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Abstract

Several strain gradient plasticity formulations have been suggested in the literature to account for
inherent size effects on length scales of microns and submicrons. The necessity of strain gradient
related terms render the simulation with strain gradient plasticity formulation computationally very
expensive because quadratic shape functions or mixed approaches in displacements and strains are
usually applied. Approaches using linear shape functions have also been suggested which are, how-
ever, limited to regular meshes with equidistanced Finite Element nodes. As a result the majority of
the simulations in the literature deal with plane problems at small strains. For the solution of general
three dimensional problems at large strains an approach has to be found which has to be computa-
tionally affordable and robust.

For this goal a strain gradient Finite Element approach is suggested where elements with linear
shape functions are applied in combination with a patch projection technique well known from error
indication and adaptive mesh procedures. This approach is applied to a strain gradient crystal plas-
ticity formulation where strain gradients are incorporated in terms of geometrically necessary dislo-
cation densities. Simulation results of size dependent problems, including laminates in simple shear
and a three dimensional contact problem, are presented and discussed to assess the performance of
the suggested approach.
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1. Introduction

The increasing demand of components and material systems with dimensions in the
micron and sub-micron range make a reliable prediction of the mechanical and material
responses ever more desirable. Quite many strain gradient material formulations have
been suggested for such applications in recent years which can be physically motivated
by the notion of geometrically necessary dislocations providing additional hardening to
the material (see, e.g., Fleck et al., 1994; Wang et al., 2004; Zaafarani et al., 2006).

The incorporation of strain gradient related terms in the material formulation requires
non-conventional numerical treatments. Although the incorporation of strain gradients in
Finite Element approaches with quadratic shape functions or mixed degrees of freedom in
displacement and strains can be achieved on element level (Shu et al., 1999; Liebe and
Steinmann, 2001; Meissonnier et al., 2001; Bittencourt et al., 2003; Soh and Wangji,
2004 and Cheong et al., 2005), these Element formulations are known to be computation-
ally very costly and lack of robustness in large strain applications. Consequently, these for-
mulations have been mostly applied to two dimensional problems at small strain.

For material models with micro-forces conjugated to strain gradient terms (e.g. Fleck
and Hutchinson, 1997; Gao et al., 1999; Huang et al., 2000; Menzel and Steinmann,
2000; Yefimov et al., 2004; Mesarovic, 2005; Clayton et al., 2006) mixed element formu-
lations are inevitable because of additional boundary conditions. In most applications,
however, the micro-forces have arguably a quite limited impact in the interior of the
material and their effect is rather limited to the close vicinity of the boundary (Huang
et al., 2004). In the close neighborhood of boundaries (less than about 0.3 lm), however,
the material often exhibits mechanisms which may not merely be resolved with contin-
uum mechanics alone and is usually strongly dependent on the surface or interface char-
acteristics (see, e.g., Han et al., 2006), which renders these micro-forces somewhat
questionable.

For strain gradient models where micro-forces are not incorporated (e.g. Acharya and
Bassani, 2000; Evers et al., 2002; Ohashi, 2004, 2005; Han et al., 2005a; Abu Al-Rub and
Voyiadjis, 2006) higher order elements can be avoided by using the data of neighboring
elements in the iteration process, as suggested in Ohashi (1997, 2004); Abu Al-Rub and
Voyiadjis (2005) and Ma et al. (2006). These approaches, however, can only be used for
regular meshes with equidistanced Finite Element nodes and are therefore limited in their
applications. To overcome such limitations applying linear shape functions, a numerical
approach is suggested in this article incorporating the patch recovery technique (Zie-
nkiewicz and Zhu, 1987, 1992a,b) – well known from error indication and adaptive Finite
Element approaches – for the determination of the strain gradients. These strain gradients
from the patch recovery procedure are then incorporated into a modified Newton–Raph-
son iteration scheme. As material formulation a rather complex strain gradient crystal
plasticity description is applied (Ma et al., 2006), formulated in terms of dislocation den-
sities and adopting the concept of geometrically necessary dislocations. Generally, how-
ever, the suggested application of the patch projection procedure for the evaluation of
strain gradient related terms can be applied to any other strain gradient or non-local mate-
rial description where micro/higher order forces are not incorporated. The here applied
material formulation is introduced in the next section followed by the suggested numerical
approach incorporating the patch recovery procedure. Two numerical examples are pre-
sented and discussed to illustrate the performance of the suggested approach.

