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Abstract

We introduce a crystal plasticity constitutive model for BCC materials which is build on dislocation movement and uses dislocation
density variables as internal state variables. Besides the statistically stored dislocations geometrically necessary dislocations are used to
consider nonlocal effects as recently proposed by Ma, Roters and Raabe for the FCC crystal structure. In this paper the model will be
adopted to the BCC crystal structure. Due to the special core structure of screw dislocations formed at low temperatures, the mechanical
behavior of BCC crystals is controlled by the movement of screw dislocations rather than edge dislocations. For this reason, the Peierls
mechanism has to be considered and several modifications have been introduced which include a new scaling relation between the mobile
and immobile dislocations, and new flow rules for bulk and grain boundary elements. A pure Nb bicrystal is studied experimentally and
numerically under channel die compression boundary conditions, to demonstrate the applicability of the new model variant.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For FCC crystals the calculated Peierls stress is much
smaller than the measured critical resolved stress as there
exist close packed lattice planes and close packed lattice
directions. Therefore, it can be assumed, that the resistance
for moving dislocations is determined by the passing stress
and the cutting stress due the other dislocations in the
crystal only. BCC single crystals, in contrast, have only
densely-packed lattice directions but no densely-packed lat-
tice planes. In the literature 24-48 slip systems are reported
to be activated to accommodate the external plastic defor-
mation [1-5]. For this structure the Peierls stress is so large
that one can assume that in order to move the mobile dis-
locations, the external load has to overcome the resistance
both, of the parallel dislocations and the Peierls energy bar-
rier, i.e. forest cuttings can be ignored. In this paper the
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model introduced in [6,7] will be adopted to the BCC crys-
tal structure.

Using the newly developed dislocation model and a dig-
ital image correlation technique [8], a pure Nb bicrystal is
studied numerically and experimentally under channel die
compression conditions.

2. The constitutive formulations

For the kinematic description of the plastic deformation
of crystalline materials, we follow the well-known multipli-
cative decomposition of the deformation gradient F to
separate the elastic and plastic portions of the deformation.
The elastic part F¢ comprises the stretch and rotation of
the lattice, and the plastic part F* corresponds to the unre-
coverable deformation caused by dislocation slip. For the
reason that the plastic deformation gradient does not
change the lattice orientation, we can use a constant stiff-
ness tensor C for the stress calculation. The elastic law is
defined in the unloaded configuration.
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Fig. 1. Schematic drawing of the slip mechanism for the BCC crystal
structure: a mobile dislocation is generated by a Frank-Read source, and
the external stress must help it to overcome resistances of forest and
parallel dislocations, and the Peierls energy barrier.
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Details are given in [6].

BCC crystals have densely-packed lattice directions
(111) but no densely-packed lattice planes. The most den-
sely-packed planes are the {110}, {112} and {123} lattice
planes. There are at most 48 slip systems if we do not con-
sider the so-called pencil glide. As shown in Fig. 1, the
mobile dislocation experiences the slip resistance from
forest and parallel dislocations, and also from the Peierls
energy barrier. We define the parallel dislocation density
p% and the forest dislocation density p% by the projections
described in [6,9]. While in the FCC case the Peierls poten-
tial is so small that it can be neglected, it is much higher for
the BCC crystal structure. In fact it is so high, that in the
BCC case the forest cutting process can be neglected when
formulating the dislocation velocity equation.

We are using a standard crystal plasticity finite element
(CP-FEM) framework (see e.g. [10]), where the plastic
velocity gradient L® can be calculated as

48
L= yd e (2)
o=1

where 7* is the slip rate on slip system @, d* expresses the
slip direction, and n* the slip plane normal with respect
to the undistorted configuration.

