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Abstract

The stacking fault and interfacial energies of three transformation- and twinning-induced plasticity steels (TRIP/TWIP) (Fe–22/25/
28Mn–3Al–3Si wt.%) were determined by experimental and theoretical methods. Analysis of Shockley partial dislocation configurations
in the three alloys using weak-beam dark-field transmission electron microscopy yielded stacking fault energy (SFE) values of 15 ± 3,
21 ± 3 and 39 ± 5 mJ mÿ2 for alloys with 22, 25 and 28 wt.% Mn, respectively. The experimental SFE includes a coherency strain energy
of �1–4 mJ mÿ2, determined by X-ray diffraction, which arises from the contraction in volume of the stacking fault upon the face-
centered cubic (fcc) to hexagonal close-packed (hcp) phase transformation. The ideal SFE, computed as the difference between the exper-
imental SFE and the coherency strain energy, is equal to14 ± 3, 19 ± 3 and 35 ± 5 mJ mÿ2, respectively. These SFE values were used in
conjunction with a thermodynamic model developed in the present work to calculate the free energy difference of the fcc and hcp phases
and to determine a probable range for the fcc/hcp interfacial energy in the three Fe–Mn–(Al–Si) steels investigated. In addition, the inter-
facial energies of three Fe–18Mn–0.6C–0/1.5(Al/Si) TWIP and five Fe–16/18/20/22/25Mn binary alloys were also determined from
experimental data in the literature. The interfacial energy ranged from 8 to 12 mJ mÿ2 in the TRIP/TWIP steels and from 15 to
33 mJ mÿ2 in the binary Fe–Mn alloys. The interfacial energy exhibits a strong dependence on the difference in Gibbs energy of the indi-
vidual fcc and hcp phases. Accordingly, an empirical description of this parameter is proposed to improve the accuracy of thermody-
namic SFE calculations.
Ó 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

High-manganese austenitic transformation- and twinning-
induced plasticity (TRIP/TWIP) steels are a superior class
of materials that exhibit excellent strain hardening,
strength, ductility and toughness [1–8]. This combination

of mechanical properties is attractive for automotive
applications requiring high room-temperature formability
and weight reduction. These alloys typically include
�18–30 wt.% Mn and additions of Al, Si, Cr, C and N with
microstructures of meta-stable or stable austenite [9–12].
During straining, the austenite deforms by dislocation glide
together with secondary deformation mechanisms, includ-
ing abcc/ehcp-martensite formation and/or mechanical twin-
ning [13]. The martensite platelets and mechanical twins act
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as planar obstacles and reduce the mean free path of dislo-
cation glide. As deformation progresses, these strain-
induced features increasingly refine the grain structure,
causing a dynamic Hall–Petch effect [5,14–22]. The result
is high strain hardening, delayed necking and large uniform
elongations [1]. A separate theory attributes the strain
hardening in high-Mn steels containing a significant C con-
tent to dynamic strain aging (DSA) and not mechanical
twinning [23]; however, more recent reports [22] conclude
that DSA plays only small role in the hardening compared
to mechanical twinning.

The low stacking fault energy (SFE) of these steels
allows for secondary deformation mechanisms (the
TRIP/TWIP effect). With decreasing SFE, the plasticity
mechanisms change from (i) dislocation glide to (ii) disloca-
tion glide and mechanical twinning to (iii) dislocation glide
and cfcc ! ehcp martensitic transformations [3,24–28]. Each
deformation mode results in different mechanical proper-
ties. Consequently, designing TRIP/TWIP alloys requires
a reliable method of predicting SFE.

Many studies correlate microstructural observations of
deformation mechanisms and mechanical properties with
thermodynamic calculations of the SFE. The method pro-
posed by Olson and Cohen [29], and adapted by several
other authors [3,12,25,27], treats the fault as n layers of
hexagonal close-packed (hcp) phase separated from the
face-centered cubic (fcc) matrix by two interfaces. The
SFE can be calculated as:

c1 ¼ nq DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

þ 2rc=e ð1Þ
where c1 is the ideal SFE (mJ mÿ2) of the fault (un-
bounded by partial dislocations), n is equal to 2 for an
intrinsic stacking fault, and DG

fcc!hcp

Chem and DG
fcc!hcp
Mag

(mJ molÿ1) are the chemical and magnetic contributions,
respectively, to the difference in Gibbs free energy of the
fcc and hcp phases. The term DG

fcc!hcp
Mag arises from antifer-

romagnetic ordering. With decreasing temperature both
the fcc and hcp phases in Fe–Mn-based alloys undergo a
paramagnetic to antiferromagnetic state change at their
respective Néel temperatures [3,4,12,18,25–27]. Antiferro-
magnetic ordering has a stabilizing influence and lowers
the Gibbs free energy of the individual phases. The term
rc/e (mJ mÿ2) is the interfacial energy between the fcc phase
and the hcp phase, and q is the molar surface density
(mol mÿ2) of {111}, defined as:

q ¼ 4
ffiffiffi

3
p

a2fcc

1

NA

ð2Þ

The term NA is Avogadro’s number and afcc is the lattice
parameter of the fcc phase. Allain et al. [25] studied an
Fe–22Mn–0.6C wt.% steel and concluded that ehcp-mar-
tensite formation occurs for calculated SFEs below
18 mJ mÿ2 while mechanical twinning is active from 12 to
35 mJ mÿ2. Thermodynamic SFE calculations by Saeed-
Akbari et al. [27] indicate an upper limit of 20 mJ mÿ2

for strain-induced ehcp-martensite transformation. Nakano

and Jacques [30] calculated SFE values for the Fe–Mn and
Fe–Mn–C systems and correlated these with microstruc-
tural observations from other investigators, finding
strain-induced ehcp-martensite to occur at SFEs as high
as 41 mJ mÿ2. In the literature, the lack of agreement be-
tween the SFE value and deformation mechanisms results
from different thermodynamic parameters and interfacial
energies, with rc/e varying from 9 mJ mÿ2 [25] to
16 mJ mÿ2 [30]. Saeed-Akbari et al. [27] utilized a value
of 15 mJ mÿ2, but acknowledged the uncertainty of this
parameter in Fe–Mn-based alloys, citing literature values
that ranged from 5 to 27 mJ mÿ2.

The uncertainty of the interfacial parameter in Fe–Mn-
based systems limits the effectiveness of thermodynamic
SFE models. Olson and Cohen [29] proposed to indirectly
calculate rc/e using experimental SFE values, cexp. The term
cexp also includes a coherency strain energy, Estr (J molÿ1),
arising from the contraction in molar volume of the hcp
stacking fault relative to the fcc matrix (note: the same
coherency strain energy is typically not accounted for in
thermodynamic SFE values). The strain energy must be
subtracted from the experimental SFE value as in Eq. (3):

c1 ¼ cexp ÿ nqEstr ð3Þ
to yield c1. Combining Eqs. (1) and (3) gives:

rc=e ¼ 1

2
cexp ÿ nq Estr þ DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �ÿ �

ð4Þ

Cotes et al. [31] used experimental SFE values from mea-
surements of extended dislocation nodes [32,33] to deter-
mine room temperature values of rc/e, ranging from 16 to
26 mJ mÿ2, for binary Fe–Mn alloys. However, by compar-
ison to SFE measurements from Shockley partial disloca-
tion pairs, measurements from extended dislocation
nodes are usually higher and result in greater uncertainty
[34,35]. Heat treatments were typically required to form
symmetrical nodes in Fe–Cr–Ni specimens [34]. In that
study, the authors found the room-temperature node size
to vary inversely with prior heat treatment temperature,
suggesting that the nodes were inhibited from returning
to the equilibrium configuration after heating. Since the ef-
fect was not observed on the separation of partial disloca-
tion pairs, the authors suggested that nodes were more
susceptible to solute impedance forces, which resulted in
higher apparent SFE measurements. However, the general
trend in SFE values for different grades of au stenitic stain-
less steel was similar for each method of measurement. In a
study by the present authors [35], the formation of nodes in
Fe–Mn–Al–Si steels required heat treatments in excess of
650 °C, and then only resulted in non-isolated and mostly
asymmetrical nodes unsuitable for measurement. There-
fore, the SFE values reported for binary Fe–Mn alloys
[32,33] may overestimate the true values. Consequently,
the interfacial energy determined from these SFE values
may also be systematically overestimated.

Stacking fault energy measurements on TRIP/TWIP
steels by analysis of partial dislocation pairs using
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weak-beam dark-field (WBDF) transmission electron
microscopy (TEM) have been reported for Fe–20Mn–
1.2C (cexp = 15 mJ mÿ2) [36], Fe–18Mn–0.6C (cexp =
13 ± 3 mJ mÿ2) [10], Fe–18Mn–0.6C–1.5Al (cexp = 30 ±
10 mJ mÿ2) [10] and Fe–25Mn–3Al–3Si (cexp = 16 ± 4
mJ mÿ2) [35] alloys. The following concerns arise from
evaluating these studies: equilibrium partial dislocation
separations are a balance between the restorative force
due to the SFE and the repulsive elastic force of the partial
dislocations [37]. Determination of the elastic repulsive
force acting on dislocations in anisotropic materials
requires the single-crystal elastic constants. The experimen-
tal studies rely on bulk elastic properties [10] and single-
crystal elastic constants from other grades of steel [36] or
ab initio simulations [35,38–40]. Recent work by the pres-
ent authors [41] provides experimental values of single-
crystal elastic constants for Fe–Mn–Al–Si and Fe–Mn–
C–Al steels necessary for SFE measurements. As such,
the previously reported SFE value of 16 ± 4 mJ mÿ2 for
an Fe–25Mn–3Al–3Si alloy [35] will be updated in the pres-
ent work by utilizing the more accurate experimental elastic
constants. Secondly, in the study on the Fe–18Mn–0.6C–0/
1.5Al grades [10], a distinction between the separation of two
partial dislocation images and separation of the cores is not
made, which can impact SFE values for small partial disloca-
tion separations (as described in Sections 3.1 and 4.1).
Finally, the effect of Mn content on the SFE cannot be under-
stood from the three studies given the large differences in
other alloying additions.