C.-S. Han et al. / International Journal of Plasticity 23 (2007) 690–710 691
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2. Dislocation based non-local crystal plasticity model

The applied material formulation is only briefly summarized in the following, the
detailed description and derivation is rather lengthy and omitted for brevity. More details
can be found in Ma and Roters (2004); Ma et al. (2006). For clarity of the notation we
recall the standard multiplicative decomposition of deformation gradient (1) where the lat-
tice rotation Rw is included in Fe and plastic slip is represented by Fp. In the intermediate
configuration eB, the plastic velocity gradient can be expressed by (3), where _ca denotes the
plastic shearing rate, ~da the slip direction, and ~na the slip plane normal of slip system a ineB with j~daj ¼ j~naj ¼ 1 and ~da � ~na ¼ 0. Further important equations are listed in Table 1,
where s denotes the Kirchhoff stress tensor and eKe the elasticity tensor in eB.

The material model is formulated in terms for evolution equations for different disloca-
tion densities resolved to individual slip systems (see Ma et al., 2006; Ma and Roters, 2004;
Roters, 2003). The concept of dividing the dislocation density into statistically stored qSS

and geometrically necessary dislocation densities qGN is applied (Fleck et al., 1994), where
different dislocation density classes are distinguished in the hardening description related
to each individual slip system (Arsenlis and Parks, 1999; Evers et al., 2002; Ma et al.,
2006). The flow rule and hardening description for the dislocation density based material
formulation are given in Table 2, where the interaction coefficients, vab, in Eqs. (13 and
14), can be found in Arsenlis and Parks (1999). The evolution equations for the statistical
stored qa

SS and geometrically necessary dislocation densities qa
GN associated to a slip system

a are given in Tables 3 and 4, respectively.
The material formulation incorporates rate and temperature dependence and necessi-

tates the material parameters c1, . . . , c8 and physical constants of the material, i.e. Boltz-
mann constant KB, Burgers vector length b, shear modulus G, Poisson’s ratio m, and the
effective activation energy for dislocation slip Qslip and climb Qbulk, respectively. As Qslip

and Qbulk are very difficult to determine, both parameters can be considered to actually be
material parameters. The temperature of the material is denoted by h. It should be care-
fully noted that with the gradients in _caFT

p in Eqs. (20)–(22) of Table 4 the material formu-
lation renders to be non-local. For clarity, the rotation or Curl of a tensor field applied in

Table 1
Kinematic relations in the intermediate configuration eB
Deformation gradient : F ¼ FeFp ð1Þ
Velocity gradient : l ¼ le þ Fe

eLpF�1
e with le ¼ _FeF

�1
e and eLp ¼ _FpF�1

p ð2Þ
Plastic velocity gradient : eLp ¼

X
a

_ca~da � ~na ð3Þ

Lagrangian strain tensor : eE ¼ 1

2
ðFT

e Fe � F�T
p F�1

p Þ ¼ eEe þ eEp ð4Þ

eEe ¼
1

2
ðFT

e Fe � 1Þ and eEp ¼
1

2
ð1� F�T

p F�1
p Þ ð5Þ

2nd Piola–Kirchhoff stress : eS ¼ F�1
e sF�T

e ð6Þ
Elastic relation : eS ¼ eKe

eEe ð7Þ
Mandel stress : eP ¼ ð1þ 2eEeÞeS ¼ eCe

eS ð8Þ
Resolved shear stress : sa ¼ eP � ð~da � ~naÞ where A � B ¼

X
ij

AijBij ð9Þ
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Table 4 is given by rX � T ¼ CurlT ¼ �irs
oT js

oX r
ei � ej where �irs denotes the permutation

symbol and ei are the orthonormal coordinate vectors to Xi in the reference configuration
B0. It might be noteworthy that the expressions (20)–(23) are derived via