In contrast to [10] we are using a dislocation density
based constitutive law, so that the slip rates can be calcu-
lated by use of the Orowan equation:

= g’ G)
Here v” is the average velocity of the mobile dislocations p
and b the magnitude of the respective Burgers vector. From
[6,9,11] we know, that by applying the principle of maxi-
mum plastic dissipation for the external resolved shear
stress during the plastic deformation

o
opj;

a scaling relation can be derived for p;. Which in the case
of a homogeneous dislocation structure and for the BCC
crystal structure amounts to

(4)
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where c¢y,¢3 are constants, G is the shear modulus, b the
magnitude of the Burgers vector, 0 the absolute tempera-
ture, and kg the Boltzmann constant. One can see easily
that Eq. (5) is different compared to that suggested in
[6,9] for FCC materials. This is due to the fact, that the
forest cutting mechanism which is assumed as the prevail-
ing mechanism in the case of FCC crystals is replaced by
the Peierls mechanism, where the jump distance amounts
to the magnitude of Burgers vector 4 in the case of BCC.
It is a well known fact, that the classical CP-FEM is not
capable of correctly describing the mechanical influence of
grain boundaries. Therefore, several extension to CP-FEM
are proposed to deal with grain boundaries (see e.g. [7,12]).
We are following the approach used in [7] and, therefore,
distinguish two different flow rules for bulk and for grain
boundary elements, respectively.

2.1. Flow rule of the bulk element

Integrating (5) into (3), the flow rule is derived based on
the dislocation slip mechanism. It includes a reference
shear rate which is formulated as a function of the disloca-
tion density and the temperature. The new flow rule
amounts to
. Pexp {_% (1 _ “E“‘;T;ass )} sign(t“) |‘L’ ‘ > Tpass
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with the pre-exponential variable j§, which is the upper lim-
it of the shear rate for the case that the Boltzmann factor is
equal to 1 in Eq. (6)

kBHV() \/— (7)
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where y, is the attack frequency and the passing stress,

.55 caused by the parallel dislocations
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and the Peierls stress, 1%,
QPei
., = 9
Pei C3b3 ( )

where Q. ; is the effective activation energy for the Peierls
mechanism.

2.2. Flow rule of the grain boundary element

In general, in CP-FEM implementations the grain
boundaries coincide with element boundaries. In contrast
to this conventional approach we use a special grain bound-
ary element, where one half of the Gauss points belong to
one crystal, while the others belong to the abutting crystal,
see details in [7,13]. For the constitutive law of material
points belonging to this element class, we use a modified
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flow rule where we introduce an effective activation energy
for the slip process which is based on a conservation law
for the Burgers vector during the slip penetration through
a grain boundary. Based on Eq. (6) for the BCC crystal
structure we modify 73, and Qpe; as follows:

Oorr = Opes + okl (10)
! Qeff
L 11
Pei C3b3 ( )

where ¢ is a fitting parameter, and £, 1is the activation
energy for the penetration of a grain boundary by a mobile
dislocation with the length 4. For a detailed derivation of
E%, we refer to [7,13].

2.3. Evolution of the immobile dislocation densities

There are four processes contributing to the evolution of
the statistically stored dislocation. The lock formation
mechanism between mobile dislocations and forest disloca-
tions, and the dipole mechanism between mobile disloca-
tions with anti-parallel Burgers vector determine the

48 slip systems

multiplication terms, while the athermal annihilation of
two parallel dislocations with anti-parallel Burgers vector
within a critical distance and the thermal annihilation
determine the annihilation terms. The complete rate equa-
tion system for the immobile SSD combines these four pro-
cesses. For the details of these rate equations, we refer to
Ma and Roters [9]. The only modification in this work is,
that we assume thermal annihilation by cross slip of screw
dislocations instead of climb of edge dislocations, so that
the bulk diffusion activation energy Oy, has been
replaced by Q¢ross-

When orientation gradients are present in a volume
portion geometrically necessary dislocations must be intro-
duced to preserve the continuity of the lattice. Here we use
the same equations for the evolution of this kind of
dislocation as given in [9].

3. Channel die test of a Nb bicrystal

For the numerical simulation, we use plane strain com-
pression to approximate the boundary condition of the

L.

Fig. 2. Comparison of the sample shape after plane strain compression of about 40% for an Nb bicrystal for CP-FEM simulations using different slip
system combinations and the experiment. The 12 slip systems are those in the (111){110} group, 24 slip systems are those in the (111){110} and the
(111){112} groups, and 48 slip systems are those in the (111){110}, the (111){112} and the (111){123} groups.

