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We identify and analyze general trends governing solid solution strengthening in binary alloys containing
solutes across the Periodic table using quantum-mechanical calculations. Here we present calculations
for the model system of Al binary solid solutions. The identified trends originate from an approximately
parabolic dependence of two strengthening parameters to quantitatively predict the solid solution
strengthening effect, i.e. the volume and slip misfit parameters. The volume misfit parameter shows a

Key,words’ . . minimum (concave-up behavior) as a function of the solute element group number in the periodic table,
;(#d solution strengthening whereas the slip misfit parameter shows a maximum (concave-down behavior). By analyzing reported
Ab-initio data, a similar trend is also found in Ni and Mg (basal slip) binary systems. Hence, these two strengthen-
Al alloys ing parameters are strongly anti-correlated, which can be understood in terms of the Fermi level shift in
Mg alloys the framework of free electron model. The chemical trends identified in this study enable a rapid and
Ni alloys efficient identification of the solutes that provide optimum solid-solution strengthening. The approach
Mg basal slip described here may thus serve as basis for ab initio guided metallurgical materials design.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction describes how a specific solute element changes the generalized
stacking fault energies. They are defined as

Solid solution strengthening is one of the most important

strengthening mechanisms. It can be computed using a relatively & = l (@) (2a)
small set of materials properties, such as the atomic volume, elastic a\dc/
moduli, and/or the stacking fault energy [1-10]. Recent studies
[6,8,10] have shown that the solid solution strengthening effect 1 /dy

. . - - & =—|5= (2b)
(quantified by the increase in the critical resolved shear stress y\dc/ o

Atp) at the ground state (at T= 0K) can be expressed in terms of
two strengthening parameters, namely, the volume misfit parame-
ter, &, and the slip misfit parameter, &. Analytical model approxi-
mations for estimating the increase in the critical resolved shear
stress Ato normalized by the bulk atomic concentration of solute
atoms c are the Nabarro-Labusch model [11-13]:

where a is the lattice parameter and y is the generalized stacking
fault energy. The slip misfit parameter is conceptually similar to
the di-elastic parameter proposed by Fleischer [2,3] who replaced
7 in Eq. (2b) by the shear modulus. Both y and the shear modulus
are in principle associated through the shear caused by the disloca-
tions. However, the region close to the dislocation core is character-

ATo/*P = (ay6] + ar€? +a38b85)2/3 MPa (1a) ized by the displacements between two adjacent atomic layers,
. . . hence, using the stacking fault energy in this approximation is more

and the Friedel-Fleischer model [14,15]: pertinent than using the shear modulus in this context.

ATo/c1? = (b18§ +b28$2 Jr1)38136_33)3/2 MPa (1b) The numerical constants, i.e. a; and b; (i=1,2,3) in Egs. (1a)

and (1b) can be obtained by following the procedure discussed in

The volume misfit parameter ¢, is a measure of an extra volume
introduced by a solute atom, and the slip misfit parameter &
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Refs. [6,8,10]. They describe how the volume misfit and the slip
misfit interact with the pressure field and the displacement field
around a dislocation, respectively. We have followed this proce-
dure in our recent paper [10] and obtained the numerical con-
stants, i.e. g; in Eq. (1a) (Nabarro-Labusch model) for Al binary
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solid solutions. In our study [10], the pressure field and the dis-
placement field were obtained by using 2D Peierls-Nabarro model
developed as suggested by Schoeck [16,17]. The obtained disloca-
tion-solute interaction energy enters the solid solution strength-
ening model developed by Leyson et al. [7-9] through the
Nabarro-Labusch model. The reason for using Nabarro-Labusch
model instead of Friedel-Fleischer model is that it has been shown
in [18] that for most cases, when the temperature is above 78 K
and the solute concentration is above 0.01 at.%, the Nabarro-
Labusch model becomes more appropriate compared to the
Friedel-Fleischer model. Thus, considering the Nabarro-Labusch
model is likely to be suited for most engineering solid solution
alloys.