Table 2
Dislocation density based crystal plasticity model

Flow rule : _ca ¼ _c0 sinh �
Qslip

KBh
1�
jsaj � sa

pass

sa
cut

� �� �
signðsaÞ ð10Þ

Reference shear rate : _c0 ¼
KBhm0

c1c3Gb2

ffiffiffiffiffi
qa

P

p
ð11Þ

Passing stress : sa
pass ¼ c1Gb

ffiffiffiffiffi
qa

P

p
; Cutting stress : sa

cut ¼
Qslip

c2c3b2

ffiffiffiffiffiffi
qa

F

p
ð12Þ

Forest dislocation with ~ta ¼ ~da � ~na : qa
F ¼

XN

b¼1

vab½qb
SS j cosð~na;~tbÞ j

þ j qb
GNs cosð~na; ~dbÞj þ jqb

GNet cosð~na;~tbÞj
þ jqb

GNen cosð~na; ~nbÞj� ð13Þ

Parallel dislocation : qa
P ¼

XN

b¼1

vab½qb
SSj sinð~na;~tbÞj þ jqb

GNs sinð~na; ~dbÞj

þ jqb
GNet sinð~na;~tbÞj þ jqb

GNen sinð~na; ~nbÞj� ð14Þ

Table 3
Evolution of the statistically stored dislocation density

Statistical stored dislocation density : _qa
SS ¼ ð _qaþ

SS Þlocks þ ð _qaþ
SS Þdipole þ ð _qa�

SS Þathermal þ ð _qa�
SS Þthermal

Lock formation : ð _qaþ
SS Þlocks ¼ c4

ffiffiffiffiffiffi
qa

F

p
_ca ð15Þ

Dipole formation : ð _qaþ
SS Þdipole ¼ c6da

dipoleq
a
M _ca ð16Þ

where da
dipole ¼

ffiffiffi
3
p

Gb
16pð1� mÞ ðjs

aj � sa
passÞ

�1 and qa
M �

2KBh

c1c2c3Gb3

ffiffiffiffiffiffiffiffiffiffi
qa

Pq
a
F

p
Athermal annihilation : ð _qa�

SS Þathermal ¼ �c5q
a
SS _ca ð17Þ

Thermal annihilation : ð _qa�
SS Þthermal ¼ �c7 exp �Qbulk

KBh

� �
jsaj
KBh
ðqa

SSÞ
2ð_cÞc8 ð18Þ

Table 4
Evolution of geometrically necessary dislocation density

Geometrically necessary dislocation density :

ð _qa
GNÞ

2 ¼ ð _qa
GNsÞ

2 þ ð _qa
GNetÞ

2 þ ð _qa
GNenÞ

2 ð19Þ

_qa
GNs ¼

1

b
ðrX � ð _caFT

PÞ~naÞ � ~da ð20Þ

_qa
GNet ¼

1

b
ðrX � ð_caFT

PÞ~naÞ � ~ta ð21Þ

_qa
GNen ¼

1

b
ðrX � ð_caFT

PÞ~naÞ � ~na ð22Þ
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K ¼ � 1
b ðrX � FT

p Þ
T (Nye, 1953) yielding _K ¼

P
a � 1

b
~da � ½rX � ð _caFT

PÞ~na� ¼
P

a
_Ka where

_Ka ¼ � _qa
GNs

~da � ~da � _qa
GNen

~da �~ta � _qa
GNen

~da � ~na (Dai and Parks, 1997) whose norm in
turn is equivalent to (19).

3. Stress integration procedure

The algorithmic treatment of the evolution equations given in the previous sections is
described in the following. As starting point all variables at time step tn are assumed to
be known and the current time is given with tn+1. In what follows, however, all variables
without subscript are evaluated at tn+1. Within the implicit Finite Element approach a
stress tensor and tangent moduli have to be provided and necessary history variables
updated. The plastic deformation gradient can be written as Fp ¼ expðDteLpÞFn

p, which is
approximated here by Fp � ð1þ

P
aDca~da � ~naÞFn

p. Assuming no plastic deformation,
the trial value for the elastic deformation gradient is obtained as F�e ¼ FðFn

pÞ
�1 and, corre-

spondingly, eC�e ¼ F�
T

e F�e . With the trial stresses ~S� ¼ eKe
1
2
ðeC�e � 1Þ and neglecting qua-

dratic and higher terms in Dca the stresses are obtained as

eS ¼ eS� � eKeðeC�e X
a

Dca~da � ~naÞS ð23Þ

where ð:ÞS ¼ 1
2
ðð:Þ þ ð:ÞTÞ and eKe contains the elastic moduli. Because elastic strains are

usually small in metal plasticity the Mandel stress tensor eP in Eq. (8) is as usual approx-
imated by eS (see, e.g., Kalidindi and Anand, 1992). Assuming F and Fn

p to be given, the
slip increments Dca, a = 1, . . . , nslip have therefore to be determined for eS. With (10)
the increments in slip have in turn the dependence on stresses via (9), i.e.