[24]

LP ™D
Fig. 3. Comparison of von Mises strain distribution for an Nb bicrystal: (a) is the experimental result measured by a digital image correlation technique
after 38% compression and; (b) the calculated distribution.
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Fig. 4. Measured distribution of von Mises strain for an aluminium bicrystal with 17° misorientation: (a) after 40% compression and; (b) after 50% shear

deformation [14].

channel die test. The orientation data obtained from the
micro-texture measurements are expressed as (¢;,®,¢,) in
Bunge—Euler notation in the coordinate system by rolling,
transverse, and normal directions. For the finite element
analysis the global coordinate system was defined by
X parallel to RD, Y parallel to TD and Z parallel to ND.
This means that the measured initial orientations could be
directly assigned to the respective integration points.

From the literature several difficulties to distinguish
which slip system is activated during the plastic deforma-
tion for BCC crystalline materials are reported [1]: TEM
is not always able to distinguish exactly which slip system
is activated; TEM investigations do not provide statisti-
cally reliable information since a very small volume of
the specimen is examined; samples are always studied in
an unloaded state; and the criterion for selecting active slip
systems in polycrystalline aggregates is different from that
for single crystals.

In order to determine which slip systems are activated
during the channel die test of Nb bicrystals, in this paper,
three combinations of slip systems are used in the simula-
tion. The calculated sample shapes are compared with the
experimental one in Fig. 2. It can be clearly seen, that the
combination of (111){110} and (111){112} gives the best
agreement. Therefore we conclude that at room tempera-
ture the plastic deformation of the Nb bicrystal is accom-
modated by 24 slip systems.

Using the combination of (111){110} and (111){112}
slip systems, we compare the calculated Von Mises equiva-
lent strain with the experimentally measured one on the
TD-RD sample surface in Fig. 3. Both the experimental
and simulation results show a larger plastic deformation
in the right grain, which is caused by a larger Schmid factor
or smaller Taylor factor. In the experiment there exist two
strong deformation bands, one across the left crystal and
one almost along the grain boundary line, which do not
appear in the simulation.

In Fig. 4 we show two experimental results for a channel
die test and a simple shear test for an Al bicrystal to com-
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Fig. 5. Comparison of pole figures for an Nb bicrystal: (a) the measured
initial pole figure, (b) the measured pole figure after 38% compression; (c—
g) simulated pole figures for 8%, 16%, 24%, 32% and 40% compression,
respectively. For every pole figure, the two initial orientations of the
bicrystal used in the simulations are highlighted.

pare the deformation behavior with that of Nb. One can
see clearly, that compared to the bulk material the grain
boundary zone behaves as a harder region for the Al
bicrystal in both tests (Fig. 4) but like a softer region for
the Nb bicrystal (Fig. 3).

From the measured initial pole figure plot ((a) in Fig. 5),
it can be seen, that the Nb sample is not a perfect bicrystal
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before the deformation. After 38% reduction the experi-
mental pole figure shows a very strong orientation disper-
sion compared with the simulated one ((b) and (g) in
Fig. 5). From this comparison we can see that the model
underestimates the texture spread for the BCC crystal.

4. Conclusions

From the comparison of the deformed sample shape
we conclude, that a combination of (111){110} and
(111){112} slip systems is mainly activated for the plastic
deformation of the Nb bicrystal at room temperature.

Comparison with results for Al shows several differences
for the grain boundary behavior and texture evolution
between the FCC and the BCC bicrystals. However, the
experimental conditions were quite different as well; the
surface of the Nb sample shows grooves near the end of
the two deformation bands. From the initial pole figure,
it is clear that the sample is not a perfect bicrystal but
has some orientation spread. Moreover, the grain bound-
ary is neither horizontal nor flat. All these details are not
sufficiently incorporated into the simulations. However,
at the time being we only have experimental data from this
single channel die test for the Nb bicrystal. Therefore, the
reason for the deviations between the two sets of experi-
ments (FCC and BCC) and between experiment and simu-
lation (BCC) can not be clearly identified.

In the future several other Nb crystals of increasingly
complex microstructure (i.e. with two grains, one triple
junction, double triple junction, one grain surrounded by
several other grains) will be deformed by channel die tests
and simple shear tests to study the grain boundary effect in
more detail in order to investigate the new model for BCC
crystals.
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