other open questions in this field
refer to the statistical limits of constitutive laws that typi-
cally anticipate some average density of defects but not
their discrete arrangement. For dislocation-based constitu-
tive formulations it may be important to consider in more
detail mechanical effects that possibly start to dominate at
small scales such as slip localization and slip burst events;
dislocation source depletion; GNDs; surface source/sink
effects; or grain boundary nucleation of dislocations
[177,427,432]. Suitable dislocation-based frameworks,
which could be modified to capture at least certain aspects
of these mechanisms, have been suggested by various
groups, e.g. [18–26,55,57]. Similar questions exist for the

Fig. 50. Application of the CPFE method for virtual material testing using a representative volume element (RVE) approach. The parameters of an
empirical yield locus function were calibrated for a low-carbon steel grade using CPFE and a commercial stamping part was simulated [217].
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role of the grain boundary structure on the mechanical
response [21,25,41,45,95,233,248,249]. The role of diffusion
in accommodating local strain concentrations, particularly
in the context of creep and grain boundary sliding, has only
recently been attempted, but only in two dimensions
[61,62]. Finally it must be discussed how small the density
of lattice defects may become within a certain element
without violating the statistics behind a constitutive law.
The latter questions are particularly relevant when apply-
ing the CPFE method to ultrafine structures (small sam-
ples, small grain size, lamellar structures, wire-drawn
microstructures).

The fourth category (damage mechanics) deals with the
overlap between crystal plasticity and fracture phenomena.
The CPFE method is well suited for the identification of
critical local parameters which may lead to damage initia-
tion [199,200]. This advantage is obviously due to its ability
to map realistic grain assemblies so that the effects of cer-
tain critical ingredients or configurations of such a given
microstructure can be properly taken into account in a sim-
ulation. The main open question in this field is the identifi-
cation of the mechanical and microstructure criteria that
are responsible for local damage initiation. In some cases,
such as in the presence of weak second-phase interfaces
or brittle inclusions, the location of damage nucleation is
rather trivial, but in other cases where damage occurs in
otherwise homogeneous single-phase polycrystals, more
complex rules are required. Possible criteria that are cur-
rently being investigated by CPFE simulations are critical
local values for the accumulated amount of shear, defor-
mation energy density or stress. In addition to the compar-
ison of corresponding simulations with experiments it
would also make sense to derive adequate damage criteria,
such as modified Griffith models, which can help to estab-
lish a quantitative link between mechanical quantities that
the CPFE method provides and damage nucleation. Prom-
ising approaches along these lines were recently investi-
gated by the group of Bieler [199,200,380–383].

The fifthmain aspect comprises multiscale models in con-
junction with the CPFE method. Obviously this is a broad
issue which needs to be refined. The term multiscale model-
ing refers to the integration of constitutive model ingredi-
ents which stem from different time and/or length scales
and, as a rule, from different submodels. In the case of the
CPFE method a most obvious need for multiscale
approaches exists for those topics where current constitutive
models have reached their limits. A prominent example is
the integration of dislocation interactions which have been
obtained from discrete dislocation dynamic codes into sta-
tistical dislocation density-based laws used in CPFEmodels.
This approach is currently pursued by Arsenlis and Tang
[65]. The direct use of results obtained from atomic-scale
simulations is still a great challenge since a huge discrepancy
in space, and particularly in time scale, exists between the
atomistic and the crystal plasticity scale. Recent progress
along these lines has been reported in the field of damage ini-
tiation where interactions between the microstructure scale