Dca ¼ Dcaðsa; qa
SS; q

a
GN; a ¼ 1; . . . ; nslipÞ ð24Þ

where qa
SS ¼ qan

SS þ Dqa
SS with Dqa

SS ¼ Dqa
SSðeS; qa

SS; q
a
GN; a ¼ 1; . . . ; nslipÞ ð25Þ

and qa
GN ¼ qan

GN þ Dqa
GN with Dqa

GN ¼ Dqa
GNðrX � ðDcaFT

p Þ; a ¼ 1; . . . ; nslipÞ
ð26Þ

and these Eqs. (23)–(26) have to be solved simultaneously. This is achieved by a Newton
iteration scheme.

With (26) gradients of

Xa ¼ DcaFT
p ð27Þ

have to be provided. Assuming these gradients to be given the stresses in the intermediate
configuration, eS, can be calculated according to the elastic predictor–plastic corrector con-
cept in crystal plasticity (e.g. Kalidindi and Anand, 1992; Cuitino and Ortiz, 1992; Miehe
and Schröder, 2001; Han et al., 2004). While the derivation is far from trivial it is omitted
here for brevity and referred to Ma et al. (2006) for more details.

As with linear shape functions strain-type terms are essentially constant, the gradients
in Xa as required in (26) would necessitate higher order Finite Elements, i.e. quadratic
shape functions (e.g. Meissonnier et al., 2001) or mixed Finite Elements where strain-
like terms are nodal variables (e.g. Shu et al., 1999). Both options are computationally
very costly and in view of, e.g., FCC crystals with 12 slip systems and corresponding 12
shear strains ca at least mixed approaches seem to be far too costly for general 3D
applications.

694 C.-S. Han et al. / International Journal of Plasticity 23 (2007) 690–710
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As low order Finite Elements shall be applied in this approach, information of neigh-
boring elements has to be incorporated because linear shape functions – as mentioned
above – basically yield a constant strain field within an element. To obtain a continuous
field in Xa which can then deliver the gradients required for (26) it is here suggested to pro-
ject the element values of Xa at the integration points to the nodes by the patch projection
procedure which in turn can be interpolated and differentiated with the aid of conventional
FE shape functions.

3.1. Patch recovery and strain gradients

The suggested projection technique (Zienkiewicz and Zhu, 1987, 1992a) has found
broad application in the error indication and adaptive Finite Element applications for lin-
ear (e.g. Zienkiewicz and Zhu, 1992a) and nonlinear problems (e.g. Han and Wriggers,
2000). For the convenience of the reader this approach is outlined in the following.

For the projection from the integration points to nodal points a patch is chosen, which
includes all elements containing node I. A linear interpolation of coefficients Xa

mn of tensor
Xa shall be obtained which is expressed here by

Xa
mn ¼ pTy ð28Þ

with p = [1, x1,x2,x3,x1x2,x1x3,x2x3,x1x2x3]T and y = [y1,y2,y3,y4,y5,y6,y7,y8]T. The
goal is to determine the coefficients of y in such a way that the square in the difference
between the linear interpolation and the integration points is minimized by a least square
fit of a patch including all elements containing node I, see Fig. 1 for the two dimensional
case. With i as an index for all integration points of this patch the minimization can be
stated asX

i

ðpT
i y� Xa

mni
Þ2 !Min ð29Þ

The first derivative of this equation yields the necessary condition which is applied to
determine the coefficients contained in y, i.e. the projection is performed via

Ay ¼ b; where A ¼
X

i

pip
T
i and b ¼

X
i

Xa
mni

pi ð30Þ

with pi = p(Xi), where Xi are the coordinates of the integration points. To ensure a good
condition and to avoid singularities of the matrix A a local coordinate system with its ori-

Fig. 1. Projection from integration points to nodal points and interpolation from nodal points to integration
points (2-dimensional scheme for illustration).

