Mechanical size effects: Experiments and mechanisms

By

Dr Nagamani Jaya Balila

Structure and Nano-/Micromechanics of Materials Max Planck Institut fuer Eisenforschung GmbH Duesseldorf

Prof D. Raabe (MPIE)

Prof G. Dehm (MPIE)

Dr R. Raghavan (MPIE) (contributory slides)

Dr S. Sandlobes (MPIE)

- Dieter, G. E. Mechanical Metallurgy. New York, NY: McGraw-Hill, 1986. ISBN: 9780070168930
- Courtney. Mechanical Behavior of Materials
- Bacon, D. J., and D. Hull. Introduction to Dislocations. New York, NY: Pergamon Press, 1984. ISBN: 9780080287201
- Reed-Hill, Robert E., Reza Abbaschian, and Lara Abbaschian. Physical Metallurgy Principles. 4th ed. Stamford, CT: Cengage Learning, 2008. ISBN: 9780495082545.
- <u>www.ocw.mit.edu</u>
- Anthony C. Fischer-Cripps, Nanoindentation, ISBN: 978-1-4419-9871-2 (Print) 978-1-4419-9872-9 (Online)
- K. L. Johnson, Contact Mechanics, ISBN: 9780521347969
- B R Lawn and T R Wilshaw. Fracture of Brittle Solids.
- Reviews: J. Greer et al., O. Kraft et al., G. Dehm et al., A. A. Volinksy. B. N. Jaya and V. Jayaram

Revision

Mechanical size effects – why do they occur?

Continuum mechanics (Also thought of as 'bulk' / macro – mechanics)

- Materials are assumed to be devoid of microstructural discontinuities
- Materials can be subdivided into infinitesimal elements with the same properties

Property ≠ f (size)

- Several observations revealed that materials behave differently at small length scales, both during intrinsic and extrinsic miniaturization
- Testing materials at the desired length scales using conventional testing methods Miniaturization!

Motivation: Why study size effects?

Fundamental changes in material's mechanical response observed with:

1. Decreasing internal microstructural length scale (intrinsic)

2. Decreasing external dimensions of devices and applications (extrinsic)

issue phase

Motivation: Age of miniaturisation

Nanostructured materials have potential applications as :

- Builiding block for electronic devices like silicon nanowires in integrated circuits (mech. integrity, carrier mobilities under strain)
- ZnO nanowires in "nanogenerators"
 (bending strength, piezoelectric properties)
- Building blocks in nanoelectromechanical systems Magnetic nanowires for the artificial nose/ear projects
- End-effectors for scanning probe tips
 (tip-enhanced Raman spectroscopy, high-aspect ratio tips)

Motivation: Why study size effects?

Academic: To discern fundamental material behavior, which is increasingly being seen to be different at smaller length scales. Macroscopic single crystals in sizes that are suitable for conventional testing techniques are difficult to process or unaffordable.

□ Industrial:

- Nanomaterials (with awesome properties) are impossibly difficult to obtain in bulk form currently. They have to be studied at the smallscale in free-standing or thin film form.
- Increasing device miniaturisation in the micro-electro-mechanical space routinely uses wafers and thin films, whose performance is directly connected to their behavior at these length scales

Size effect (extrinsic): decreasing specimen dimension

DBTT due to sample size

Si (100) Increasing pillar diameter

Device miniaturization and its sid(z)e effects

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

DelRio et al., Appl Phy Rev, 2015 1

10

Size effect (intrinsic): Macro to meso to micro structure

Structural material: Natural: Bone

Size effect: Change in deformation mechanism

Strengthening mechanisms observed in bulk materials

- Dislocation source activation and multiplication
- Precipitation hardening
- Solid solution strengthening
- Grain boundary strengthening

In general: Strength increases Ductility decreases Fracture toughness remains constant

Nanostructured materials (geometry/microstructure)

- Sputtering
- Evaporation
- Electrodeposition
- Severe plastic deformation

Methods: From macro to micro-mechanics

Tension-compression

Instron UTM

- Sample size ~100mmX10mmX10mm
- Load range
 0 to 5kN-500kN
- Load resolution
 (1/1000 of load cell) ~5N
- Displacement range 0 to 100mm-150mm
- Displacement rate
 1 to 5e5 μm/min

http://www.instron.com/enus/products/testingsystems/universal-testingsystems/electromechanical

Kamrath and Weiss

- Sample size
 60 mm X 10 mm X 3mm
- Load range 0 to 5kN
- Load resolution 0.2N
- Displacement range +/- 10mm
- Displacement rate
 6 to 1200 μm/min

http://www.kammrathweiss.com/en/products/m aterials/tensilecompression.html

Nano Tensile

- Sample size
- Load range 0 to 150mN - 10N
- Load resolution 10nN - 1μN
- Displacement range
 0 to 80μm 150mm
- Displacement resolution
 0.02 nm 100nm
- Displacement rate 0.1 to 20 μm/s

