Introduction to Fracture Mechanics

Dr. Pratheek Shanthraj, Prof. Dr. Dierk Raabe

Department of Microstructure Physics and Alloy Design Düsseldorf, Germany

p.shanthraj@mpie.de

Outline

- Indroduction
- Griffith's energy criterion
- Elastic energy release
- Crack growth resistance
- Crack tip stress fields
- Variational formulation of energy balance
- Phase field numerical implementation
- Examples

Introduction

Introduction

Objectives of Fracture Mechanics

 What is the relationship between material strength and crack size?

Brittle vs Ductile Fracture

- Brittle fracture: No apparent plastic deformation before fracture, unstable crack propagation
- Ductile fracture: Extensive plastic deformation before fracture, stable crack propagation

Historical Developments: Inglis, 1913

 $S_3 = S_1 \overset{\mathcal{R}}{\underset{e}{\circ}} 1 + 2 \frac{b_0}{a_0}$

For a crack,

$$a \rightarrow 0 \Rightarrow S_3 \rightarrow \infty$$

Historical Developments: Griffith, 1921

- Experiments on fracture strength of glass fibers
- Fracture strength increases as fiber diameter decreases

Diameter (10^{-3} in)	Breaking stress (lb/in ²)	Diameter (10^{-3} in)	Breaking stress (lb/in ²)
40.00	24 900	0.95	117 000
4.20	42 300	0.75	134 000
2.78	50 800	0.70	164 000
2.25	64 100	0.60	185 000
2.00	79 600	0.56	154 000
1.85	88 500	0.50	195 000
1.75	82 600	0.38	232 000
1.40	85 200	0.26	332 000
1.32	99 500	0.165	498 000
1.15	88 700	0.130	491 000

TABLE 1.1. Strength of glass fibers according to Griffith's experiments.

Historical Developments: Griffith, 1921

• Glass fibers with artificial cracks reveal a scaling of fracture strength with crack size

	Crack Length, 2a mm	Measured Strength, σ_c MPa	$\sigma_c \sqrt{a}$ MPa $\sqrt{ ext{m}}$
sample 1	3.8	6.0	0.26
sample 2	6.9	4.3	0.25
ample 3	13.7	3.3	0.27
sample 4	22.6	2.5	0.27
(Data fr	om the Griffith experim	ent)	

• All energetic changes are caused by changes in crack size:

$$\frac{\P W}{\P a} = \frac{\P U_e}{\P a} + \frac{\P U_i}{\P a} + \frac{\P U_k}{\P a} + \frac{\P U_G}{\P a}$$

• For brittle materials and slow processes:

$$\mathsf{P} = \boldsymbol{U}_{\mathsf{e}} - \boldsymbol{W} \mathrel{\triangleright} - \frac{\P \mathsf{P}}{\P \boldsymbol{a}} = \frac{\P \boldsymbol{U}_{\mathsf{G}}}{\P \boldsymbol{a}} = 2g_{\mathsf{s}}$$

 g_s : Energy required to form a unit surface area

ullet

Griffith's Energy Balance

• Using Inglis's solution for an elliptical crack:

$$W = \rho a^{2} B \frac{S^{2}}{E} \qquad U_{G} = 4 a B g_{s}$$
$$P - \frac{\P P}{\P a} = 2\rho a B \frac{S^{2}}{E} \qquad \frac{\P U_{G}}{\P a} = 4 B g_{s}$$

 $S_c = \sqrt{\frac{2Eg_s}{\rho a}}$

From energy balance:

Energy Balance for Ductile Materials

• Irwin, Orowan (1948):

$$S_c = \sqrt{\frac{2E(g_s + g_p)}{\rho a}}$$

 g_s : Plastic work per unit surface area created

- Typically in metals, $\mathcal{G}_p \gg 1000 \mathcal{G}_s$
- Not a material constant

 $G = -\frac{\P P}{\P a}$

- G: Energy released during fracture per created crack surface area
- Energy release rate failure criterion,

$$\boldsymbol{G}^{3}\boldsymbol{G}_{c}=2\left(\boldsymbol{\mathcal{G}}_{s}+\boldsymbol{\mathcal{G}}_{p}\right)$$

Fixed grips

Dead loads

Energy Release Rate Measurement

u

$$G = rac{1}{B} rac{\mathrm{shaded \ area}}{a_4 - a_3}$$

Max-Planck-Institut für Eisenforschung GmbH.