The goals of the present study are to:

1. quantify the influence of Mn content on SFE by apply-
ing the elastic constants determined in [41] to Shockley
partial dislocation separations for three Fe–22/25/
28Mn–3Al–3Si wt.% alloys;

2. experimentally determine Estr and c1 for the three Fe–
22/25/28Mn–3Al–3Si alloys; and

3. calculate rc/e for the three Fe–22/25/28Mn–3Al–3Si
alloys and other Fe–Mn-based alloys for which experi-
mental SFE data exists in the literature.

The observed deformation microstructures and mechan-
ical properties as a function of Mn content and SFE will be
reported in a subsequent paper.

2. Materials

Three alloys were induction melted in an argon atmo-
sphere and cast into ingots. The compositions are listed
in Table 1. As-cast ingots were thermomechanically pro-

cessed by hot rolling at 1100 °C to produce strips of
3 mm thickness and subsequently by cold rolling to
1.5 mm thickness. The resulting sheet was recrystallized
at 900 °C for 30 min in air, yielding a microstructure with
equiaxed grains of �21 lm diameter for each composition.
Oxide layers formed during this treatment were removed
by machining. The steels with 25% and 28% Mn were fully
austenitic, while the alloy with 22% Mn contained a small
amount of ferrite (<1%) in the recrystallized condition.
Sub-sized flat tensile specimens with a 20 mm gauge length
and 5 mm width were cut from the sheet in the direction
parallel to the rolling direction using electrodischarge
machining (EDM).

3. Experimental procedure

Specimens of the 22%, 25% and 28% Mn alloys were
strained in tension at a rate of 4 � 10ÿ4 sÿ1 to the yield
point (YP) and 1.5% plastic strain for SFE measurements
by TEM. Thermal treatments of 650–700 °C for 48–70 h
were applied to samples strained 1.5% to produce equilib-
rium dislocation configurations. Additional samples of
the 22%, 25% and 28% Mn alloys were strained to failure
at room temperature, ÿ25 and ÿ100 °C, respectively, in
order to introduce strain-induced ehcp-martensite for mea-
surement of lattice parameters. The 25% and 28% Mn
alloys were deformed at lower temperatures, where enough
driving force exists to transform sufficient quantities of aus-
tenite into ehcp-martensite. The lattice parameters of the fcc
and hcp phases were measured by X-ray diffraction (XRD)
at room temperature from as-recrystallized (for fcc) and
deformed (for hcp) specimens.

3.1. Stacking fault energy measurements

Disks 3 mm in diameter were cut from the gauge length of
deformed samples using EDM. The 3 mm disks were
mechanically polished to 100 lm thickness and then jet elec-
tropolished to electron transparency with a TenuPol-5 using
a solution of 70% methanol and 30% nitric acid at ÿ30 °C.
Partial dislocations were analyzed with a Philips CM20T
transmission electron microscope operating at 200 kV.

Measurements of Shockley partial dislocation separa-
tions were made with a beam direction near the [111] zone
on defects in the (111) habit plane using hÿ220i-type
g-vectors. Bright-field (BF) and WBDF imaging modes
were employed, with the WBDF diffracting conditions set
at g(3g) or g(4g) and with no non-systematic reflections
excited. The g(3g) configuration results in a deviation
parameter sg = 0.15 nmÿ1 and w = ngsg = 12.4, where ng

Table 1

Chemical compositions of the steels in wt.% unless otherwise specified.

Designation Material Mn Al Si C O (ppm) Fe

22%Mn Fe–22Mn–3Al–3Si 22.2 2.76 2.92 0.0093 <5 Bal.

25%Mn Fe–25Mn–3Al–3Si 24.7 2.66 2.95 0.0053 <5 Bal.

28%Mn Fe–28Mn–3Al–3Si 27.5 2.74 2.89 0.0071 <5 Bal.
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is the extinction distance. The value of sg in the g(3g) con-
figuration is slightly less than the recommended value of
0.2 nmÿ1 [42] and this results in slightly larger than ideal
image widths. For partial dislocation separations below
�4 nm, as in the 28% Mn alloy, the g(4g) configuration
(sg = 0.23 nmÿ1, w = ngsg = 18.5) was utilized to improve
the resolution of the partial dislocations. Measurements
were made every 5–10 nm along the length of long, straight
sections of isolated dislocations in areas not significantly
affected by image forces and constrictions. Since the strain
fields outside and between partial dislocations are asym-
metrical, the intensity peaks are not equidistant from their
respective dislocation cores and a correction is applied to
determine the actual partial dislocation spacing, dactual
[43]. An average dactual and standard deviation of the mea-
surements were obtained for each partial dislocation pair.
Inside–outside contrast techniques (reversing the g-vector)
were additionally applied to differentiate partial disloca-
tions from dipoles. The total dislocation character angle, b,
was determined from Burgers vector analysis on the partial
dislocations in WBDF imaging mode. For Shockley partial
dislocations in the [111]/(111) zone/habit plane configura-
tion, |g�bp| (where bp is the partial dislocation Burgers vec-
tor) values are 1 or 0 and |g�bp| = 1 for both partials at only
one g-vector. When the latter condition is achieved, the
total Burgers vector is parallel to the g-vector, and the
angle it makes with the dislocation line vector is the total
dislocation character angle. The habit plane was confirmed
by stereographic analysis from BF images of the disloca-
tions taken at three different locations.

3.2. X-ray diffraction

Measurements of lattice parameters utilized a Bruker
AXS D8 diffractometer equipped with a Co X-ray tube,
Goebel mirror optics and a LynxEye Linear Position
Sensitive Detector for ultrafast XRD measurements. A
current of 30 mA and a voltage of 40 kV were employed
as tube settings. Operational conditions were selected to
obtain XRD profiles of sufficient quality: namely, optimal
counting statistics, narrow peaks and detection of small
diffraction peaks of minor phases. The XRD data were
collected over a 2h range of 30–120°, with a step size of
0.02°.

For the application of the Rietveld refinement, instru-
ment functions were empirically parameterized from the
profile shape analysis measured under the same conditions
for an AISI Type 316 stainless steel standard prepared by
hot isostatic pressing. In this study, version 4.2 of the
Rietveld analysis program TOPAS (Bruker AXS) was used
for the XRD data refinement. The refinement protocol
included the background, zero displacement, scale factors,
peak width, unit cell parameters and texture parameters.
The room-temperature structures used in the refinement
were ferrite, austenite and ehcp-iron. The quality and reli-
ability of the Rietveld analysis was quantified by the corre-
sponding figures of merit: the weighted summation of the

residual of the least-squares fit, Rwp, the statistically
expected least-squares fit, Rexp, the profile residual, Rp,
and the goodness of fit (sometimes referred to as chi-
squared), GoF. Since GoF = Rwp/Rexp, a GoF of 1.0
means a perfect fitting.

4. Results and discussion

4.1. SFE measurements

Additions of Mn from 22 to 28 wt.% increase the SFE
and reduce the partial dislocation separations. Partial

Fig. 1. Images of dislocations in 22% Mn specimens deformed to the YP.

(a) WBDF and (b) corresponding BF image of a partial dislocation pair.

(c) WBDF image of a second partial dislocation pair closer to screw

character and displaying reduced separation. Only a few representative

separation measurements are shown.
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dislocation core separations in the 22% Mn alloy ranged
from 6 to 13 nm, depending on the character angle.
Fig. 1a displays a WBDF image of a partial dislocation
pair with a character angle of 39° in a specimen deformed
to the YP. The average actual partial dislocation core sep-
aration is 9.3 ± 1.1 nm, in which the uncertainty is one
standard deviation of all measurements along the length
of the dislocation (note: measurements were taken every
5–10 nm along the length of dislocations but most have
been removed from the figures for clarity). The BF image
in Fig. 1b of the same dislocation illustrates the increased
resolution of the WBDF technique. In Fig. 1c, a disloca-
tion pair in a 22% Mn specimen deformed to the YP with
a smaller character angle of 26° exhibits an average core
separation of 6.6 ± 0.5 nm. Due to a low SFE, partial dis-
location separations in the 22% Mn alloy displayed greater
variations and susceptibility to image forces, as evidenced
by partial dislocations in specimens deformed to the YP
in Fig. 2. The width of the partials in Fig. 2a fluctuates dra-
matically at the foil surfaces, where the partials are con-
stricted at one intersection while showing a large
separation distance at the other. In Fig. 2b, a partial dislo-
cation pair in the (111) habit plane normal to the [111]
beam, imaged with a ÿ220g-vector, is interacting with a
stacking fault on (ÿ111). The partial dislocations in
(111) experience a contraction in their separation at the
intersection with the partial dislocation on the inclined
plane. In an image of the same defects with a 02ÿ2 g-
vector (Fig. 2c), one of the partials on (111) (|g�bp| = 0)
and SF on (ÿ111) become invisible. This study avoided

partial dislocations such as those in Fig. 2 for quantitative
measurements.