C.-S. Han et al. / International Journal of Plasticity 23 (2007) 690–710 695
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gin in the node I is chosen with the coordinates normalized over a characteristic length of
an Finite Element of the patch. The projected value at node I is then obtained with

Xa
mnI
¼ Xa

mnðXIÞ ¼ pTðXIÞy ð31Þ

and this procedure has to be repeated for m,n = 1,2,3 and all Finite Element nodes.
With Xa

mn now available on all nodes an continuous field in Xa is obtained via
Xa ¼

P
IN IðXÞXa

I with the usual shape functions NI. The tensor Xa is differentiable in
the interior of the elements and its Curl can be determined as

rX �XaðXÞ ¼
X

I

�nrs
oNIðXÞ

oX r
Xa

Ijs
en � ej: ð32Þ

At boundaries only a few elements are generally associated with a node which does
not provide adequate information for the linear least square fit suggested above. In this
case (as suggested in Zienkiewicz and Zhu, 1987) another node is chosen to define the
patch for the node on which the Xa values are projected – namely the closest internal
node Ipatch, see Fig. 2. Although it is known that this approach does not yield the same
quality as the projected values at the internal nodes, other more complex projection pro-
cedures, as suggested in Wiberg et al. (1994), and Boroomand and Zienkiewicz (1997),
for common boundaries and in Rieger and Wriggers (2004), and Han and Wriggers
(2002) for contact boundaries can not be applied for the projection of plastic strain
as these procedures deduce their projected values from improved traction/contact force
at the boundaries.

It should also be remarked that better projected values may be obtained by applying the
superconvergent projection technique (Zienkiewicz and Zhu, 1992a) where the support
points for the least square fit are not the integration points but the mid points of the ele-
ments, as indicated in Fig. 3. These points are known to have the superconvergent prop-
erties in linear elasticity. For this approach the stress integration would have to be
additionally evaluated at these points due to the history dependence of the material pro-
cedure. While the patch projection techniques has been derived for linear elastic problems
it has been also successfully applied to elasto-plastic problems, see, e.g., Boroomand and
Zienkiewicz (1999) and Han and Wriggers (2000). It may be worth noting that particularly
if superconvergent points are used the origin of the axes applied in the patch recovery pro-

Fig. 2. Projection for nodes at boundaries.
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cedure should be set to the coordinates of Ipatch and the orientation of these axes should be
chosen in such a way that at least one axis is parallel to an edge of an element to avoid ill
conditioned A matrices in (30).

For regular meshes in the interior the above suggested approach may yield similar val-
ues as those suggested in Abu Al-Rub and Voyiadjis (2005) and Ma et al. (2006). These
methods are, however, restricted to regular equidistant meshes while the patch recovery
approach can also be applied to not-regular meshes, where for instance the orientation
and size of the elements can change. The use of irregular meshes has its limitations because
strongly irregular elements, as discussed in the error indication and adaptive meshing lit-
erature, see, e.g., Zienkiewicz and Zhu (1992a); Boroomand and Zienkiewicz (1997), can
yield excessive unphysical stresses and strains which in turn would also make the projected
values and their strain gradients not reliable. The quality of the mesh is therefore an
important issue for this approach. As this approach is also applicable to triangles and tet-
rahedrons and mixed meshes with both tetrahedrons and brick elements ill-shaped ele-
ments could be to a certain extend avoided. Further advantages of the suggested
procedure applying the patch recovery technique lie in the simplicity of the procedure
and their thoroughly discussed behavior and characteristics in the literature, e.g. modifi-
cations of the outlined approach for brick elements to triangle and tetrahedron elements
or mixed discretizations can be found in Zienkiewicz and Zhu (1992a).

3.2. Overall iteration procedure

The patch projection procedure has to be incorporated into the overall iteration
within the Newton–Raphson scheme for each load step. This is implemented by an addi-
tional iteration loop (B) for the increments in the geometrically necessary dislocation
densities illustrated in Table 5. To clarify the terms used in Table 5 the applied New-
ton–Raphson iteration is briefly recalled. The weak form of equilibrium for static prob-
lems can be stated as qðu; duÞ ¼

R
B

S � dEdV � pðu; duÞ with the load terms contained in
p, i.e. pðu; duÞ ¼

R
B

q0
�b � dudV �

R
oB

�t � dudA. The FEM discretization yields (see, e.g.,
Wriggers, 2001)Z

B

S � dEdV �
[ne

e¼1

XnI

I¼1

duT
I

Z
V e

BT
I Se dV ¼

[ne

e¼1

XnI

I¼1

duT
I RIðueÞ ð33Þ

where RIðueÞ ¼
R

V e
BT

I Se dV . With RðuÞ ¼
Sne

e¼1

PnI
I¼1RIðueÞ we obtain

Fig. 3. Projection for using superconvergent points.
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Qðu; kÞ ¼ RðuÞ � kP ¼ 0 ð34Þ
with a load parameter k representing the prescribed loads. Assuming that the loads are
independent of the displacements, the linearization of (34) at uk yields the tangential stiff-
ness matrix KT via Q(uk + Du,kk) � Q(uk,kk) + DQ(uk,kk)Du = Q(uk,kk) + KTDu.