Employing the above described approach, we had previously
performed a parametric study of both, the volume misfit parameter
¢&p and the slip misfit parameter &;. There are three combinations of
a; (i=1,2,3) depending on the values of ¢, and &. Each combina-
tion corresponds to a specific characteristic bow-out distance of
the edge dislocation in a metallic matrix with randomly distributed
solute atoms (see details in Refs. [7-10]). Eventually, we created a
materials-design guideline map of &, and & against Ato/c?/? at 0 K.
This map is fitted using Eq. (1a). The fitted numerical constants for
edge dislocations are listed in Table 1 (specifically for Al solid solu-
tions). With the numerical constants being available, the knowl-
edge of the volume misfit parameter ¢, and the slip misfit
parameter & allows for quantitatively predicting the solid solution
strengthening effect, as has been demonstrated in [10].

Aiming at a rapid theory-guided alloy prototyping, we below
identify compositional trends associated with these two misfit
parameters through the whole Periodic table. These trends enable
us to estimate the most promising solid solution strengthening ele-
ments according to their group numbers in the periodic table rela-
tive to the group number of the matrix material. These trends
allow us to narrow down the range of possible solute elements
before conducting costly and time-consuming experiments or
computationally demanding ab initio calculations.

First, we focus on Al binary solid solutions which we analyze
employing quantum-mechanical calculations. The computational
details of the volume and slip misfit parameter of Al binary solid
solutions are presented in Section 2. With the results for Al binary
solid solutions, we identify compositional trends in the volume and
slip misfit parameter as functions of the solutes group number
within the Periodic table (Section 3.1). The anti-correlation rela-
tionship between the volume and slip misfit parameter observed
in Section 3.1 is discussed in Section 3.2. By using the results from
Section 3.1, the compositional solid solution strengthening effect
will be presented in Section 3.3. Due to the anti-correlation rela-
tionship, we show that the solid solution strengthening effect in
Al can be roughly estimated by using one misfit parameter, instead
of two misfit parameters in Section 3.4. Using the data reported in

Table 1

Numerical constants used in Eq. (1a) (Nabarro-Labusch model) for edge dislocations
in Al binary solid solutions. These numerical constants are taken from [10]. As listed
below, there are three combinations of a;(i = 1, 2,3) depending on the values of ¢, and
& (see Eqgs. (2a) and (2b)). Each combination corresponds to a specific characteristic
bow-out distance (w,) of the edge dislocation in an Al based solid solution with
randomly distributed solute atoms. For the definition of w., we refer to [7,8].

a; x107° a x 1073 a3 x 1073
—0.083 < &,/&5 < 0.043 6.81 3.04 0.18
—0.193 < &,/es < —0.083 5.25 2.04 1.71
or
0.043 < &,/¢ < 0.123
else 4.07 1.38 1.80

the literature [6,19-21] we further show similar trends in other
binary solid solutions, specifically Mg (basal slip) and Ni
(Section 3.5). Our conclusions are drawn in Section 4.

2. Computational procedure

2.1. Calculation of the volume misfit parameter in Al binary solid
solutions

Accurately calculating the volume misfit parameters by ab initio
methods requires considerable computational resources. First, the
volume misfit parameter is defined for solute concentrations
approaching zero (see Eq. (2a)) and, therefore, rather large super-
cells (~100 atoms) with low concentrations of solutes should be
used. Unfortunately, quantum-mechanical calculations often scale
with the square of the number of atoms in a computational cell.
Second, in order to avoid any supercell size dependence of the
computed results, a set of different supercells with different sizes
should be used [7,8,22]. Both above mentioned aspects render
the ab initio calculations prohibitively costly. In order to avoid
these extensive quantum-mechanical calculations, we adopted a
procedure in which we use only medium and small supercell sizes
and linearly extrapolate the results to different concentrations.
Thanks to the fact that results obtained from these two supercell
size sets are clearly linearly related, the compositional dependence
of the lattice parameter can be efficiently evaluated without sacri-
ficing much of the required accuracy.