The separation of partials in the 25% Mn alloy ranged
from 4 to 7 nm, with Fig. 3 showing a partial dislocation
pair with average actual spacing of 4.9 ± 0.5 nm and a total
character angle of 22°. The present authors reported
additional measurements of dislocations from this alloy
in [35].

Partial dislocation separations in the 28% Mn alloy ran-
ged from 2.6 to 4.3 nm. Imaging with g(4g) diffracting con-
ditions decreased image-widths and reduced the
discrepancy between observed and actual partial disloca-
tion separations. In Fig. 4a, a partial dislocation pair with
kinks or jogs along its length and a character angle of 40°
exhibits an average actual spacing of 3.3 nm on uniform
sections. In Fig. 4b, a partial dislocation pair with a char-
acter angle of 15° displays an average actual spacing of
2.5 nm. At small spacing, the intensity peak generated from
between the partial dislocations becomes significantly
weaker due to fewer atomic planes oriented for scattering,
as clearly shown in Fig. 4b [44].

The character of stacking faults (intrinsic vs. extrinsic)
in the present alloys, as determined by typical diffraction
contrast methods (e.g. [44,45]), is intrinsic. Fig. 5a–c dis-
plays three dark-field TEM micrographs of stacking faults
corresponding to the 22%, 25% and 28% Mn alloys, respec-
tively. Of �10 faults investigated for each alloy, all were
intrinsic.

Fig. 6 displays the average spacing of partial dislocation
pairs in the three alloys. Theoretical partial dislocation
spacing curves based on Eq. (5), formulated by Aerts
et al. [46], are fitted to the experimental data to determine
the SFE. The relationship is an excellent approximation of

Fig. 2. WBDF images of partial dislocation pairs in a 22% Mn alloy

deformed to the YP. In (a) the partials display non-uniform separation,

most dramatically at the intersections with the foil surfaces. In (b) a partial

dislocation pair residing in (111) normal to the [111] beam direction is

interacting with a stacking fault on (ÿ111). In (c), the defects in (b) are

imaged with a 02ÿ2 diffracting vector, leading to invisibility of one of the

partials in (111) and the SF on (ÿ111).

Fig. 3. A WBDF image of a partial dislocation pair in an Fe–25Mn–3Al–

3Si alloy deformed to the YP.
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anisotropic theory, as shown by Teutonico [47], and avoids
the significant complexity of pure anisotropic dislocation
theory [48–50], in which solutions are available only for
specific dislocation configurations.

dactual ¼
leff b

2
p

8pcexp

2ÿ meff

1ÿ meff
1ÿ 2meff cos 2b

2ÿ meff

� �

ð5Þ

The term bp is the ao/6 h112i partial dislocation Burgers
vector, determined by XRD of recrystallized Fe–22/25/
28Mn–3Al–3Si specimens to be 0.1476, 0.1477 and
0.1479 nm, respectively, and the total dislocation character
angle is b. The effective shear modulus, leff, for dislocations
in {111} is a function of the single-crystal elastic stiffness
constants C11, C12 and C44, and is defined by Eq. (6):

leff ¼ C44

ðC11 ÿ C12Þ
2

� �0:5

ð6Þ

Eqs. (7) and (8) denote the relationship between the effec-
tive Poisson’s ratio, meff, and the single-crystal elastic
constants:

1

1ÿmeff
¼ 1

3leff

ðCþC12Þ
C44ðCÿC12Þ

C11ðCþC12þ2C44Þ

� �0:5

1þ2
C11

C

� �

ð7Þ

C ¼ 1

2
C11ðC11 þ C12 þ 2C44Þ

� �0:5

ð8Þ

For the 22%, 25% and 28% Mn alloys, leff = 67 ± 4,
66 ± 4, 66 ± 4 GPa and meff = 0.30, 0.31 and 0.31, respec-
tively. The terms leff and meff account for anisotropic elas-
ticity in {111}, and are calculated from Eqs. (6)–(8)
using single-crystal elastic constants determined by the
present authors [41]. The experimental SFEs for the 22%,
25% and 28% Mn alloys are 15 ± 3, 21 ± 3 and
40 ± 5 mJ mÿ2, respectively. The large increase in SFE
energy above 25 wt.% Mn is consistent with experimental
SFE measurements by Volosevich et al. [32] and observa-
tions that show a sharp reduction in the ehcp-martensite
start temperature for additions of Mn above 25 wt.% in
binary Fe–Mn alloys [30,31]. The uncertainty of the SFE
is primarily due to the scatter of average dactual values
between different dislocations (data points in Fig. 6) and
uncertainties of meff and leff. The first two sources of uncer-
tainty are accounted for by fitting upper and lower bounds
(SFE curves) that encompass the majority of the data
points for a given composition as shown in Fig. 6. The
uncertainty from these two sources was determined to be
±20.0, ±14.3 and ±12.5% of the SFE for the 22%, 25%
and 28% Mn alloys, respectively. The uncertainty of leff
is ±6.0%. The final uncertainty of the SFE for the 22%,
25% and 28% Mn alloys was obtained from the root sum
square of the two calculated values and is ±20.9 (e.g.
ð20:02 þ 6:02Þ

1
2), ±15.5 and ±13.9% or ±3, ±3 and

±5 mJ mÿ2 (rounded to one significant figure). Volosevich
et al. [32] reported SFE values of �15 and 27.5 mJ mÿ2 for
Fe–22/25Mn wt.% alloys, respectively, by TEM observa-
tion of extended nodes. These values likely overestimate
the SFE, since the combined effect of adding 3 wt.% Al
and Si would raise the SFE, yet the SFE values of the
Fe–22/25Mn–3Al–3Si steels are equal or less. If isotropic
elasticity is applied to the present measurements on the
22% Mn alloy, by replacing the effective elastic constants
in Eq. (5) with a polycrystalline shear modulus (72 GPa)
and Poisson’s ratio (0.24) [41], the SFE is 16 ± 4 mJ mÿ2

(dashed lines in Fig. 6). The SFE determined with isotropic
elastic constants overestimates the anisotropic value by
�7% and results in a poorer data fit, producing a larger
uncertainty of ±4 mJ mÿ2. The overestimation of the
SFE results from the use of the larger isotropic shear mod-
ulus and the poorer data fit stem from the large difference
between the isotropic and effective values of the Poisson’s

Fig. 4. WBDF images of partial dislocation pairs in specimens of the 28%

Mn alloy deformed to (a) the YP and (b) 1.5% with heat treatment of

650 °C for 48 h.
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ratio. The elastic anisotropy ratio (2C44/(C11 ÿ C12)) of the
present materials is �2.2 [41]. For fcc materials, leff and meff
will become increasingly smaller and larger, respectively,
relative to the polycrystalline values, as the elastic anisot-
ropy ratio increases [47].

In the above analysis, the partial dislocation cores are
treated as purely elastic defects, i.e. as singular Volterra
type dislocations with a core width of zero. However, the
core width of dislocations may not be zero and, at small
partial dislocation separations, such as those observed in
the 28% Mn alloy, core effects can influence SFE measure-
ments, as shown by Cockayne and Vitek [51]. The disloca-
tion core thickness can influence the force acting between

two partial dislocations and, thus, their separation. The
partial dislocation separation obtained from a Peierls-type
core model, dPeierls, which accounts for core width, is
related to the partial dislocation separation of Eq. (5),
dactual, by Eq. (9) [51]:

dPeierls ¼
1

2
dactual þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
actual ÿ 4f2

q

� �

ð9Þ

In this model, as the core width increases, the repulsive
force acting between the two partial dislocations decreases.
Since the core width, f, is unknown, a reasonable approx-
imation is twice the lattice parameter (0.724 nm), as em-
ployed by Cockayne and Vitek [51]. Applying this model
to the partial dislocation separation measurements of the
28% Mn alloy yields an SFE of 37.5 mJ mÿ2, as depicted
in Fig. 6 (dashed–dotted line), which is slightly smaller than
the 40 mJ mÿ2 obtained assuming singular cores. The fit of
Eq. (9) to the partial dislocation separation measurements
of the 28% Mn alloy becomes increasingly worse as the
core thickness is increased above 0.724 nm. Therefore,
the true value of the partial dislocation core width for the
28% Mn alloy is likely to be between 0 and 0.724 nm. As
such, the SFE of the 28% Mn alloy is taken as the average
of the two SFE values, 38.8 ± 5 mJ mÿ2. Since the partial
dislocation separations of the 22% and 25% Mn alloys
are substantially larger, assuming a core width of
0.724 nm in these alloys produced no significant change
in the SFE. Cockayne and Vitek [51] also suggested that
partial dislocation core widths greater than twice the lattice
constant may lead to a less well defined image peak and an
additional narrow image peak under certain circumstances
[51]. The present authors did not observe any of these fea-
tures in the WBDF images that could be attributed to core
effects, giving further confidence that the partial dislocation
core thickness is below 0.724 nm.