and the atomic scale play a dominant role [8,322,347–350].
For conventional dislocation motion it must considered,
though, that plasticity investigations via molecular dynam-
ics simulations usually describe high-rate loading situations
owing to the tiny integration steps required by the method.
The deformation rates in such cases are typically orders of
magnitude above realistic scales so that the transfer of such
information must be done with great care since the results
cannot in all cases be used for low-rate deformation consti-
tutive models that typically prevail in CPFE simulations.
Therefore, it may be more pertinent for molecular dynamics
simulations of plasticity to provide certain constants or
mechanisms for improved formulations of dislocation
core structures, mobility, non-Schmid behavior, dislocation
reactions, damage initiation and hardening mechanisms
[265–267]. Other combinations are conceivable where a con-
tinuum-scale FEmethod is used for a proper boundary con-
dition treatment around a simulation regime that is treated
by an atomistic method. Finally, much progress may be
expected from including thermodynamic and kinetic quanti-
ties that are derived by ab initio simulations [411,414–
416,433]. These quantities can be fractions of coexisting
phases, elastic constants [414,415,434] or the dependence
of certain metallurgical properties on the chemical composi-
tion [416]. Although ab initiomethods work at the electronic
scale, i.e. at smaller integration steps thanmolecular dynam-
ics simulations, many predictions obtained by them such as
thermodynamic quantities can be directly linked to meso-
scopic CPFE constitutive laws. We expect that results from
parameter-free ab initio simulations obtained by using elec-
tron density functional approaches can particularly provide
basic insight and constants for constitutive problems that
are not accessible otherwise. Concerning the combination
of the CPFE method with macroscopic mechanical simula-
tion approaches, a most promising development might be
the introduction of virtual laboratories, where expensive
mechanical tests can be replaced by mesoscopic CPFE sim-
ulations. A typical example is the replacement of biaxial
polycrystal tests as required for fitting yield surface formu-
lations by CPFE predictions [217].

The sixth category of challenges are numerical and soft-
ware aspects associated with the CPFE method. In this
area the main issues are improved convergence behavior
of the CPFE constitutive equations as well as a robust,
modular and parallelized code architecture. A more practi-
cal advantage of the CPFE method in that context is that it
can be used in conjunction with commercial or academic
FE solvers in the form of easy-to-use user-defined materials
subroutines. Various groups (including the current
authors) make their software available as freeware for
non-commercial use upon request.

The seventh category concerns the requirement of a
more detailed comparison between crystal plasticity predic-
tions and corresponding experiments. Modern character-
ization tools allow a detailed mechanical, metallurgical
and crystallographic description of materials. The advan-
tage of CPFE models is that they predict not only one
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internal variable but a set of variables that can be effec-
tively compared to corresponding experiments. Typical
examples are crystallographic orientations, crack analysis,
surface roughness, stress and strain, as well as correspond-
ing gradient, patterning and localization effects associated
with them (Table 2).

The last category concerns alternatives to the FE
method for solving crystal elasticity, or respectively crystal
plasticity, constitutive models. Some classical approaches
were discussed in the section on homogenization. For
instance, self-consistent and Taylor-based models, includ-
ing in part also higher-order grain interaction terms, can
serve for solving polycrystal mechanical problems without
using finite elements at least under simplified boundary
conditions [115,309,310,318,319,429,436,437]. Another
important development for integrating crystal elasticity
and plasticity constitutive models are direct fast Fourier
methods [300] and Fourier-based spectral approaches
[438,439]. These methods solve the equilibrium and com-
patibility constraints for anisotropic elastic or elastic–plas-
tic polycrystal and polyphase problems using fast Fourier
transforms [300,435,438–441]. The discrete Fourier
approach renders the governing set of differential equations
into a discrete algebraic problem which can be solved
quicker than the conventional weak-form variational
approach used by the FE method. In order to use discrete
series expansions, spectral methods have to use a fixed grid
and a representative cell arrangement of the microstructure
considered. Discrete Fourier formulations imply periodic-
ity of the modeled aggregate. Since the displacements lead
to state values between the fixed coordinates of the discrete
Fourier set-up, interpolation functions must be used.

A purely elastic example of using different stiffness ten-
sors in the direct fast Fourier method of Lebensohn
[300,435] is shown in Fig. 51. The two diagrams present
the distribution of the equivalent elastic stress and strain
values in a randomly textured polycrystalline aggregate
consisting of 200 grains and 32� 32� 32 Fourier points
for three different elastic tensors (magnitude, anisotropy)
under a unidirectional tensile load. The entire aggregate
remained in the elastic regime during loading. The results
are very similar to the corresponding FE predictions pre-
sented in Fig. 46. The differences are attributed to the fact
that the direct fast Fourier predictions used periodic
boundary conditions, while the FE approach used a free
surface.