For each iteration k for qGNk
the integration procedure is performed for fixed qGNk

. If
the convergence criteria in step (V) are fulfilled the state variables are updated and the next
load step is calculated. For simple problems as presented in Section 4.1 the loop for
the determination of qGN required only a few iterations with reasonable tolerances, tol,
in step (V).

4. Numerical examples

Two problems will be discussed in the following to assess the suggested approach. For
both problems aluminum is chosen as material with initially homogeneously distributed
dislocation densities. The initial dislocation density for every slip system is set to be
qa ¼ 1:5� 1011 1

m2 for all sip systems, the temperature to 293 K, the attack frequency to
m0 ¼ 1� 1010 1

s
, and Burgers vector length to b = 2.86 · 10�10 m. Other material parame-

ters are given in Table 6.

4.1. Simple shear of a laminar layer

In the first example a single crystal aluminum layer between rigid solids deformed in
shear and plane strain is considered, as illustrated in Fig. 4. This simple example is chosen

Table 5
Overall, non-local iteration procedure

Set u0 = uk, Fp0
¼ Fpk

, qa
SS0
¼ qa

SSk
, qa

GN0
¼ qa

GNk

(A) Load steps k = 0, 1, . . . , kmax

(B) Iteration from i = 0, 1, . . . , imax

(I) Determine sa
i , Fpi

, and qa
SSi

with qa
GN ¼ qa

GNk
via local iteration at integration points

(II) Determine Q(ui,kk), KT(ui) and solve KT(ui)Du = �Q(ui,kk)
(III) ui+1 = ui + Dui+1

(IV) Determine Xa on all nodes via patch projection Eqs. (30)–(32) and
calculate qa

GNkþ1
¼ qa

GN0
þ Dqa

GNk
via Eqs. (19)–(22) on all integration points

(V) Check convergence
	 if j qa

GNi
� qa

GNiþ1
j6 tol 8 integration points and jQ(ui+1)j 6 tol

then
! uk+1 = ui+1,
! Fpkþ1

¼ Fpiþ1
, qa

SSkþ1
¼ qa

SSiþ1
, qa

GNkþ1
¼ qa

GNiþ1
,

! k = k + 1, and
! goto (A)

	 else i = i + 1 and goto (I)

Table 6
Material parameters applied in the simulations

Qedge = 3.0 · 10�19 J c1 = 0.1 c3 = 0.4 c5 = 10�3 c7 = 10.0
Qbulk = 2.4 · 10�19 J c2 = 2.0 c4 = 25.0/m c6 = 10.0 c8 = 0.3

698 C.-S. Han et al. / International Journal of Plasticity 23 (2007) 690–710
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to study the convergence behavior with respect to the element density of the Finite Ele-
ment discretization. A similar problem has also been applied in Niordson and Hutchinson
(2003) for a phenomenological strain gradient plasticity description without taking specific
slip planes into account. The structure has been calculated for different heights H where
the ratio between the height and the length L of the layer is kept constant at H/L =
1/10. Each of the simulations are divided into 200 time steps to result in a total shear
of 0.01 in a time frame of 100 second. The (100) orientation has been rotated by an angle
of 30o while the (001) remains parallel to the z-axis (which is the out-of-plane axes). As in
Han et al. (2005b), in the interface between the rigid material and the single crystal it is
assumed that no plastic deformation takes place, thus _ca ¼ 0 for all slip systems a.

The distribution of the total statistically stored and total geometrically necessary dislo-
cation density over a structure with H = 0.0125 mm is illustrated in Figs. 5 and 6, respec-
tively. Therein and in the following, the initial dislocation density is not contained in qSS

and qGN. As the statistically stored dislocations increase with the plastic deformation their
densities are higher in the middle of the layer (Fig. 5) while the opposite case is present for
the densities of geometrically necessary dislocations (Fig. 6). Because the left and right
boundary is free boundary effects are present which however do not seem to affect the mid-
dle of the layer whose total densities in statistically stored and geometrically necessary dis-
locations is shown in Fig. 7 for a mesh with 20 equidistant elements through the height H.

Fig. 4. A layer in shear deformation between two rigid materials.