4.2. Coherency strain energy contribution

The fcc matrix and ehcp-martensite have the
(111)c||(0001)e/[1ÿ10]c||[1ÿ210]e orientation relation-
ship. However, the ehcp-martensite phase displays a slightly

Fig. 5. Dark-field images of intrinsic SFs in (a) the 22% Mn, (b) the 25% Mn and (c) the 28% Mn alloys as identified by the procedures in Refs. [44,45].

Fig. 6. Average actual partial dislocation separations for the 22%, 25%

and 28% Mn alloys for specimens deformed to the YP and 1.5% with heat

treatments. The error bars represent the standard deviation of the

measurements on individual pairs. The dashed and solid curves represent

theoretical partial dislocation spacings based on isotropic and anisotropic

elasticity, respectively. The dashed-dotted line for the 28% Mn alloy

assumes a Peierls core model. The larger symbols correspond to the partial

dislocations from Figs. 1, 3 and 4.
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smaller molar volume than the austenite phase. Brooks
et al. [52] showed the local close-packed plane (cpp) spac-
ing of single stacking faults contracts �2% relative to the
cpp spacing of the austenitic matrix in Fe–Cr–Ni steels,
and thus that stacking faults are ehcp-martensite embryos
or nuclei. Marinelli et al. [53,54] observed decreases in
the molar volume of the ehcp-martensite structure of �2%
relative to austenite in binary Fe–Mn alloys. The propen-
sity to contract is resisted by the matrix (i.e. austenite
phase), which results in the deformation of both austenite
matrix and the martensite phase. This coherency strain
increases the energy of the stacking fault complex. It is
desirable to remove the coherency strain-induced energy
contribution from the SFE of experimental measurements
so that comparison to theoretical SFE values is applicable.
The molar volumes of the fcc and hcp phases are defined in
Eqs. (10) and (11), respectively, as:

V m;fcc ¼
a3fcc

4
NA ð10Þ

and

V m;hcp ¼
ffiffiffi

3
p

4
a2hcpchcpNA ð11Þ

where afcc, ahcp and chcp are the lattice parameters of the fcc
and hcp phases. The volumetric strain (VS) due to volume
change from fcc to hcp phase is defined as:

VS ¼ V m;hcp ÿ V m;fcc

V m;fcc

ð12Þ

The strain (e33) corresponding to the contraction normal
to the close-packed planes of the hcp structure relative to
the fcc matrix is defined as:

e33 ¼ ðchcp ÿ cfccÞ=cfcc ð13Þ
The terms cfcc and chcp are twice the cpp spacing in the fcc
and hcp structures, respectively. The strain terms e11 and
e22 correspond to the contraction along h1ÿ210i relative
to h1ÿ10i (close-packed directions) and h1ÿ100i relative
to h11ÿ2i, respectively, and are calculated similarly to
e33 (Eq. (13)) as a function of the lattice parameters. Several
authors have investigated the energy contribution of the
coherency strain, Estr, on SFE measurements (e.g.
[29,31,55]). Olson and Cohen [29] considered the strain
energy term to be the sum of the dilatation energy, Edil,
and the shear energy, Esh:

Estr ¼ Edil þ Esh ð14Þ
where

Edil ¼
2ð1þ mÞ
9ð1ÿ mÞ lV m;fccðVSÞ2 ð15Þ

and

Esh ¼gV m;fcc2l
1

6
ðe11 ÿ e22Þ2 þ ðe22 ÿ e33Þ2 þ ðe33 ÿ e11Þ2
h i

�

þe212 þ e223 þ e213
	

ð16Þ

The terms m and l represent the austenite phase polycrys-
talline Poisson’s ratio and shear modulus, respectively
[41], and g is the accommodation factor further described
below. Eqs. (15) and (16) are based on the work of Eshelby
[56] for determining the strain energy of an inclusion which
undergoes a shape change within an infinite matrix. The
Olson and Cohen model does not consider the interaction
energy between the contracted stacking fault and the par-
tial dislocations. However, Müllner and Ferreira [55] mod-
eled the strain field generated by two parallel partial
dislocations and a contracted stacking fault using Somigli-
ana dislocations to compute the total energy, including the
interaction components. The interaction energy compo-
nents involving the two Shockley partials were found to
be small or vanishing compared to other components of
the coherency strain energy. The Müllner and Ferreira
model assumes that the coherency strain is volume preserv-
ing (i.e. VS = 0), which contrasts with our experimental
measurements. Therefore, the method of Olson and Cohen
was used to estimate the coherency strain energy in this
study.

The orientation of the principal strain axes e11, e22 and
e33 are assumed to remain unchanged by the transforma-
tion resulting in values of 0 for shear strains e12, e23 and
e13. The accommodation factor (g) is the ratio between
the total energy per unit inclusion (i.e. martensite phase)
volume embedded in the austenite phase to the energy
per unit inclusion volume embedded in a hypothetical rigid
matrix [29,56]. For pure dilatation, g is constant regardless
of particle shape, and is built into Eq. (15). For shear
strain, g may vary from 0 to 1, depending on particle shape
and the strain state [56]. Following Refs. [29,31], g for a
spherical inclusion, which is independent of strain state,
is employed:

g ¼ 7ÿ 5m

15ð1ÿ mÞ ð17Þ

Table 2 provides the lattice parameters of the fcc and
ehcp-martensite phases obtained from the Rietveld refine-
ment of XRD patterns from recrystallized specimens (for
fcc) and those displayed in Fig. 7 from specimens deformed
to failure (for hcp), with uncertainty representing equip-
ment error. The XRD patterns in Fig. 7a–c are from the
22%, 25% and 28% Mn samples after deformation to fail-
ure at RT, ÿ25 and ÿ100 °C, respectively. The presence
of strain-induced ehcp-martensite is confirmed for each con-
dition, while the formation of strain-induced a-martensite
is noted in the 22% and 25% Mn alloys.

A slight increase in the lattice parameters of the fcc
phase with Mn content is observed, while no trend in the
hcp lattice parameters can be deduced over the current
range of Mn. Utilizing the lattice parameters from Table 2
in conjunction with the method reported by Olson and
Cohen [29] yields e11, e22, e33, VS, Edil, Esh and 2qEstr, as
shown in Table 3. The uncertainties, calculated using a root
sum square approach, are �25% for e11, e22 and e33 and
�43% for VS. The uncertainties are �62% and 79% for Edil

D.T. Pierce et al. / Acta Materialia 68 (2014) 238–253 245



and Esh. The value of Esh is small compared to Edil for the
Fe–22/25/28Mn–3Al–3Si alloys, and consequently the
uncertainty of 2qEstr is also �62%. The values of VS ran-
ged from ÿ0.011 to ÿ0.018 (from ÿ1.1% to ÿ1.8%). Not-
withstanding a substantial uncertainty in the calculation of
the strain components, the experimental data suggest that
contraction increases with Mn content. This is in line with
the previous studies conducted on binary Fe–Mn steels
[53,54]. The coherency strain energy (Estr) calculated by
Olson and Cohen of 41.9 J molÿ1 for an Fe–Cr–Ni steel
is similar to the values calculated here (see Table 3). In
addition, Müllner and Ferreira [55] calculated a value of
4.3 mJ mÿ2 for 2qEstr for a type 316 austenitic steel, which

is similar to the values calculated in the present work of
1.4 ± 0.87, 2.3 ± 1.4 and 3.6 ± 2.2 mJ mÿ2 for the Fe–22/
25/28Mn–3Al–3Si alloys, respectively.

Fig. 8 shows the experimental (cexp) and ideal (c1) SFE
values. The dependence of cexp and c1 on Mn content
above 24.7 wt.% is approximated as linear functions dis-
played in Fig. 8. The use of linear functions (rather than
higher order polynomials) to describe the increase in SFE
for Mn contents greater than 24.7 wt.% is consistent with
other experimental SFE measurements which exhibit
quasi-linear behavior from 25 to 35 wt.% Mn [32,57]. Qua-
dratic polynomial functions of cexp and c1 as a function of
Mn content (displayed in Fig. 8) were employed to approx-
imate the SFE in the range of 22.2–24.7 wt.% Mn. The data
indicate that a plateau of cexp and c1 occurs near 22 wt.%
Mn, which is in good agreement with the experimentally
observed minima of 22 wt.% Mn by Volosevich et al. [32]
and between 20 and 25 wt.% (depending on purity of the
Fe–Mn alloys) by Petrov et al. [57].