11. Conclusions

It was demonstrated that the CPFE method is a power-
ful modeling tool for a wide range of mechanical problems
in the field of materials science and engineering. We have
shown that the dyadic kinematic formulation of the consti-
tutive laws in the CPFE method allows the user to map
such diverse deformation mechanisms as dislocation slip,
martensite formation, twinning, grain boundary shear
and deformation via shear banding (in glass), and, in part,

also their interactions, rendering the method a multimech-
anism and multiphysics approach. Its greatest potential
lies, therefore, in the mesoscopic (inter-grain scale, grain
cluster scale) and microscopic regime (grain scale, intra-
grain scale). It was further shown that the CPFE method,
when formulated in conjunction with an appropriate
homogenization scheme, is also capable of dealing with
macroscopic mechanical materials problems such as
encountered in metal forming, tool design or process engi-
neering. The particular strength of the FE method lies in
studying the influence of boundary conditions on mechan-
ical or microstructural predictions. This advantage renders
the CPFE method an ideal companion for synergistic
analysis of complex mechanical tests where a detailed
sensitivity check is of relevance for a proper interpretation

Fig. 51. Direct fast Fourier predictions of an elastic problem based on the
approach of Lebensohn [300,435]. The results show the distribution of
elastic equivalent stress and strain in three randomly textured polycrys-
talline b-Ti alloy aggregates, each consisting of 200 grains and
32� 32� 32 Fourier points. Each polycrystalline aggregate is character-
ized by a specific elastic tensor which was calculated using ab initio
methods. The (nearly) isotropic case yields practically no internal
mechanical spread, while the most anisotropic case leads to pronounced
local stress–strain concentrations. The samples were subjected to tensile
loading. The results are similar to the corresponding FE predictions
presented above in Fig. 46. The differences between the direct fast Fourier
and the FE results are attributed to the fact that the direct fast Fourier
predictions used periodic boundary conditions while the FE approach
used a free surface.
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of the experimental observations. Another more practical
advantage of the method is that it can be used in conjunc-
tion with commercial or academic FE solvers in the form of
user-defined materials subroutines (the software of the
authors is available as freeware for non-commercial use
upon request).
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[113] Miehe C, Schröder J, Schotte J. Computational homogenization
analysis in finite plasticity simulation of texture development in
polycrystalline materials. Comput Methods Appl Mech Eng
1999;171:387–418.

[114] Kalidindi SR. Modeling anisotropic strain hardening and deforma-
tion textures in low stacking fault energy fcc metals. Int J Plast
2001;17:837–60.

[115] Van Houtte P, Delannay L, Kalidindi SR. Comparison of two grain
interaction models for polycrystal plasticity and deformation texture
prediction. Int J Plast 2002;18:359–77.

[116] Delannay L, Kalidindi SR, Van Houtte P. Quantitative prediction of
textures in aluminium cold rolled to moderate strains. Mater Sci Eng
A 2002;336:233–44.

[117] Raabe D, Zhao Z, Mao W. On the dependence of in-grain
subdivision and deformation texture of aluminum on grain interac-
tion. Acta Mater 2002;50:4379–94.

[118] Bate PS, An YG. Plastic anisotropy in AA5005 Al–1Mg: predictions
using crystal plasticity finite element analysis. Scripta Mater
2004;51:973–7.

[119] Raabe D, Zhao Z, Roters F. Study on the orientational stability of
cube-oriented FCC crystals under plane strain by use of a texture
component crystal plasticity finite element method. Scripta Mater
2004;50:1085–90.

[120] Li SY, Van Houtte P, Kalidindi SR. A quantitative evaluation of the
deformation texture predictions for aluminium alloys from crystal
plasticity finite element method. Modell Simul Mater Sci Eng
2004;12:845–70.

[121] Anand L. Single-crystal elasto-viscoplasticity: application to texture
evolution in polycrystalline metals at large strains. Comput Methods
Appl Mech Eng 2004;193:5359–83.