Crack Growth Resistance Curve

• Energy balance with plasticity:

$$-\frac{\P P}{\P a} = \frac{\P U_G}{\P a} + \frac{\P U_i}{\P a}$$
$$R^{\circ} \frac{\P U_G}{\P a} + \frac{\P U_i}{\P a} \qquad R: Crack growth resistance$$

- R increases with growing crack size in plastic materials
- Not a material constant

• Flat R-Curve: Brittle materials

R-Curves: Ductile

• Rising R-Curve: Ductile materials

Crack Modes

Mode I: Opening

Mode II: In-plane shear Mode III: Out-of-plane she**ar**

Crack Tip Stress Field: Mode I

• Westergaard (1937)

$$S_{xx} = \frac{K_{l}}{\sqrt{2\rho r}} \cos \frac{q}{2} \frac{\&}{e} 1 - \sin \frac{q}{2} \cos \frac{3q}{2} \frac{\ddot{0}}{\dot{0}}$$

$$S_{yy} = \frac{K_{l}}{\sqrt{2\rho r}} \cos \frac{q}{2} \frac{\&}{e} 1 + \sin \frac{q}{2} \cos \frac{3q}{2} \frac{\ddot{0}}{\dot{0}}$$

$$t_{xy} = \frac{K_{l}}{\sqrt{2\rho r}} \cos \frac{q}{2} \sin \frac{q}{2} \cos \frac{3q}{2}$$

Crack Tip Stress Field: Mode II

 K_{I}, K_{II} : Stress intensity factor

K-G relationship

Work to required to open a crack, G, is the same as the work required to close a crack

$$DW = \int_{0}^{Da} S_{yy} u_{y} dx$$

$$u_{y} = \frac{(k+1) K_{I} (a + Da)}{2m} \sqrt{\frac{Da - x}{2p}}$$

$$S_{yy} = \frac{K_{I} (a)}{\sqrt{2px}}$$
(a)

B=I (unit thickness)

u_v

K-G relationship

Mode I

$$\label{eq:GI} G_I = \begin{cases} \frac{K_I^2}{E} & \text{plane stress} \\ (1-v^2) \frac{K_I^2}{E} & \text{plane strain} \end{cases}$$

Mixed mode

$$egin{aligned} G = rac{K_I^2}{E'} + rac{K_{II}^2}{E'} + rac{K_{III}^2}{2\mu} \end{pmatrix} \quad E' = \left\{ egin{aligned} rac{E}{1-
u^2} & ext{for plane strain} \\ E & ext{for plane stress} \end{aligned}
ight.$$

Varational Brittle Fracture: Francfort, Bourdin

Formulate Griffith's energy balance as a minimum energy principle

$$\frac{\partial P}{\partial a} + \frac{\partial U_{G}}{\partial a} = 0 \longrightarrow \min_{a} (P + U_{G})$$

• Couple with mechanics

$$\min_{u,a} \int_{W} P(u,a) dW + \int_{a} 2g_{s} da$$

Phase Field Regularization

- Minimization over all possible crack surfaces is numerically challenging
- · Phase Field approximation of the surface integral

$$\min_{u,\varphi} \underbrace{\int_{\Omega} \varphi^2 \Pi(u) d\Omega}_{\text{Elastic energy}} + \underbrace{\int_{\Omega} 2 \left(\gamma_s \ell \left| \nabla \varphi \right|^2 + \frac{\gamma_s}{\ell} (1 - \varphi)^2 \right) d\Omega}_{\text{Surface energy}}$$

• Starionary condition:

$$\nabla \cdot j^{2} \frac{dP}{d\nabla u} = 0 \qquad 2g_{s}\ell Dj - \frac{g_{s}}{\ell}(1-j) - 2jP = 0$$

Examples

• PolyCrystalline fracture mechanics

Parameter	Unit	Value
C_{11}	GPa	168.0
C_{12}	GPa	121.4
C_{44}	GPa	28.34
$\dot{\gamma}_0$	s^{-1}	1e-3
n		20
g_0	MPa	31
g_∞	MPa	63
a		2.25
h_0	MPa	75
coplanar $h_{\alpha\beta}$		1
non-coplanar $h_{lphaeta}$		1.4
G_0	Jm^{-2}	1.0
l_0	μm	1.5
М	s^{-1}	0.01

Examples

• Evolving crack patterns

(b)

Max-Planck-Institut für Eisenforschung GmbH.

Examples

• Elastic energy release and crack tip stress

(a)

(c)

(b)

DAMASK - The Düsseldorf Advanced Material Simulation Kit is free software licensed under the terms of the GNU General Public License.

damask.mpie.de