4.3. Thermodynamic modeling

To determine the interfacial energy from Eq. (4), a new
thermodynamic model was developed to calculate
DG

fcc!hcp

Chem and DG
fcc!hcp
Mag for the present Fe–Mn–Al–Si–C

system. Existing thermodynamic models [3,12,26,27,30]
for Fe–Mn-based steels were evaluated and deemed unsuit-
able for the present study for several reasons. The models
of Saeed-Akbari et al. [27], Mosecker and Saeed-Akbari
[12] and Nakano and Jacques [30] address the Fe–Mn–
Al–C, Fe–Cr–Mn–N and Fe–Mn–C systems, respectively,
but do not attempt to specifically address the influence of
Si. Experimental studies on Fe–18Mn–0.6C–0/1.5Si [11]
wt.% and Fe–31Mn–xSi–0.77C at.% [62] alloys report
decreases in the SFE with additions of Si. However, the
model of Dumay et al. [26] shows that additions of Si up
to �4 wt.% increase the SFE of an Fe–22Mn–0.6C steel,
disagreeing with the experimental results. The model of
Curtze and Kuokkala [3] utilizes the same thermodynamic
parameters as used by Dumay et al. [26] for both pure Si
and its interaction with Fe. A thermodynamic model by
Tian and Zhang [63] also predicts an increase in SFE for
Fe–31Mn–xSi–0.77C (x = at.%) alloys for Si additions up
to 10.2 at.%. The more recent thermodynamic models of
Nakano and Jacques [30] and Mosecker and Saeed-Akbari
[12] show that the treatment of interstitial elements like C is
enhanced by the use of a sublattice-type thermodynamic
model. Finally, improved thermodynamic parameters for
the Mn–C and Fe–Mn–C systems have recently been pub-
lished by Djurovic et al. [64,65]. For the new model, the fcc
and hcp phases were treated as randomly mixed substitu-
tional solutions with two sublattices: substitutional and
interstitial [12,30]:

ðFe;Mn;Al; SiÞ1ðC; VaÞk ð18Þ
with k equal to 1 for fcc and 0.5 for hcp, assuming that
interstitial elements do not occupy neighboring octahedral

Table 2

Lattice constants determined by XRD.

Alloy fcc (Å) ehcp-martensite (Å)

afcc cfcc (2afcc /
p
3) ahcp chcp

22%Mn 3.615 ± 0.001 4.175 ± 0.002 2.548 ± 0.003 4.153 ± 0.005

25%Mn 3.617 ± 0.001 4.177 ± 0.002 2.547 ± 0.003 4.151 ± 0.005

28%Mn 3.620 ± 0.001 4.180 ± 0.002 2.545 ± 0.003 4.152 ± 0.005

Fig. 7. XRD patterns for (top) an Fe–22Mn–3Al–3Si alloy deformed at

room temperature, (middle) an Fe–25Mn–3Al–3Si alloy deformed at

ÿ25 °C and (bottom) an Fe–28Mn–3Al–3Si alloy deformed at ÿ100 °C.

All samples deformed to maximum uniform elongation. The peaks are

labeled according to phase and reflection in Miller indices.
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Table 3

Parameters used in the calculation of rc/e for Fe–Mn based alloys.

Parameter Fe–22Mn–

3Al–3Si

Fe–25Mn–

3Al–3Si

Fe–28Mn–

3Al–3Si

Fe–16Mn Fe–18Mn Fe–20Mn Fe–22Mn Fe–25Mn Fe–17.7Mn–

0.62C

Fe–17.7Mn–

0.59C–1.59Si

Fe–17.5Mn–

0.58C–1.54Al

Fe–18Mn–

0.6C

Fe–18Mn–

0.6C–1.5Al

Fe–18Mn–

0.6C–2.5Al

cexp (mJ mÿ2)a 15 ± 3 21 ± 3 38.8 ± 5 26 ± 3.1 22 ± 2.6 18 ± 2.2 15 ± 1.8 27.5 ± 3.3 19.3 ± 2.5 13.8 ± 2.5 29.1 13 ± 3 30 ± 10 40.4

l (GPa)b 72 72 72 69 69 69 69 69 71 72.5 70.1 71 70.1 70.1

mb 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.23 0.24 0.24

e11
c ÿ0.0032 ÿ0.0041 ÿ0.0058 ÿ0.0029 ÿ0.0029 ÿ0.0025 ÿ0.0033 ÿ0.0033

e22
c ÿ0.0032 ÿ0.0041 ÿ0.0058 ÿ0.0029 ÿ0.0029 ÿ0.0025 ÿ0.0033 ÿ0.0033

e33
c ÿ0.0051 ÿ0.0061 ÿ0.0067 ÿ0.0145 ÿ0.0144 ÿ0.0146 ÿ0.0153 ÿ0.0154

VSc ÿ0.011 ÿ0.014 ÿ0.018 ÿ0.020 ÿ0.020 ÿ0.019 ÿ0.022 ÿ0.022

Edil (J molÿ1)d 24.1 38.3 61.1 69.2 69.4 65.1 81.7 83.4 71.4 74.4 72.0 71.4 72.0 72.0

Esh (J molÿ1)d 0.6 0.7 0.2 21.8 21.4 24.0 23.3 24.0 22.0 22.6 21.8 22.0 21.8 21.8

2qEstr (mJ mÿ2)d 1.4 ± 0.9 2.3 ± 1.4 3.6 ± 2.2 5.4 ± 0.5 5.4 ± 0.5 5.3 ± 0.5 6.2 ± 0.5 6.4 ± 0.5 5.5 ± 0.5 5.8 ± 0.5 5.6 ± 0.5 5.5 ± 0.5 5.6 ± 0.5 5.6

T
fcc
Neel (K)e 267 282 298 310 332 352 370 395 289 237 268 289 268 261

T
hcp
Neel (K)e 123 137 153 94 106 118 129 147 101 100 99 104 102 101

2qDGfcc!hcp
Chem (mJ mÿ2)f ÿ6.7 ÿ0.2 9.1 ÿ48.4 ÿ43.9 ÿ38.8 ÿ33.3 ÿ24.2 ÿ11.4 ÿ13.2 1.0 ÿ11.9 2.6 11.4

2qDGfcc!hcp
Mag (mJ mÿ2)f 1.5 2.0 2.6 3.9 6.0 8.3 10.7 14.0 2.1 0.8 1.4 2.1 1.4 1.2

rc/e (mJ mÿ2)g 9.3 ± 1.6 8.6 ± 1.7 11.8 ± 2.7 32.5 ± 1.6 27.3 ± 1.3 21.6 ± 1.1 15.7 ± 0.9 15.7 ± 1.7 11.5 ± 1.3 10.3 ± 1.3 10.6 ± 1.3 8.6 ± 1.5 10.2 ± 5 11.1

a Experimental SFEs taken from present work and [10,11,32]. The term cexp for the Fe–18Mn–0.6C–2.5Al alloy is calculated.
b Shear modulus and Poisson’s ratio taken from [10,11,32,41]. Assumed to be the same for Fe–18Mn–0.6C–1.5/2.5Al alloys.
c Strain values obtained from lattice parameters determined in the present work and [53,54].
d Strain energy terms are calculated using the strain values in accordance with Section 4.2 (strain values for Fe–18Mn grade used for Fe–18Mn–0.6C–0/1.5/2.5(Al/Si) alloys). Uncertainties for the

Fe–22/25/28Mn–3Al–3Si and binary Fe–Mn alloys are based on the uncertainty of the lattice parameters and the standard deviation of 2qEstr (for Fe–16/18/20/22/25Mn alloys), respectively.
e T

fcc
Neel is obtained from [30,58–60]. T hcp

Neel is obtained from Eq. (28) [61].
f Terms 2qDGfcc!hcp

Chem and 2qDGfcc!hcp
Mag were determined with the model developed in the present work.

g Calculated interfacial energy in accordance with Eq. (4). Interfacial energy for Fe–18Mn–0.6C–2.5Al steel is calculated using Eq. (29).
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sites in the hcp structure [30,66]. The term Va stands for va-
cancy. The terms Ghcp

m and Gfcc
m are the molar Gibbs free en-

ergy of the individual phases, U (fcc or hcp) [12,30]:

G/
m ¼ y

/
Fey

/
C
0G

/
Fe:C þ y

/
Fey

/
Va

0G
/
Fe:Va þ y

/
Mny

/
C
0G

/
Mn:C

þ y
/
Mny

/
Va

0G
/
Mn:Va þ y

/
Al

y
fcc
Va þ y

hcp
Va

2

 !

0G
/
Al:Va

þ y
/
Si

y
fcc
Va þ y

hcp
Va

2

 !

0G
/
Si:Va þ RT y

/
Felny

/
Fe þ y

/
Mnlny

/
Mn

ÿ

þky
/
Clny

/
C þ ky

/
Valny

/
Va þ y

/
Allny

/
Al þ y

/
Silny

/
Si

�

þ exG/
m ð19Þ

In Eq. (19), R is the gas constant and T is the temperature
in K. The site fractions of the individual elements, yi in the
substitutional lattice are calculated as:

yi ¼
xi

ð1ÿ xCÞ
ð20Þ

and for C in the interstitial lattice as:

yC ¼ xC

kð1ÿ xCÞ
ð21Þ

where x is the mole fraction of each element. Eq. (22) de-
fines the correlation between the individual site fractions:

yFeþyMnþyAlþySi ¼ yC þ yVa ¼ 1 ð22Þ
The thermodynamic parameters G/

i:Va and G
/
i:C in Eq. (19)

are listed in Table 4. They represent the Gibbs energy of
substitutional element i in phase U when all available inter-
stitial sites are vacant (Va) or occupied by C, respectively.

