Integrated micromechanical experimentation and simulation for complex alloys

12.06.15 Aachen / Germany

Motivation

*Insurance Institute for Highway Safety, <u>http://youtu.be/joMK1WZjP7g</u>

Integrated computational materials engineering (ICME)

- Materials innovations are the core of (all!) technological advances ③
- Technological advances are <u>dependent</u> on materials innovations

ICME:

• Problem: Product design rate >>> materials development rate

- **Problem**: Product design rate >>> materials development rate
- Solution: integrated optimization of design-manufacturing-materials

ICME Strategy

- Problem: Product design rate >>> materials development rate
- Solution: integrated optimization of design-manufacturing-materials

ICME Example: Virtual Aluminum Castings

Integration & validation (very) challenging!

Integrated in-situ experiments & full-field crystal plasticity simulations to analyze stress –strain partitioning in multi-phase alloys

C. Tasan, <u>D. Yan, M. Diehl</u>, C. Zambaldi, P. Shanthraj, P. Eisenlohr, F. Roters, D. Raabe

Tasan, Yan, Diehl, et al.,Acta Materialia,2014

Tasan, Hoefnagels, et al.,

Int. J. of Plasticity, 2014

Yan, Tasan, Raabe, Acta Mater

Acta Materialia, 2015

Goal & challenges

Goal (i): direct link between microstructure-properties
 (ii):micro-mechanics based alloy design (guidelines)

Needed

> Needed: evolution of (i) micro-structure (ii) micro-strain (iii) micro-stress

Need	Got	OK?	Challenges	Solutions
Microstructure				
Strain				
Stress				

In-situ SEM – Imaging modes

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		 Surface Strain level Pattern-free 	
Strain				
Stress				

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD	$\bigcirc \circ \circ$	 Surface Strain level Pattern-free 	
Strain				
Stress				

Introduction

Microstructure

FIB holes

Grid

Annealed Ag

Challenge

Microstructure-based pattern

Artificial pattern

IDEAL CASE: Selective Imaging

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		 Surface Strain level Pattern-free 	
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	
Stress				

Overview

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD	\bigcirc	 Surface Strain level Pattern-free 	
Strain	• μ-DIC		 Selective imaging Strain level Resolution 	
Stress		\bigcirc		

Overview

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		 Surface Strain level Pattern-free 	
Strain	• μ-DIC		 Selective imaging Strain level Resolution 	
Stress	• CP	$\bigcirc \circ \circ$	 Microstructure Phase properties Efficiency 	

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD	$\bigcirc \circ$	• Surface • Strain level • Pattern-free	
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	
Stress	• CP	$\bigcirc \circ \circ$	 Microstructure Phase properties Efficiency 	

Methodology – Example of DP Steel

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		 Surface Strain level Pattern-free → 	• SiO ₂
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	
Stress	• CP?	$\bigcirc \circ \circ$	 Microstructure Phase properties Efficiency 	

Inlens Imaging (ii)

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		• Surface • Strain level • Pattern-free	• SiO ₂
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	→Inless detector →SiO ₂ >SiO ₂
Stress	• CP?	$\bigcirc \circ \circ$	 Microstructure Phase properties Efficiency 	

Serial sectioning

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD	$\bigcirc \circ \circ$	• Surface • Strain level • Pattern-free	 3D sectioning No solution SiO₂
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	 Inless detector SiO₂ SiO₂
Stress	• CP?	$\bigcirc \circ \circ$	 Microstructure Phase properties Efficiency 	

Methodology – Example of DP Steel

Methodology – Crystal plasticity simulations

-Phenomenological bcc model (Peirce et al., 1982) implemented in DAMASK (Roters et al., 2010)

Need	Got	OK?	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD		 Surface Strain level Pattern-free 	 3D sectioning No solution SiO₂
Strain	• µ-DIC		 Selective imaging Strain level Resolution 	 Inless detector SiO₂ SiO₂
Stress	• CP?		Microstructure Phase properties Efficiency	 EBSD to model Indentation & CP Spectral

Typical results

Micro- and nano-scale access to the evolution of: strain, stress, texture, phase morphology, phase stability, defect density, damage, surface topography, etc! **Crystal Plasticity**

4.0

/GPa

Results – resolution & strain level

Results – Experiments vs simulation results (i)

Results – Experiments vs simulation results (ii)

Results – Damage sites

Damage-resistant microstructural constituents

Accumulative roll bonding

• Processing of different martensite ferrite configurations underway

Springer, Tasan et al., JMR, 2014

- New method to investigate bulk nanostructured alloys
- Provides microstructural design guidelines for damage-resistance

Need	Got	Challenges	Solutions
Microstructure	• SEI • ECCI • EBSD	• Surface • Strain level • Pattern-free	 3D sectioning No solution SiO₂
Strain	• µ-DIC	 Selective imaging Strain level Resolution 	 Inless detector SiO₂ SiO₂
Stress	• CP?	Microstructure • Phase properties • Efficiency	 EBSD to model Indentation & CP Spectral

[Tasan et al.,ActaMat, 2014] [Tasan et al.,IJP, 2014] [Eisenlohr et al.,IJP, 2013] [Zambaldi et al.,JMR, 2013]

Understanding Martensitic Steels and Design of TRIP-Maraging Steels C.C. Tasan, M. Wang, L. Morsdorf, D.Ponge, D. Raabe

Wang, Tasan, et al.,	Acta Materialia,	2014
Wang, Tasan, et al.	Acta Materialia,	2015
Morsdorf, Tasan, et al.	Acta Materialia,	2015

Why martensite?

Why challenging?

Why challenging? (ii)

Results

Max-Planck-Institut für Eisenforschung GmbH

Lutz Morsdorf

TMS 2015, Orlando (FL) 46

In-situ bending – coarse laths

In-situ bending – coarse laths

D. Yan MPIE

Ductile boundaries?

Own data

Morito et al., ISIJ Int., 51 (2011)

D. Yan MPIE

Coarse lath effect?

Methodology (B) – Microstructure design

Design of ductile martensitic steels

- Chemical composition: Fe9Mn3Ni1.4Al0.01C (wt.%)
- Cast in vacuum, hot rolled (1100°C) & homogenized (1100°C, 1h)
- Aging (for austenite reversion and maraging)

D. Yan MPIE

Mechanical properties

Wang, Tasan et al., Acta Mat (2014) Wang, Tasan et al., Acta Mat (2015)

dislocation-free bulk shear mechanism

[Saito et al., Science, 2003]

conflicting results in literature

Bulk Shear [Withey et al., ActaMat, 2010]

Real deformation mechanism

D. Yan MPIE

New gum metals? Phase diagram calculations from *ab initio*

Huang, Grabowski, Tasan, et al., submitted (2015)

- ICME new field, strongly needed for innovation.
- Integrated use of computational and experimental techniques is crucial, but brings in many challenges
- In MPIE, we couple
 - crystal plasticity & in-situ deformation experiments
 - diffusion simulations & alloy design
 - atomistic simulations & alloy design

— ...