Hysitron nanoTensile 5000 sell sheet

Methods: Small-scale mechanical testing

Hysitron Inc, USA

Methods: Testing techniques for deformation

Indentation

Compression Testing

Tensile Testing

Bending Experiments

MEMS based Testing

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

B. N. Jaya and V. Jayaram, Current Science, 2013 15

Methods: Testing techniques for fracture

5 µm

Methods: Specimen preparation

Lithography

4) Exposure

3) Prebake

7) Hardbake

8) Etching

9) Stripping

http://www.wias-berlin.de/

Methods: Specimen preparation

FIBtec.html

Methods: Specimen preparation

FIB micromachining: Site specific

Volkert and Minor MRS Bulletin 32 (2007) 389

Kiener et al., Materials Science and Engineering A 505 (2009) 79–87

Nanoindentation

Mechanical probing of a material surface to nm-scale depths, while simultaneously monitoring LOAD and DEPTH.

DISPLACEMENT, h

https://www.youtube.com/watch?v=AEatCyb1t-A

- Flat specimen polished
 (Film low surface roughness)
- Small volumes of material
- Large plastic strains can be applied

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Oliver and Pharr, J. Mater. Res. 7 (1992) 1564

Micro compression-tension

Micro compression-tension

- Constant deformation volume
- Pre-defined volume before and after deformation, and in situ testing
- Straight forward stress-strain analysis:

Uchic et al. Science 305 (2004) 986.

As compared to indentation testing

Microbeam bending and fracture:

Dehm et. al, Adv Eng Mater, 2006

Jaya et. al, Phil Mag, 2012

Methods: Effect of test geometry

W h a 2d 10 μm

$$K_I = \sqrt{3} \frac{(e - \mu h)}{bd^{3/2}} F_{max}$$

$$K_c = \frac{\gamma F_{max}}{R^{3/2}}$$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

B. N. Jaya et al, JMR, 201524

Methods: Effect of test geometry

a) Single cantilever bend K_{IC} (MPam^{1/2}): 0.76±0.08

b) Clamped beam bend K_{IC} (MPam^{1/2}): 0.81±0.10

c) Double cantilever compression K_{IC} (MPam^{1/2}): 0.89±0.12

d) **Pillar split** K_{IC} (MPam^{1/2}): **0.75±0.016***

d (nm)

Sample preparation: Ion damage effects (FIB)

Sample testing: Indentation

- Pile-up, sink-in corrections
- Tip rounding and tip area calibration
- Substrate compliance
- Thermal drift
- Surface roughness

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Pharr et al. Annu. Rev. Mater. Res. 40 (2010) 27127

Sample testing: Micro-compression

Sample testing: Alignment in tension

160

140

tensile stress [MPa] 00 001 09 001

40

20

0

n

3°

0.002

oure tension

0.008

at 0.9% strain

0.01

.5° at 0.9% strain .75° at 0.9% strain • Sufficient stiffness of all involved parts (like copper needle or tungsten gripper)

Kiener et al., Acta Materialia 56 (2008) 580-592

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

tensile strain [-]

0.006

0.004

misaliğnm

Effect of test geometry

Prediction (MPa m ^{1/2})	Measurement (MPa m ^{1/2})	Test method ^a	Reference
$T_{(111)} = 0.72$	0.65 ^b	DCB, $E = 168$ GPa	34
()	0.65 ^b	DCB, $E = 168$ GPa	35
	0.937	T-DCB	36
	1.0	DT	38
	0.9	T-DCB	37
$0.73 < T_{(110)} < 0.80$	0.74 ^b	DT, $M = 150$ GPa	39
(110)	0.72	DCB	41
	0.65	SECB	43
	0.71	SECB	44
	0.95	SECB	45
	0.84	COD	42
$T_{(\text{poly})} \approx 0.80$	1.1	SECB	46
	0.81	SECB	47
	1.0	SECB	48 and 49

Single and polycrystalline Si

DelRio et al., Appl Phy Rev, 2015

Cementitious material

C. Ouyang and S.P. Shah, J. Amer. Ceram. Soc., 1991

Results and Discussion:

Extrinsic size effects: Plane stress vs strain

Extrinsic size effects: Plane stress vs strain

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Kang et al, Exp Mech 2005

Extrinsic size effects: Effect of surface

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Dong II Son, Key Eng Mater, 2005

Extrinsic size effects: Effect of surface

Effect of thin film thickness

Extrinsic size effects: Indentation size effect

Density of geometrically necessary dislocations:

$$\rho_g = \frac{3h}{2ba^2} = \frac{3}{2} \frac{\tan^2 \theta}{bh}$$

X. Hou et al., J Appl Phy, 2013

Extrinsic size effects: GNDs and strain gradient plasticity

(c)

Fig. 1. Plastic strain gradients are caused by the geometry of deformation (a, b), by local boundary conditions (c, d) or by the microstructure itself (e, f).