[122] Roters F, Jeon-Haurand HS, Raabe D. A texture evolution study
using the texture component crystal plasticity FEM. Mater Sci
Forum 2005;495–497:937–44.

[123] Van Houtte P, Van Bael A, Seefeldt M, Delannay L. The application
of multiscale modelling for the prediction of plastic anisotropy and
deformation textures. Mater Sci Forum 2005;495–497:31–41.

[124] Li S, Kalidindi SR, Beyerlein IJ. A crystal plasticity finite element
analysis of texture evolution in equal channel angular extrusion.
Mater Sci Eng A 2005;410–411:207–12.

1204 F. Roters et al. / Acta Materialia 58 (2010) 1152–1211



[125] Van Houtte P, Kanjarla AK, Van Bael A, Seefeldt M, Delannay L.
Multiscale modelling of the plastic anisotropy and deformation
texture of polycrystalline materials. Eur J Mech—Solids
2006;25:634–48.

[126] Delannay L, Jacques PJ, Kalidindi SR. Finite element modeling of
crystal plasticity with grains shaped as truncated octahedrons. Int J
Plast 2006;22:1879–98.

[127] Tang JG, Zhang XM, Chen ZY, Deng YL. Simulation of rolling
deformation texture of fcc metals with crystal plasticity finite
element model. Mater Sci Technol 2006;22:1171–6.

[128] Tikhovskiy I, Raabe D, Roters F. Simulation of the deformation
texture of a 17 stainless steel using the texture component crystal
plasticity FE method considering texture gradients. Scripta Mater
2006;54:1537–42.

[129] Lee MG, Wang J, Anderson PM. Texture evolution maps for upset
deformation of body-centered cubic metals. Mater Sci Eng A
2007;463:263–70.

[130] Tikhovskiy I, Raabe D, Roters F. Simulation of earing during deep
drawing of an Al-3 (AA 5754) using a texture component crystal
plasticity FEM. J Mater Process Technol 2007;183:169–75.

[131] Mayeur JR, McDowell DL, Neu RW. Crystal plasticity simulations
of fretting of Ti–6Al–4V in partial slip regime considering effects of
texture. Comput Mater Sci 2008;41:356–65.

[132] Delannay L, Melchior MA, Signorelli JW, Remacle JF, Kuwabara
T. Influence of grain shape on the planar anisotropy of rolled steel
sheets—evaluation of three models. Comput Mater Sci
2009;45:739–43.

[133] Beaudoin AJ, Mathur KK, Dawson PR, Johnson GC. Three-
dimensional deformation process simulation with explicit use of
polycrystal plasticity models. Int J Plast 1993;9:833–60.

[134] Beaudoin AJ, Dawson PR, Mathur KK, Kocks UF, Korzekwa DA.
Application of polycrystal plasticity to sheet forming. Comput
Methods Appl Mech Eng 1994;117:49–70.

[135] Neale KW. Use of crystal plasticity in metal forming simulations. Int
J Mech Sci 1993;35:1053–63.

[136] Kalidindi SR, Schoenfeld SE. On the prediction of yield surfaces by
the crystal plasticity models for fcc polycrystals. Mater Sci Eng A
2000;293:20–129.

[137] Nakamachi E, Xie CL, Harimoto M. Drawability assessment of
BCC steel sheet by using elastic/crystalline viscoplastic finite element
analyses. Int J Mech Sci 2001;43:631–52.

[138] Zhao Z, Mao W, Roters F, Raabe D. Introduction of a texture
component crystal plasticity finite element method for anisotropy
simulations. Adv Eng Mater 2001;3:984–90.

[139] Xie CL, Nakamachi E. Investigations of the formability of BCC
steel sheets by using crystalline plasticity finite element analysis.
Mater Des 2002;23:59–68.

[140] Goh C-H, Neu RW, McDowell DL. Crystallographic plasticity in
fretting of Ti–6AL–4V. Int J Plast 2003;19:1627–50.