More specifically, to accurately determine the compositional
dependence of the lattice parameter, we used two different super-
cell sizes and five concentrations. The two supercells sizes are
2 x 2 x 2 (32 atoms) and 3 x 3 x 3 (108 atoms) respectively, with
the supercells being based on the elementary 4-atomic fcc unit cell
in case of the Al matrix. The five concentrations are Al;g;Xj,
Al]05X3, Al31X1, Al]04X4, and Al30X2 (0926, 2.778, 3.125, 3.704,
and 6.250 at.%). All the solute atoms are distributed inside the
supercells so as to preserve their overall cubic symmetry. After
the lattice parameters were calculated from these concentrations,
the composition dependence of the Ilattice parameter was
obtained. Subsequently, we linearly extrapolated the Ilattice
parameter to a higher concentration, namely, 25 at.%. This extrap-
olated lattice parameter was compared with the calculated lattice
parameter by using a 1 x 1 x 1 supercell with a single solute atom
in it, Al3X;, i.e. with the solute concentration 25 at.%. In order to be
representative, we chose Sr, Ca, Ir, Li, Zn, Cu, and Mg as solutes,
because (i) the atomic volumes of Sr and Ca are very large com-
pared to the Al atom; (ii) Ir is very small compared to Al; (iii) Li
and Zn almost do not change the lattice parameter of Al; while
(iv) Cu and Mg moderately change the lattice parameter of Al.

The comparison between the calculated and extrapolated lattice
parameters of AlsX; subtracted by the lattice parameter of pure Al
(aoar) is shown in Fig. 1. Our analysis reveals that the calculated lat-
tice parameters are related to the extrapolated ones through a lin-
ear function. In order to check the validity of the linear relation, we
subsequently performed the same procedure for four other sys-
tems, i.e. Al-Si, Al-Cr, Al-Mn, and Al-Fe which are indicated by
diamond symbols (<») in Fig. 1. All these additional data points
for these four systems fall approximately on the fitting line.
Thus, the volume misfit parameter is approximated by:
FRIC RO
aal Cc

extrapo.
Gpx, —dal
& =

aal

(o}

where ¢ = 0.25, and we chose k = 1.179, taking all the data points in
Fig. 1 into account. We underline that despite of the fact that the
quality of the linear fit in Fig. 1 is excellent (R?> = 0.9946), obtaining
¢p by using Eq. (3) is still only a fair approximation serving our aim
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Fig. 1. Calculated lattice parameters of AlsX; (ag; , ) both subtracted by the lattice

parameter of pure Al (aga) compared to extrapolated lattice parameters (agf‘;’lZ’)’("

subtracted by the lattice parameter of pure Al (ag ). ag*;quxl is obtained by using the
compositional dependence of the lattice parameters determined by from larger
supercells with low concentrations. The data points indicated by open circle were
fitted by a liner function, agy’% — aoa = k- (a§'%;, x, — o), where k=1.245. The
goodness of fit R? is 0.9946 indicating a good fit. The extrapolated and calculated
lattice parameters of AlsSi;, AlsCry, AlsMn,, and AlsFe; (¢, open diamond) were
evaluated subsequently, and they all approximately fall on the fitted function. If all
the data points, including both O and ¢, are used for the fitting, k becomes 1.179

which differ from the original fitted coefficients by —5%.

to compute general trends for indeed numerous solutes across the
Periodic table. If only a few specific systems are to be studied, it
is still highly recommended that ¢, is evaluated by using larger
supercells with lower solute concentrations.

2.2. Calculation of the slip misfit parameter in Al binary solid solutions

Regarding calculations of the slip misfit parameter, we follow
the approach proposed by Yasi et al. [6]:

1 dVIZ.Al-XN 1 Vpax = Vnal )
M.l dcs Al Cs

where the intrinsic stacking fault energy 7, is evaluated instead of a
generalized stacking fault energy ) used in the original definition of
Eq. (2b). The intrinsic stacking fault energy y,, is computed for both
Al-X matrix-solute alloys (index Al-X) and elemental aluminum
(index Al). The intrinsic stacking fault energy is calculated by using
the slab model (see e.g., Ref. [23]) with 12 layers of (111) planes,
and the solute atom concentration within the stacking fault plane
cs is 25 %, while the bulk concentration is 2.1%.