The terms 0G
/
Al:C and 0G

/
Si:C were not included in Eq. (19)

due to a lack of data for the hcp phase. In addition, average

vacancy site fractions,
y
hcp

Va
þy

fcc

Va

2

� �

, were used for Si and Al

and resulted in significantly better agreement with experi-
mental results for steels with Si and C. The combined term

D0G
hcp!fcc
Si:Va replaces 0G

/
Si:Va and RTy

/
Silny

/
Si in the calculation

of DGfcc!hcp

Chem . The excess free energy is described as [30]:

exG/
m ¼ y

/
Fey

/
Mny

/
CL

/
Fe;Mn:C þ y

/
Fey

/
Mny

/
VaL

/
Fe;Mn:Vaþ y

/
Fey

/
Cy

/
VaL

/
Fe:C;Va

þ y
/
Mny

/
Cy

/
VaL

/
Mn:C;Vaþ y

/
Fey

/
Al

y
fcc
Va þ y

hcp
Va

2

 !

L
/
Fe;Al:Va

þ y
/
Mny

/
Al

y
fcc
Va þ y

hcp
Va

2

 !

L
/
Mn;Al:Vaþ y

/
Fey

/
Si

y
fcc
Va þ y

hcp
Va

2

 !

L
/
Fe;Si:Va

þ y
/
Mny

/
Si

y
fcc
Va þ y

hcp
Va

2

 !

L
/
Mn;Si:Va ð23Þ

where L
/
i;j:C;Va is the interaction parameter for the elements

in phase U, listed in Table 4. Parameters describing the
interaction of Al and Si with C were not available for the
hcp phase. Average vacancy site fractions were used for

L
/
Fe;Al:Va, L

/
Mn;Al:Va, L

/
Fe;Si:Va and L

/
Mn;Si:Va to improve agreement

with experimental SFE measurements of steels with inter-

stitial C. For aluminium, the combined term DL
hcp!fcc

Fe;Al:Va

replaces L/
Fe;Al:Va in Eq. (23) for the calculation of Gfcc!hcp

Chem .

The magnetic contribution to the Gibbs energy of a
phase is described by the model proposed by Inden [76]
as modified by Hillert and Jarl [77]:

G
/
Mag ¼ RT lnðb/ þ 1Þf /ðs/Þ ð24Þ

The term bU is the magnetic moment of phase U divided by
the Bohr magneton lb and given by Eqs. (25) and (26) [26].

bfcc ¼ 0:7xFe þ 0:62xMn ÿ 0:64xFexMn ÿ 4xC ð25Þ
bhcp ¼ 0:62xMn ÿ 4xC ð26Þ
The term f /ðs/Þ is a function of the scaled Néel tempera-

ture s/ ¼ T=T /
Neel, found elsewhere in the literature

[3,27,67,76,77]. The Néel temperature for the fcc phase of
Fe–Mn–Al–Si steels is described by King and Peters [60] as:

T
fcc

Neel ¼ 199:5þ 6:0XMn ÿ 10:4X Al ÿ 13X Si ðKÞ ð27Þ
where X is the wt.% of the individual elements, and the hcp
phase is described by Huang [61] as:

T
hcp

Neel ¼ 580xMn ðKÞ ð28Þ
In Eq. (28), xMn is the molar fraction of Mn. If the lattice
parameters of the materials are unknown, they may be esti-
mated as a function of composition and temperature from
equations listed in Ref. [27].

At room temperature (25 °C), the model predicts
DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

to beÿ88 J molÿ1 for the alloy with
22%Mn.This is a reasonable value, considering that thermal
ehcp-martensite is not present yet mechanical ehcp-martensite
forms upon deformation. Thermal ehcp-martensite typically

Fig. 8. Experimental SFE (cexp) and ideal SFE (c1) values, with error bars

representing the standard deviation of the measurements. Chemical

ð2qDGfcc!hcp

Chem Þ and magnetic ð2qDGfcc!hcp
Mag Þ contributions to the difference

in Gibbs free energy from the fcc to hcp phase transformation determined

by the thermodynamic model (note: the values of nqDGfcc!hcp

Chem denoted by

the dashed line were calculated using L
hcp
Fe;Mn:Va, as proposed by Djurovic

et al. [65]). Interfacial parameters rc/e calculated from the experimental

and theoretical data. All values are plotted as a function of Mn content.

The dashed-dotted line indicates the Mn content at which the Néel

transition occurs at 298 K for an Fe–XMn–2.7Al–2.9Si wt.% steel [60].
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occurs when DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

< ÿ100 J molÿ1 [26],
while mechanical ehcp-martensite is generally observed in
Fe–Mn-based alloys where DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

is nega-
tive [12]. Thermal ehcp-martensite forms in a similar alloy
(Fe–20Mn–3Al–3Si wt.%) with slightly less Mn content
[24]. At 25% Mn, the term DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

is
31 J molÿ1 and the dominant secondary deformation mech-
anism is mechanical twinning [24]. These results are consis-
tent with previous observations that Fe–Mn-based alloys
with negative or positive values of DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

tend to exhibit strain-induced ehcp-martensite or mechanical
twinning, respectively [12].

Fig. 8 displays the trends in 2qDGfcc!hcp

Chem , 2qDGfcc!hcp
Mag

and rc=e as a function of Mn content. The chemical contri-
bution, 2qDGfcc!hcp

Chem , increases with increasing Mn content
from 22 to 28 wt.%, exhibiting a slight concave up trend,
due to the stabilizing effect that Mn has on the fcc phase
relative to the hcp. For the compositions analyzed, the
increase in 2qDGfcc!hcp

Chem is �3 mJ mÿ2 per wt.% Mn, agree-
ing well with the experimentally observed SFE between 22
and 25 wt.% Mn. The calculation of 2qDGfcc!hcp

Chem was also
performed using the thermodynamic parameter L

hcp
Fe;Mn:Va

proposed by Djurovic at al. [65] (dashed line in Fig. 8).
However, the calculated values of 2qDGfcc!hcp

Chem using the

Table 4

Thermodynamic parameters for the Fe–Mn–Al–Si–C system from the literature used in this investigation unless otherwise stated.a

Ref.

fcc Phase
0G

fcc
Fe:Va ¼ ÿ236:7þ 132:416T ÿ 24:664T InðT Þ ÿ 0:00376T 2 ÿ 5:893Eÿ8T 3 þ 77358:5Tÿ1 [67]

0G
fcc
Mn:Va ¼ ÿ3439:3þ 131:884T ÿ 24:5177T InðT Þ ÿ 0:006T 2 þ 69600Tÿ1 [67]

0G
fcc
Fe:C ÿ 0G

fcc
Fe:Va ÿ GGra:

C ¼ 77; 207ÿ 15:877T [68]

0G
fcc
Mn:C ¼ 0Ga

Mn:Va þ GGra:
C þ 13:659T [64]

0G
fcc
Al:Va ¼ ÿ7976:15þ 137:093T ÿ 24:367T InðT Þ ÿ 1:8846Eÿ3T 2 ÿ 0:87766Eÿ6T 3 þ 74092Tÿ1 [67]

L
fcc
Fe:Va;C ¼ ÿ34; 671 [68]

L
fcc
Mn:Va;C ¼ ÿ41; 333 [64]

L
fcc
Fe;Mn:C ¼ 20; 082ÿ 11:6312T [65]

L
fcc
Fe;Mn:Va ¼ ÿ7762þ 3:865T ÿ 259ðyFe ÿ yMnÞ [61]

L
fcc
Mn:Al:Va ¼ ÿ84; 517þ 29:999T þ ðÿ19; 665þ 12:552T ÞðyMn ÿ yAlÞ [69]

L
fcc
Fe;Si:Va ¼ ÿ125248þ 41:116T ÿ 142708ðyFe ÿ ySiÞ þ 89; 907ðyFe ÿ ySiÞ

2 [70]

L
fcc
Fe;Si:C ¼ 226100ÿ 34:25T ÿ 202400ðyFe ÿ ySiÞ (not used) [71]

L
fcc
Mn;Si:Va ¼ ÿ88; 555þ 2:94T ÿ 7500ðyMn ÿ ySiÞ [72]

hcp Phase

0G
hcp
Fe:Va ¼ ÿ2480:08þ 136:725T ÿ 24:664T InðT Þ ÿ 0:00376T 2 ÿ 5:893Eÿ8T 3 þ 77358:5Tÿ1 [67]

0G
hcp
Mn:Va ¼ ÿ4439:3þ 133:007T ÿ 24:5177T InðT Þ ÿ 0:006T 2 þ 69600Tÿ1 [67]

0G
hcp
Fe:C ÿ 0G

hcp
Fe:Va ÿ 0:50GGra

C ¼ 52; 905ÿ 11:9075T [30,68]

0G
hcp
Mn:C ¼ 0Ga

Mn:Va þ 0:50GGra
C ÿ 9000ÿ 1:0651T [64]

0G
hcp
Al:Va ¼ ÿ2495:15þ 135:293T ÿ 24:367T InðT Þ ÿ 1:8846Eÿ3T 2 ÿ 0:87766Eÿ6T 3 þ 74092Tÿ1 [67]

L
hcp
Fe:Va;C ¼ ÿ17; 335 [30,68]

L
hcp
Mn:Va;C ¼ ÿ5006 [64]