[141] McGarry JP, O’Donnell BP, McHugh PE, McGarry JG. Analysis
of the mechanical performance of a cardiovascular stent design
based on micromechanical modelling. Comput Mater Sci 2004;31:
421–38.

[142] Raabe D, Roters F. Using texture components in crystal plasticity
finite element simulations. Int J Plast 2004;20:339–61.

[143] Tugcu P, Neale KW, Wu PD, Inal K. Crystal plasticity simulation of
the hydrostatic bulge test. Texture Microstruct 2004;20:1603–53.

[144] Delannay L, Beringhier M, Chastel Y, Loge RE. Simulation of cup-
drawing based on crystal plasticity applied to reduced grain
samplings. Mater Sci Forum 2005;495–497:1639–44.

[145] Raabe D, Wang Y, Roters F. Crystal plasticity simulation study on
the influence of texture on earing in steel. Comput Mater Sci
2005;34:221–34.

[146] Dick T, Cailletaud G. Fretting modelling with a crystal plasticity
model of Ti6Al4V. Comput Mater Sci 2006;38:113–25.

[147] Chen YP, Lee WB, To S. Influence of initial texture on formability
of aluminum sheet metal by crystal plasticity FE simulation. J Mater
Process Technol 2007;192–193:397–403.

[148] Raabe D. Recrystallization models for the prediction of crystallo-
graphic textures with respect to process simulation. J Strain Anal
Eng Des 2007;42:253–68.

[149] Nakamachi E, Tam NN, Morimoto H. Multi-scale finite element
analyses of sheet metals by using SEM-EBSD measured crystallo-
graphic RVE models. Int J Plast 2007;23:450–89.

[150] Ocenasek J, Rodriguez Ripoll M, Weygand SM, Riedel H. Multi-
grain finite element model for studying the wire drawing process.
Comput Mater Sci 2007;39:23–8.

[151] Li S, Donohue BR, Kalidindi SR. A crystal plasticity finite element
analysis of cross-grain deformation heterogeneity in equal channel
angular extrusion and its implications for texture evolution. Mater
Sci Eng A 2008;480:17–23.

[152] Li HJ, Jiang Z, Han JT, Wei DB, Pi HC, Tieu AK. Crystal plasticity
finite element modeling of necking of pure aluminium during
uniaxial tensile deformation. Steel Res 2008;2:655–62.

[153] Zhuang WM, Wang SW, Cao J, Lin LG, Hart C. Hydroforming of
micro tubes: crystal plasticity finite element modeling. Steel Res
2008;1:293–300 [special issue].

[154] Zamiri A, Bieler TR, Pourboghrat F. Anisotropic crystal plasticity
finite element modeling of the effect of crystal orientation and solder
joint geometry on deformation after temperature change. J Electron
Mater 2009;38:231–40.

[155] Bate P. Modelling deformation microstructure with the crystal
plasticity finite-element method. Philos Trans Roy Soc Lond A
1999;357:1589–601.

[156] Raabe D, Becker R. Coupling of a crystal plasticity finite element
model with a probabilistic cellular automaton for simulating
primary static recrystallization in aluminum. Modell Simul Mater
Sci Eng 2000;8:445–62.

[157] Raabe D. Yield surface simulation for partially recrystallized
aluminum polycrystals on the basis of spatially discrete data.
Comput Mater Sci 2000;19:13–26.

[158] RadhakrishnanB, SarmaG,WeilandH, Baggethun P. Simulations of
deformation and recrystallization of single crystals of aluminum
containing hard particles.Modell SimulMater Sci Eng 2002;8:737–50.

[159] Raabe D. Cellular automata in materials science with particular
reference to recrystallization simulation. Annu Rev Mater Res
2002;32:53–76.

[160] Takaki T, Yamanaka Y, Higa Y, Tomita Y. Phase-field model
during static recrystallization based on crystal-plasticity theory. J
Comput Aided Mater Des 2007;14:75–84.

[161] Semiatin SL, Weaver DS, Goetz RL, Thomas JP, Turner TJ.
Deformation and recrystallization during thermomechanical pro-
cessing of a nickel-base superalloy ingot material. Mater Sci Forum
2007;550:129–40.