S

2.3. Computational details

All our calculations were performed employing the generalized
gradient approximation (GGA-PBE [24]) as exchange-correlation
functional and the projector augmented wave (PAW) method
[25] as implemented in the VASP code [26,27]. The electronic wave
functions were expanded in terms of a plane-wave basis set with
an energy cut-off of 420 eV. The reciprocal-space Brillouin zone
was sampled using a 24 x 24 x 24 Monkhorst-Pack [28] k-point
mesh per conventional fcc unit cell for the volume misfit parame-
ter calculations. For the slip misfit parameter, the k-point mesh is

20 x 6 x 2. The Fermi surface was smeared by using Methfessel-
Paxton smearing method [29] with a smearing parameter
o = 0.4 eV. The lattice parameters were obtained by fitting the
energy-volume curves using the Birch-Murnaghan equation of
state [30,31].

Our study does not cover all possible solutes from the whole
periodic table. Focusing on substitutional solid solutions, we
excluded a few light elements (H, He, C, N, O and F) that are unli-
kely to substitute atoms in common metallic matrices. Our calcu-
lations were conducted without considering spin polarization of
atoms, i.e. all simulations are non-magnetic, including 3d elements
(Cr, Mn, Fe, Co and Ni) that are ferro- and anti-ferro-magnetic in
their elemental ground states. This seemingly crude simplification
is motivated by the fact that, e.g., low-concentration Fe atoms dis-
persed in Al matrices have been shown to have their local magnetic
moments reduced to 10% of the magnetic moments in the elemen-
tal bce Fe (see, e.g., Ref. [32]). Therefore, we expect the magnetism
of these solutes to be absent or weak in case of the low solute con-
centrations that can be obtained in Al based alloys. Lastly, we have
also omitted some radioactive elements in the 6th period (Po, At
and Rn), lanthanides, and 7th period elements.

3. Results and discussion
3.1. Volume and slip misfit parameters in Al solid solutions

Fig. 2(a) shows the calculated volume misfit parameters of Al
binary solid solutions using Eq. (2a) plotted against the group
number of the solute elements. For solute elements belonging to
a single period, the predicted dependence of the volume misfit
parameter vs. group number follows a convex trend. The parabolic
trends have minimum values for either the group 9 (in case of the
4th period) or the group 8 (in case of 5th and 6th periods). The
noble gas and alkaline metals cause the largest volume expansion,
and the middle transition metals, e.g. groups 8 or 9, introduce the
largest volume contraction. From group 13 to group 15 (e.g. Ga, Ge,
As), the slope is changing as the lattice parameter is not increasing
as steeply as in case of other groups. If the solute elements are in
the same group of the 5th and 6th period, the volume misfit
parameters are close to each other, except Y and La. A very similar
trend was also recently obtained in a study in which larger super-
cells were used (see Fig. 9 in Ref. [33]).

The above summarized findings mostly agree with trends
observed for the atomic volumes measured from the pure sub-
stances in the 4th, 5th and 6th periods [34]. This means that the
trend of the volume misfit parameter can be approximated by
Vegard’s law, i.e.

aa, x. = (1-¢)-aa +c-ax (5)

where aa,_x.,da and ax are the lattice parameters of the solid solu-
tion, pure Al, and pure solute assuming fcc structure, respectively; ¢
is atomic concentration. Quantitatively, however, Vegard’'s law
deviates from the DFT calculations and there is also an issue con-
nected with solutes taken from group number higher than 12. If
empirical atomic radii as proposed by Slater [35] are used as refer-
ences for ax in Eq. (5) employing the Vegard's law, the lattice
parameter as a function of the group number would assume a local
maximum at group 12 or 13. Apparently this is not the case in Al
binary solid solutions (see Fig. 2(a)). In Mg and Ni binary systems,
however, Slater’s atomic radius approximation works better,
because there is a local maximum at group 12 in some periods
(see below in Section 3.5).

Fig. 2(b) shows the slip misfit parameter of Al binary solid solu-
tions vs. the group number of the corresponding solute elements.
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Fig. 2. (a) The volume misfit parameter (¢&,) of Al based binary alloys using Eq. (3).
(b) The slip misfit parameter (&) of Al based binary alloys using Eq. (4). (c)
Correlation between &, and &s.

In contrast to the volume misfit parameter, within a single period,
the slip misfit parameters usually follow a concave trend.