L
hcp
Fe;Mn:C ¼ 21742ÿ 50:2703T ÿ 32608ðyFe ÿ yMnÞ [65]

L
hcp
Fe;Mn:Va ¼ ÿ69:41þ 2:836T þ ððÿ14271:46þ 13:884T ÞðyFe ÿ yMnÞÞ [30]

L
hcp
Fe;Mn:Va ¼ ÿ5748þ 3:865T þ 273ðyFe ÿ yMnÞ [65]

L
hcp
Mn;Al:Va ¼ ÿ87027þ 17:154T þ ðÿ5774þ 8:786T ÞðyMn ÿ yAlÞ þ ð83931ÿ 47:279T ÞðyMn ÿ yAlÞ

2 [69]

L
hcp
Fe;Si:Va ¼ ÿ106149þ 41:116T ÿ 191658ðyFe ÿ ySiÞ þ 123574ðyFe ÿ ySiÞ

2 [73]

L
hcp
Fe;Si:C ¼ unavailable

L
hcp
Mn;Si:Va ¼ ÿ86775þ 2:94T ÿ 7500ðyMn ÿ ySiÞ [74]

Other

DG
fcc!hcp
Si:Va ¼ 0G

hcp
Si:Va ÿ 0G

fcc
Si:Va ¼ ÿ560ÿ 8T [26]

DL
hcp!fcc
Fe;Al:Va ¼ L

hcp
Fe;Al:Va ÿ L

fcc
Fe;Al:Va ¼ 3326 [75]

0Ga
Mn:Va ¼ ÿ8115:28þ 130:059T ÿ 23:4582T InðT Þ ÿ 7:3476Eÿ3T 2 þ 69827:1Tÿ1 [67]

0GGra:
C ¼ ÿ17368:441þ 170:73T ÿ 24:3T InðT Þ ÿ 4:723Eÿ4T 2 þ 2562600Tÿ1 ÿ 2:643E8Tÿ2 þ 1:2E10Tÿ3 [67]

a Values in J molÿ1.
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L
hcp
Fe;Mn:Va proposed by Nakano and Jacques [30] agree more

closely with the present experimental SFE measurements.
The hcp phase in each alloy is in the paramagnetic state

at RT (the Néel temperatures are 123, 137 and 153 K for
the 22%, 25% and 28% Mn alloys, respectively, based on
Eq. (28)). Consequently, the influence of antiferromagnetic
ordering on the hcp phase is insignificant at RT and

G
hcp
Mag � 0 J molÿ1 for the three alloys. The fcc phases of

the alloys with 22% and 25% Mn are paramagnetic at
RT (Néel temperatures are 267 and 282 K, respectively),
while the fcc phase of the 28% Mn has a Néel temperature

of �298 K based on Eq. (27). The calculated values of Gfcc
Mag

are ÿ26, ÿ34 and ÿ45 J molÿ1 for the 22%, 25% and 28%

Mn alloys, respectively. Therefore, 2qDGfcc!hcp
Mag is small and

increases from 1.5 to 2.6 mJ mÿ2 with increasing Mn con-
tent (see Fig. 8). For the present range of Mn content,

the term 2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

increases by 3.2 mJ mÿ2

per wt.% Mn, a slight increase compared to the rise due
only to the chemical contribution. As Fe–Mn-based alloys

are cooled to below T
fcc

Neel, the influence of antiferromag-
netic ordering on properties such as electrical resistance
and stiffness is gradual [59,60,78]. Accordingly, increasing

T
fcc

Neel through room temperature by additions of Mn should
produce only a gradual stabilization of the fcc phase due to
magnetic ordering as the model currently predicts. How-

ever, DGfcc!hcp
Mag becomes large for alloys that are cooled to

significantly below T
fcc

Neel [3] and partially counteracts the

reduction in DG
fcc!hcp

Chem with cooling. This explains why
low deformation temperatures (ÿ25 and ÿ100 °C) are
required to form sufficient quantities of ehcp-martensite in
the 25% and 28% Mn alloys. The sensitivity of the SFE

to temperature becomes less below T
fcc

Neel [30] due to the

competing nature of DG
fcc!hcp

Chem and DG
fcc!hcp
Mag . The Néel

transition of most high-Mn TWIP and TRIP steels (espe-
cially those with Al and Si additions) is slightly below room
temperature [59], save for the Fe–22Mn–0.6C wt.% grade
[4]. Interestingly, stabilization of the fcc phase due to anti-
ferromagnetic effects still occurs, owing to the gradual nat-
ure of this transition [4,59,60,78].

4.4. Interfacial energy calculation and behavior

In each alloy the interfacial energy is a major component
of the SFE. The term rc/e is 9.3 ± 1.6, 8.6 ± 1.7 and
11.8 ± 2.7 mJ mÿ2 for the Fe–22/25/28Mn–3Al–3Si alloys,
respectively, from Eq. (4). The uncertainty of rc/e is
obtained by dividing the root sum square of the uncertain-
ties of cexp and 2qEstr by two. Using the same methodology,
interfacial energy values were calculated for binary Fe–16/
18/20/22/25Mn, Fe–18Mn–0.6–0/1.5Al and Fe–18Mn–0.6C–
0/1.5Si alloys from existing data in the literature. The
calculation of rc/e used values of cexp reported by
Volosevich et al. [32] (Fe–16/18/20/22/25Mn), Kim et al. [10]
(Fe–18Mn–0.6–0/1.5Al) and Jeong et al. [11] (Fe–18Mn–

0.6C–0/1.5(Al/Si). The values of 2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

were determined with the thermodynamic model developed
in Section 4.3. A summary of some of the parameters used
in the calculation of rc/e are listed in Table 3. The interfacial
energies of the Fe–18Mn–0.6C–0/1.5(Al/Si) range from 8.6
to 11.5 mJ mÿ2 and are consistent with a range of 8.6–
11.8 mJ mÿ2 for the Fe–22/25/28Mn–3Al–3Si alloys. Inter-
stitial C segregation may influence the experimental SFE

measurements, but it is not accounted for in DG
fcc!hcp

Chem or

DG
fcc!hcp
Mag (due to the assumption of homogeneous composi-

tions). Therefore, Mosecker and Saeed-Akbari [12] pro-
posed that the effects of interstitial segregation on cexp
would be accounted for in the calculation of rc/e. However,
no substantial differences in the calculated values of rc/e are
observed between the Fe–22/25/28Mn–3Al–3Si and Fe–
18Mn–0.6C–0/1.5(Al/Si) alloys, suggesting that the influ-
ence of segregation on the SFE measurements is minor.
The calculated interfacial energies of the binary Fe–16/18/
20/22/25Mn wt.% alloys range from 15.7 to 32.5 mJ mÿ2

and are noticeably higher than for the other alloys. The
large difference is attributed to both the experimental proce-
dure used to measure cexp [32] and the influence of

2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

on the interfacial energy (which

will be discussed in the following paragraph). The values
of cexp [32] used in the interfacial calculation are higher than
the actual values (as previously discussed) and therefore
result in an overestimate of the interfacial energies for the
binary Fe–Mn alloys. However, the trend in cexp vs. Mn
reported by Volosevich at al. [32] is similar to other works
[27,57,79] and provides confidence that the general trend

Fig. 9. Interfacial energy plotted as a function of 2q DG
fcc!hcp

Chem þ
ÿ

DG
fcc!hcp
Mag Þ for Fe–22/25/28Mn–3Al–3Si, Fe–16/18/20/22/25Mn and

Fe–18Mn–0.6C–0/1.5(Al/Si) wt.% steels. The dashed line represents the

best fit of the calculated interfacial energies.
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in rc/e (which is calculated from cexp) with changes in Mn
content reflects the actual behavior.

In Fig. 9, the values of rc/e are plotted as a function of

2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

for all alloys. The dependence

of rc/e on 2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

is consistent with para-

bolic behavior. In general, as 2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ ��

�

�

�

increases, the term rc/e also increases, indicating that the

interfacial energy is strongly related to DG
fcc!hcp

Chem þ
�

�

DG
fcc!hcp
Mag j. Conversely, as DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

�

�

�

�

approaches 0, where both fcc and hcp phases are equally
favored, the resulting energy increase at the interface
should be near a minimum, as is observed. Therefore,
rc/e can be approximated as a parabolic function of

2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

with a minimum at r
c=e
min:

rc=e ¼ c 2q G
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �ÿ �2

þ r
c=e
min ðmJ mÿ2Þ ð29Þ

where c is a constant determined from fitting to experimen-
tal values. The term r

c=e
min is 9.5 mJ mÿ2 and results from the

minimum fit for the Fe–22/25/28Mn–3Al–3Si and
Fe–18Mn–0.6C–0/1.5(Al/Si) alloys. The constant c of
0.01 was determined by fitting a curve (dotted line in
Fig. 9) to the trend in rc/e as a function of
2q DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

for the Fe–Mn–Al–Si, Fe–Mn–
C–(Al/Si) and Fe–Mn alloys.