Extrinsic-Intrinsic borderline: No microstructure

Amorphous structures: Metallic glasses

Add microstructre

Ductile materials: FCC metals: Smaller is stronger, universal relationship

Semi-Ductile materials: BCC metals: Smaller is stronger but no universal relationship

Dislocation starvation vs dislocation source truncation

Greer and Nix, PRB, 2006

Intrinsic size effects

Intrinsic size effects: Effect of grain size

Intrinsic size effects: Effect of grain size

Intrinsic size effects: Effect of grain size

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

45

Intrinsic size effects: Poly-crystals

(Inverse) Hall-Petch

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Arzt., Acta Mat, 1998

Intrinsic size effects: Poly-crystals

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Mohamed et al., Met Trans, 2010

Intrinsic size effects: Effect of microstructure

Fracture toughness of polycrystalline materials

Intrinsic size effects: Multilayers-interface effects

Intrinsic size effects: Multilayers-interface effects

Confined layer slip

Intrinsic size effects: Architectured interface

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Sen and Buehler, Scientific reports, 2011

Case study I: NiAl bond coats

Complex, heterogeneous microstructure with 4 distinct zones

220	Coating	Substrate -70	0 10 -		Coating	Substrate	- 70	
220 -) 9-	I	M	MA	- 60	
200 -		- 50) -	Ā	www.ylyT f		- 50	
- 001 a)			(at%) GPa)				- 40 (%) (at%)	
ш 180- 170		-30	ŢŢŢŢ				- 30 ^Ξ	
170 - 160 -		- 20	6-	MA			- 20	
150 -		- 10	5 -	1		ŢŢŢŢŢŢŢ	- 10	
0 20 40 60 80 100 120 140 160 180			+					
Distance (microns)				Distance (microns)				
]	Micro	-scale frac	cture	K _{IC} / bulk	
			$]$ $K_{\rm IC}/L$	Micro EFM	-scale frac K _{IC} / EPFM	cture K _{IC} / CTOD	K _{IC} / bulk	
NiAl s	oft [110]		$K_{\rm IC}/L$	Micro efm	-scale frac K _{IC} / EPFM 3.5 ²	ture K _{IC} / CTOD 1.8 ²	K _{IC} / bulk 1.8-4.5 ³	
NiAl s NiAl h	oft [110] nard [100]			Micro efm	-scale frac $K_{IC}/$ EPFM 3.5^2 8.6^2	ture $K_{IC}/_{CTOD}$ 1.8^2 7.9^2	K _{IC} / bulk 1.8-4.5 ³ 6.9 ³	
NiAl s NiAl h NiAl b	oft [110] hard [100] bond coat (low	Al activity)		Micro efm	-scale frac $K_{IC}/$ EPFM 3.5^2 8.6^2 N.A	ture $K_{IC}/_{CTOD}$ 1.8^2 7.9^2 N.A	K _{IC} / bulk 1.8-4.5 ³ 6.9 ³ N.A	

[1] F. Iqbal, Ast, M. Goeken and K. Durst, Acta. Mater. 60, 1193 (2012).

2] J. Aston Przybilla, V. Maier, K Durst and M. Goeken, J. Mater Res. 29, 2129 (2014).

13 . B. Miracle, Acta. Metall. Mater. 41, 649, (1993).

4] R. Webler, M⊖Krottenthaler, S. Neumeier, K. Durst and M. Göken, Int. Symp. Superalloys, 93 (2012).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany ayaram, Phil. Mag, (2015).

Pop-in load/change in compliance correlated with crack initiation or propagation event

micro / nano mechanics Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Jaya et. al, Phil Mag, 2012

Fracture toughness as a function of matrix stoichiometry

Toughening mechanisms in individual zones at the micron-scale

What did we learn? :

micro / nano mechanics

- Intrinsic fracture toughness K_{IC} increases with Ni:AI ratio across the bond coat
- Crack closure and rising fracture toughness seen at micron-length scales
- Toughening mechanisms vary depending on the zone.

- •There is no universal size effect across all length scales and all material systems
- •Each material property responds differently to length scale effects
- •There is a need to study each material system at the length scale regime at which it is applicable (designed for service)

Thank you for your attention!!

EDSA 2015