3.2. Anti-correlation relation between volume and misfit parameter

Comparing Fig. 2(a) and (b) the volume misfit and slip misfit
parameters seem to be inversely related in Al binary solid solu-
tions, namely, the higher the volume misfit parameter, the lower

is the slip misfit parameter. The level of anti-correlation can be
quantified by evaluating the sample correlation coefficient r. For
two data sets &, and &, this coefficient is defined as:

”Z?:l f;;Us — Z?zlﬁzZ?zlffi
B SN2 p N\ 2
VIS e — (0 e) /N e — (S0 2l)

Specifically in case of the volume misfit and slip misfit parameters
&l and &l (visualized in Fig. 2(c)) the corresponding value of the sam-
ple correlation coefficient r is —0.92 indicating very strongly
anti-correlated quantities. In order to test the robustness of the
anti-correlation relationship, we randomly took one data point
out from Fig. 2(c) and the value of the sample correlation coefficient
r was found to vary only by ~+0.7%.

The anti-correlation relation between the volume misfit and
slip misfit in Al binary solid solutions can be qualitatively under-
stood from the topology of the charge density in Al. It stems from
the fact that the slip misfit parameter is closely related to the
intrinsic stacking fault energy, and this property is related to the
topology of the charge density (see, e.g., Ref. [36]). In pure Al, it
has been observed that the average charge density in the tetrahe-
dral interstitial site in the fcc structure is much larger than that in
octahedral interstitial lattice sites [36], and this inhomogeneous
charge density distribution is attributed to the high intrinsic stack-
ing fault energy of Al [36-38]. The charges in the tetrahedral inter-
stitial site are associated with the electrons near the Fermi level,
hence it can be assumed that lowering the Fermi level in Al would
lead to a more homogeneous charge distribution [36], which
results in a lower stacking fault energy. If we plot the slip misfit
parameter against the compositional dependence of the Fermi
energy of selected Al binary systems, as shown in the left-hand
part of Fig. 3, the slip misfit parameter is indeed correlated with
the Fermi level in such a way that the higher the Fermi level the
higher the slip misfit parameter or, in other words, the higher
the Fermi level, the higher the intrinsic stacking fault energy.

The connection between the volume and the Fermi level shift
can be qualitatively understood within the free electron model in
which the Fermi level is related to the density of electrons [39]:

s 3)”

where Ef is the Fermi energy; N is the number of electrons, and V is
atomic volume. In pure metals, when N is a constant, it has been
shown that the larger the volume the lower the intrinsic stacking
fault energy in Al, Ni and Cu [38,40]. This is consistent with a pro-
posal by Kioussis et al. [36] who suggested that bringing down the
Fermi level lowers the intrinsic stacking fault energy. In solid solu-
tions, the Fermi level shift is due to a competition between the
number of the valence electrons of the solute element and the vol-
ume change caused by the solute element. Within the rigid band
model (ignoring the volume), all the solute elements in Fig. 3 should
lower the Fermi level, because all the solute elements have less
valence electrons than Al. This indeed applies here for most of the
selected elements, except for Ir, because Ir introduces a larger vol-
ume contraction, hence the Fermi level is increased by Ir. In the case
of Li and Zn, their volume effects are comparable (almost the same
&), but Li lowers the Fermi level more than Zn. This is due to the
fact that Zn has 2 valence electrons and Li has only one (considering
that Al has 3 valence electrons). Apart from that, the volume effect
seems to play a larger role in shifting the Fermi level in Al than the
number of the valence electrons.

This analysis suggests that the anti-correlation between the vol-
ume misfit and the slip misfit comes from the fact that the
increased volumes lead to a reduction of the Fermi level, which
in turn lowers the intrinsic stacking fault energy. It should be

r=

(6)
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Fig. 3. The slip misfit parameter (&) as a function of (left) the compositional dependence of the Fermi energy (dEg/dc), or (right) volume misfit parameter (&,). The Fermi
energies are from the calculations with full relaxation, including volumetric and atomic relaxation. It should be noted that ¢, in the right are from the calculations with large

supercells (see Section 2.1).