Non-monotonic behavior of rc/e as a function of
composition has been reported by other authors. Cotes
et al. [31] showed that rc/e varies as a function of Mn con-
tent for binary Fe–Mn alloys and can be approximated as
an upward opening parabolic curve, with a minimum rc/e

occurring between 20 and 25 wt.% Mn. Mosecker and
Saeed-Akbari [12] reported a similar behavior for the Fe–

Mn–Cr–N system, where rc/e displays parabolic behavior
with additions of nitrogen from 0.2 to 0.9 wt.%. These
studies provide additional confidence that the underlying
cause of the parabolic behavior is due to the relationship
between rc/e and DG

fcc!hcp

Chem þ DG
fcc!hcp
Mag

�

�

�

�, as proposed in
the present work.

4.5. Model validation

The thermodynamic model was used in conjunction with
the empirical relationship for rc=e to predict values of cexp
and compare them with values from the literature. The cal-
culated values of cexp (note: the calculated value includes
2qEstr) are 16.7 and 28.9 mJ mÿ2 for Fe–18Mn–0.6C–0/
1.5Al alloys and exhibit good agreement with experimental
values of 13 ± 3/30 ± 10 mJ mÿ2 [10] and 19.3 ± 2.5/
29.1 ± 2.5 mJ mÿ2 [11], respectively. Jung and De Cooman
[80] reported mechanical twinning in an Fe–18Mn–0.6C–
2.5Al alloy. The calculated values of cexp and c1 for this
alloy are 40.4 and 34.8 mJ mÿ2 (see Table 3), which are
in the SFE range for mechanical twinning as reported by
Allain et al. [25] and in the present work. The calculated
SFE values are reasonable for C contents up to 0.6 wt.%.
In addition, the present SFE measurements for the Fe–
22/25/28Mn–3Al–3Si alloys give confidence that the model
is valid for Al additions up to 3 wt.%.

The range of Si for which the model is valid was tested
by predicting T0 temperatures (defined here as the average
of the e-martensite start (Ms) and austenite start

(As) temperatures and corresponding to DG
fcc!hcp

Chem þ
ÿ

DG
fcc!hcp
Mag Þ ¼ 0) of ternary Fe–Mn–Si alloys and comparing

them to the experimental values reported by Cotes et al.
[73,81]. The results of this comparison are reported in
Table 5. Analysis of the data indicates that good agreement

Table 5

Experimental and calculated T0 temperatures for Fe–Mn–Si ternary alloys.

As (K)a Ms (K)a (As + Ms)/2 (K)a Calculated

(As + Ms)/2 (K)

% Diffb T
fcc
Neel (K)c T

hcp
Neel (K)c DG

fcc!hcp
Chem

(J molÿ1)d
DG

fcc!hcp
Mag

(J molÿ1)d

Fe–17.5Mn–1.9Si 490 436 463 470 2 283 101 ÿ6.0 6.0

Fe–17.4Mn–4.5Si 508 448 478 506 6 217 98 ÿ1.1 1.1

Fe–19.5Mn–2.0Si 480 420 450 454 1 297 112 ÿ8.6 8.6

Fe–22.2Mn–4.0Si 479 410 444.5 449 1 268 125 ÿ5.1 5.1

Fe–24.2Mn–1.9Si 465 399 432 403 ÿ7 336 140 ÿ25.2 25.2

Fe–24.5Mn–4.2Si 465 396 430.5 421 ÿ2 280 138 ÿ8.1 8.1

Fe–26.5Mn–4.7Si 459 376 417.5 394 ÿ6 282 149 ÿ10.7 10.7

Fe–22.9Mn–6.1Si 470 402 436 455 4 222 127 ÿ1.8 1.8

Fe–24.4Mn–6.4Si 464 379 421.5 433 3 226 135 ÿ2.3 2.3

Fe–27.0Mn–5.9Si 453 363 408 387 ÿ5 256 150 ÿ6.8 6.8

Fe–19.9Mn–1.1Si 469 408 438.5 440 0 324 116 ÿ15.2 15.2

Fe–22.1Mn–1.0Si 459 399 429 417 ÿ3 344 129 ÿ25.2 25.2

Fe–22.8Mn–2.8Si 468 401 434.5 429 ÿ1 303 130 ÿ11.4 11.4

Fe–28.4Mn–0.99Si 416 280 348 304 ÿ13 390 165 ÿ201.5 201.5

Fe–28.8Mn–4.74Si 443 351 397 353 ÿ11 296 161 ÿ20.9 20.9

a From Refs. [73,81].
b Difference between calculated and experimental T0 temperatures.
c T

fcc
Neel and T

hcp
Neel calculated from [58,61], respectively.

d DG
fcc!hcp
Chem and DG

fcc!hcp
Mag calculated with present thermodynamic model.
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is achieved between the experimental and calculated T0

temperatures (within 7%) for Si additions up to �6 wt.%
in ternary Fe–Mn–Si alloys. At high Mn contents (28–
29 wt.%), a greater deviation (�11–13%) is observed in
the predicted vs. experimental T0 temperatures. Therefore,
the thermodynamic model is valid for a range of Mn con-
tent from 0 to 29 wt.% [30]. Jeong et al. [11] reported SFE
measurements of 19.3 ± 2.5 and 13.8 ± 2.5 mJ mÿ2 for
paramagnetic Fe–18Mn–0.6C and Fe–18Mn–0.6C–1.5Si
wt.% alloys, respectively, finding that the addition of Si
resulted in a decrease of 3.5 mJ mÿ2 per wt.%. The current
thermodynamic model predicts values of cexp of 17.0 and
15.4 mJ mÿ2 for the same alloys, corresponding to a
decrease in cexp of �1 mJ mÿ2 per wt.% addition of Si. Tian
and Zhang [62] experimentally measured a decrease in cexp
of �2.5 mJ mÿ2 per wt.% addition of Si in Fe–32Mn–0/
4.6Si–0.2C alloys. Whereas the current model improves
upon previous thermodynamic models which report an
increase in SFE for small additions of Si, it would likely
benefit from interaction parameters for Fe–Si–C for the
hcp phase, an observation also shared by Jeong et al.
[11]. Therefore, the model should be limited to Si concen-
trations of up to �1.5 wt.% for alloys with C contents of
�0.6 wt.%.

The values of 2qDGfcc!hcp
Mag , 2qDGfcc!hcp

Chem , 2qEstr and rc=e

determined in this work (Fig. 8) provide a greater under-
standing of the physical phenomena behind the SFE evolu-
tion in Fe–Mn-based steels. Of particular interest is the
interfacial energy parameter, which is typically the largest
parameter to contribute to the SFE in these materials at
RT. This parameter exhibits a minimum near the point at
which the Gibbs free energies of the fcc and hcp phases
are equal and increases when the absolute value of the term

2q DG
fcc!hcp

Chem þ DG
fcc!hcp
Mag

ÿ �

becomes larger (see Fig. 9). In

the present Fe–22/25/28Mn–3Al–3Si steels, for Mn con-

tents greater than �23.5 wt.%, the terms rc=e, 2qDGfcc!hcp
Mag

and 2qDGfcc!hcp

Chem are all positive and increase with Mn con-
tent, resulting in a sharp rise of the SFE. However, for
decreasing Mn content below �23.5 wt.%, only the interfa-
cial energy increases. This results in a much flatter SFE
curve or minimum in this region, observed in both experi-
mental [32,33] and theoretical studies [27,30], before a sub-
sequent increase in SFE occurs with further reductions in
Mn content.

5. Summary and conclusions

In this study the effect of Mn content on the SFE was
investigated by measuring dissociation widths of partial
dislocation pairs in three Fe–22/25/28Mn–3Al–3Si wt.%
alloys, yielding SFE values of 15 ± 3, 21 ± 3 and
39 ± 5 mJ mÿ2, respectively. The strain energy associated
with the contraction in molar volume during the austenite
to ehcp-martensite transformations was determined to be
�1–4 mJ mÿ2, resulting in ideal SFE values of 14 ± 3,
19 ± 3 and 35 ± 5 mJ mÿ2.

A new thermodynamic model for the Fe–Mn–Al–Si–C
system is proposed which determines the chemical and
magnetic components of the difference in Gibbs free energy
of the fcc and hcp phases. The new model provides
improved agreement with experimental observations of
the influence of Si on the SFE in Fe–Mn-based alloys.
The ideal SFE values were used in conjunction with the
thermodynamic phase data to determine the fcc/hcp inter-
facial energies of the three Fe–Mn–(Al–Si) steels, as well as
Fe–Mn and Fe–Mn–C–Al/Si alloys for which experimental
SFE data are available in the literature. Calculations of the
fcc/hcp interfacial energy parameter yielded values ranging
from 8.6 to 11.8 mJ mÿ2 for the Fe–22/25/28Mn–3Al–3Si
and Fe–18Mn–0.6C–0/1.5(Al/Si) wt.% TRIP and TWIP
alloys. The interfacial energy of the binary Fe–Mn alloys
ranged from 15.7 to 32.5 mJ mÿ2. The present work shows
a strong correlation between the value of the interfacial
energy of Fe–Mn–(Al,Si,C) steels and the difference in free
energy of the fcc and hcp phases. An empirical relationship
to describe the interfacial energy is proposed to improve
the accuracy of SFE calculations. The combined thermody-
namic model and empirical relationship exhibits good
agreement with the present SFE measurements and those
in the literature, making it a useful tool for the design of
high-Mn TRIP/TWIP steels. A follow-on study will inves-
tigate the relationship between SFE value, microstructural
evolution and mechanical properties.
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