[162] Zambaldi C, Roters F, Raabe D, Glatzel U. Modeling and
experiments on the indentation deformation and recrystallization
of a single-crystal nickel-base superalloy. Mater Sci Eng A 2007;454–
455:433–40.

[163] Loge R, Bernacki M, Resk H, Delannay L, Digonnet H, Chastel Y,
et al. Linking plastic deformation to recrystallization in metals using
digital microstructures. Philos Mag 2008;88(30):3691–712.

[164] Kalidindi SR. Incorporation of deformation twinning in crystal
plasticity models. J Mech Phys Solids 1998;46:267–90.

[165] Staroselsky A, Anand L. Inelastic deformation of polycrystalline
face centered cubic materials by slip and twinning. J Mech Phys
Solids 1998;46:671–96.

[166] Marketz WT, Fischer FD, Kauffmann F, Dehm G, Bidlingmaier T,
Wanner A, et al. On the role of twinning during room temperature
deformation of TiAl based alloys. Mater Sci Eng A 2002;329–
331:177–83.

[167] Staroselskya A, Anand L. A constitutive model for hcp materials
deforming by slip and twinning: application to magnesium alloy
AZ31B. Int J Plast 2003;19:1843–64.

[168] Marketz WT, Fischer FD, Clemens H. Deformation mechanisms in
TiAl intermetallics—experiments and modeling. Int J Plast
2003;19:281–321.

F. Roters et al. / Acta Materialia 58 (2010) 1152–1211 1205



[169] Salem AA, Kalidindi SR, Semiatin SL. Strain hardening due to
deformation twinning in a-titanium: constitutive relations and
crystal-plasticity modeling. Acta Mater 2005;53:3495–502.
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Mn–Cr–C. PhD thesis, ENSMP; 1975.

[285] Karaman I, Sehitoglu H, Gall K, Chumlyakov YI. On the
deformation mechanisms in single crystal Hadfield manganese steels.
Scripta Mater 1998;38:1009–15.

[286] Karaman I, Sehitoglu H, Gall K, Chumlyakov YI, Maier HJ.
Deformation of a single crystal Hadfield steel by twinning and slip.
Acta Mater 2000;48:1345–59.

[287] Doquet V. Twinning and multiaxial cyclic plasticity of a low
stacking-fault-energy f.c.c. alloy. Acta Metall Mater 1993;41:2451–9.
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[419] Raabe D, Lücke K. Textures of ferritic stainless steels. Mater Sci
Technol 1993;9:302–12.

[420] Fedosseev A, Raabe D. Application of the method of superposition
of harmonic currents for the simulation of inhomogeneous defor-
mation during hot rolling of FeCr. Scripta Metall 1994;30:1–6.

[421] Hill R. A theory of the yielding and plastic flow of anisotropic
metals. Proc Roy Soc Lond A 1948;193:281–97.

[422] Müller S. Variational models for microstructure and phase transi-
tions. In: Hildebrandt S, Struwe M, editors. Lectures at the C.I.M.E.
summer school on calculus of variations and geometric evolution
problems, vol. 2. Springer Lecture Notes in Mathematics, C.I.M.E.
Lecture Notes, Cetraro; 1996. p. 85–210.

[423] Ortiz M, Repetto EA. Non-convex energy minimization and
dislocation structures in ductile single crystals. J Mech Phys Solids
1999;47:397–462.

[424] Bhattacharya K. Microstructure of martensite. Oxford University
Press; 2003.

[425] Aubry S, Ortiz M. The mechanics of deformation-induced subgrain-
dislocation structures in metallic crystals at large strains. Proc Roy
Soc Lond A 2003;459:3131–58.

[426] Conti S, Hauret P, Ortiz M. Concurrent multiscale computing of
deformation microstructure by relaxation and local enrichment with
application to single-crystal plasticity. Multiscale Model Simul
2007;6:135–57.

[427] Dmitrieva O, Dondl PW, Müller S, Raabe D. Lamination micro-
structure in shear deformed copper single crystals. Acta Mater
2009;57:3439–49.
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