Fig. 5. Distribution of total statistically stored dislocation densities qSS in 1/mm2.
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These figures clearly show the capability of the approach to describe size effects as with
decreasing H the density of geometrically necessary dislocations increases yielding higher
stresses through the height in the middle (horizontally, i.e. at x = L/2) of the laminate
(Fig. 8) and higher stresses averaged over the laminate with decreasing heights (Fig. 9).

How strong the influence of the discretization actually is, can be seen in Fig. 10 where
equivalent strain is plotted over the height for a structure with H = 0.1 mm. Note that the
equivalent strain (which includes the elastic and the plastic strain components) at the
boundary should be close to the elastic strain (as _c ¼ 0 is imposed at the boundary) which
should be similar in all meshes. The reason for the differences lies in the data manipulation
of the Finite Element software which projects the strains from the interior integration
points to the boundary node. The influence of the meshes on the dislocation densities
can be seen in Fig. 11 illustrating that quite a lot of elements have to be used through
the height to obtain accurate dislocation densities and stresses as the stresses increase with
the total dislocation density. In this respect it may be noted that elements with quadratic
shape functions essentially deliver constant strain gradients within the element. A discret-
ization with quadratic elements would therefore require the same mesh density as with the
suggested approach while the numbers in nodes and bandwidth of the tangential stiffness
matrix are far higher than with the suggested approach. Concerning the high values in qGN

in Fig. 11 in the finer meshes, it should be noted that zero slip is enforced at the top and
bottom boundaries. Dislocations will therefore not be able to exit the material at the
boundary and therefore accumulate. High dislocation densities should therefore be
expected at the boundary. In assessing the absolute dislocation density values at these
boundaries one has however to keep in mind that in the close neighborhood of the bound-
ary micro-back stresses or other discrete dislocation forces may be present which are not
reflected in the suggested material model. Such micro-forces would arguably result in a
decrease in local dislocation densities.

As discussed in Section 3.1 the projection at the boundary nodes is not as good as in inte-
rior nodes. In this particular problem the gradients in the boundary elements have similar
values as the neighboring elements to the inner part of the structure because the same patch
node Ipatch (Fig. 2) is used in the projection procedure. As gradients and the discretization

Fig. 6. Distribution of total geometrically necessary dislocation densities qGN in 1/mm2.
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η

Fig. 8. Von Mises stresses (in MPa) versus versus normalized vertical coordinate g = y/H at x = L/2.

η

ρSS

η

ρGN

Fig. 7. qSS and qGN in 1/mm2 versus normalized vertical coordinate g = y/H at x = L/2.
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error at boundaries are in general higher than in the inner structure an adaptive discretiza-
tion with smaller elements at the boundary and larger elements in the interior would have
been computationally more advantageous. Particularly for strain gradient models as in this
example, a computationally efficient procedure has therefore to be capable to discretize a
structure non-uniformly which necessitates the capability to obtain strain gradient related
terms within a non-uniform mesh. The patch recovery procedure (28)–(31) with the fol-
lowed differentiation Eq. (32) provides such properties which directly follows from the
obtained continuous X field (see Zienkiewicz and Zhu, 1987, 1992a).

4.2. Indentation of a cylinder

In the second example a three dimensional indentation problem is considered. A non-
uniform mesh is applied to demonstrate the capability of the approach for non-regular
meshes. The mesh contains 7376 elements and 8680 nodes which is a rather rough discret-

Fig. 9. Averaged shear stress versus shear strain.

Fig. 10. Equivalent strain versus vertical coordinate y at x = L/2.
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ization for this indentation problem. The discretization is denser in the upper middle area,
where the rigid indenter deforms the structure, see Fig. 12, where the mesh of the unde-
formed cylinder is shown. A similar problem has also been studied applying an isotropic
strain gradient plasticity model and a 2D axisymmetric discretization in Shu and Fleck
(1998) and Qu et al. (2006). Comparisons with experiments of the in section two given
materials formulation can be found in Ma et al. (2006) and Zaafarani et al. (2006). In
Zaafarani et al. (2006) the here suggested numerical approach was actually applied with-
out any description and discussions of the numerical approach itself.

The cylinder with height h = 100 lm and radius r = 100 lm is deformed by an indenter
with a spherical tip with a radius of R = 20 lm. The simulation timeframe of 1000 s is sub-
divided into 200 time steps. Conventional Coulomb friction with a friction constant of 0.1
is applied. After first contact the indenter is vertically moved for 6 microns. The initial ori-
entation of the crystal is chosen in such a way that the (111) is parallel to the vertical axis
of the cylinder. The boundaries at the bottom of the cylinder are fixed in all directions. The
contact forces of the indenter versus indentation depth of the simulation is given in Fig. 13.

Fig. 11. qSS and qGN in 1/mm2 versus vertical coordinate y in mm at x = L/2.
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Therein ‘SSD’ refers to the crystal plasticity model in Tables 2 and 3 where the influence of
the density in the geometrically necessary dislocations is omitted and ‘GND + SSD’ to the
full model described in Tables 2–4. With the loads of the ‘GND + SSD’ simulations being
significantly higher than the load of ‘SSD’ this examples clearly exhibits a pronounced size
effect often observed in experiments (see, e.g., Ma and Clarke, 1995).

In Fig. 14 the von Mises stresses in the deformed configuration are shown at an inden-
tation depth of 5 lm where only the half of the cylinder is plotted. The stresses in the mid-
dle of the structure are more pronounced than on might expect for local isotropic
materials. These high stresses can be partly attributed to the activation of more slip sys-
tems in the middle axis of the cylinder, see Fig. 15, which results in higher total dislocation
density in the deformation process. As can be seen in the distribution of statistically stored
dislocations densities, qSS, in Figs. 16 and 17. Such an emphasis in the strains can not be
observed, as the boundary conditions impede deformation particularly in the middle

Fig. 12. Full Finite Element mesh of the undeformed cylinder.
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Fig. 13. Indenter force FI in N versus indentation depth h in lm.
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where the vertical displacements is enforced at both ends so that the material can not move
as easily as in other locations of the cylinder. The distribution in the equivalent strain with
local values up to 0.31 is shown in Fig. 16.

Fig. 14. Von Mises stresses rvon Mises in MPa.

Fig. 15. Distribution of active slip systems.
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Fig. 16. Equivalent strains eeq.

Fig. 17. Distribution of total statistically stored dislocation density qSS.
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The distribution of the total geometrically necessary dislocation densities, qGN, shown in

Fig. 18, may with respect to Fig. 16 appear not to be consistent in the context of the approx-
imate rule that strain gradients scale proportional to the density of geometrically necessary
dislocations qGN. In strain gradient crystal plasticity the situation is however different as the
activation of different slip systems can cause higher dislocation densities via local dislocation
multiplication during the deformation process. In addition the cross-sectional plot of the
strains in Fig. 16 can be somewhat misleading as there are lower gradients further away from
the center axis of the cylinder because there will be only low gradients in the circumferential
direction and most of gradients are of radial nature. In the center of the cylinder, however,
gradients are present in three perpendicular directions yielding higher values if the norm of
the strain gradient tensor or dislocation density tensor is evaluated. The range in qGN is sim-
ilar to those of the statistically stored dislocations and it might be worth noting that in the
simulation where the geometrically necessary dislocations qGN are omitted the calculated
density in the statistically stored dislocations is with a range between qSS ¼ 1:80�
106–6:27� 108 1

mm2 (not shown here) significantly lower than those with taking geometrically
necessary dislocations qGN into account (qSS ¼ 1:80� 106–1:34� 109 1

mm2 in Fig. 17). The
increase in qSS clearly evolves from the interaction between qGN via forest qa

F, and parallel
qa

P and mobile dislocations qa
M in Table 2 and 3.

5. Conclusions

A Finite Element technique with linear shape functions for non-local/gradient material
formulation has been suggested. As linear shape functions yield basically a constant

Fig. 18. Distribution of total geometrically necessary dislocation density qGN.
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distribution of strains and strain related terms the values of neighboring elements have to
be used to obtain gradients in the strain. This is achieved here by applying the patch
recovery technique known from error indication and adaptive meshing procedures also
applicable to inhomogeneous Finite Element meshes. This procedure has been applied
to a strain gradient crystal plasticity material formulation and the solution of this proce-
dure requires an additional loop in the Newton–Raphson iteration scheme. The examples
have shown that this procedure is capable in dealing with three dimensional large strain
contact problems – indicating the robustness of the proposed approach – and yielded rea-
sonable results. It should be noted that a solution of the three dimensional indentation
with quadratic shape functions would have been computationally much more expensive.
Generally the suggested procedure would also be applicable to other low order elements
with linear shape functions, e.g. triangle or tetrahedron elements.
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