noted, that the data points in Fig. 3 do not pass through the origin.
This means that lowering the Fermi level does not necessarily
lower the intrinsic stacking fault energy. The reason for that is
not quite clear yet and beyond the scope of this study. We attribute
this minor inconsistency to the fact that the above discussion
connecting the volume effect to the intrinsic stacking fault energy
is based on the free electron model which is only an approxima-
tion. We admit that, e.g., charge transfers during the stacking fault
formation are very complicated processes [36] and a single param-
eter, like the Fermi level, might not be sufficient to determine its
energetics. It is also true that the charge density in Al is not
homogeneously distributed. It was, nevertheless, shown that the
electron density of states in Al (both in a perfect fcc crystal or a
crystal with stacking faults) is close to that predicted by the free
electron model which thus offers a sufficiently good description
for the case of Al [38]. The free electron model can provide a deeper
qualitative understanding of the observed anti-correlation
between the volume misfit and slip misfit parameter.

3.3. Compositional strengthening effect and suggestions for effective
strengtheners

Having identified the compositional trends in the misfit param-
eters in Al, we next use them as input for Eq. (1a) and analyze their
impact on solid-solution strengthening. We use the misfit
parameters ¢, and & in Fig. 2(a) and (b), together with Eq. (1a)
(Nabarro-Labusch model) and the numerical constants listed in
Table 1 as taken from Ref. [10]. The computed compositional
dependences of the increase in the critical resolved shear stress
AT (scaled by the solute concentration c) at 0 K are shown in Fig. 4.

Within each of the periods shown in Fig. 4, the elements show-
ing a poor solid-solution strengthening capacity can be found in
groups 4, 5, 11, and 12 where the misfit parameters approach zero
(see Fig. 2(a) and (b)). Note that they are near group 13 where the
matrix element Al is located too, and group 18-13 (maximum
group number 18 minus the group number of Al). The most

=0 K
p—
cb)
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: RR e
V Cr Mn Fe Co Ni Cu Zn Ga Ge As
Cs 'Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi
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0 1234567 89101112131415161718
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Fig. 4. The predicted value of AT, (the increase in the critical resolved shear stress)
scaled by ¢** at 0K of Al binary solid solutions, where c is the concentration.
Abscissa: group number of the solute element. The lines here are used to guide your
eyes. ATo/c?/ are obtained by inserting the misfit parameters (¢, and &) in Fig. 2(a)
and (b) into Eq. (1a) (Nabarro-Labusch model), together with the numerical
constants shown in Table 1 from Ref. [10] in which the solid solution strengthening
model developed by Leyson et al. [7,8] was employed.

effective solid solution strengtheners are found around group 1
(alkali metal), group 9 in Period 4, 5, 6. The strengthening capabil-
ities of particularly these effective strengtheners are, however, of
limited interest owing to their low solubility in Al. A possible route
to overcome this limitation is to use special metallurgical pro-
cesses to obtain supersaturated solutions, such as rapid quenching
from the melt, by using which, for example, 10 at.% Mn in Al in
solid solution state can be achieved, while its maximum solubility
is only 0.62 at.% at 931 K [49]. Another limiting factor is thus diffu-
sion, because a slow diffusion would stabilize the supersaturated
solid solution, rather than forming precipitates. As shown in
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Ref. [50], the diffusion rate of the solute elements around group 1
in Al is determined by the Al-vacancy exchange energetics (forma-
tion energy of the vacancies and mobility barrier). Therefore, the
activation energy for diffusion of these elements in Al is close to
(or lower than) that of the Al self-diffusion. The elements around
group 9 strongly repel the vacancies in Al and the diffusion rate
is determined by the solute-vacancy exchange. Consequently, the
diffusion activation energy of these elements in Al is much larger
than that of Al self-diffusion. According to this consideration of dif-
fusion, the elements around group 9 would be more effective solid
solution strengtheners than the ones around group 1.

Another important aspect of our analysis is the temperature.
The increase in the critical resolved shear stress A7y, i.e. the stress
to overcome the energy barrier (AE,) against dislocation motion, is
shown in Fig. 4 for T=0K. At finite temperatures, the dislocation
motion can be supported by thermal activation, and AE, can be
thermally overcome. The thermal activation process can be
described by using the theory developed by Kocks et al. [51,52].
As shown in Ref. [8,10], AE, can be also expressed similarly to
Aty at T=0K in terms of &, and &, of course with different numer-
ical constants and a different concentration scaling. The general
trend of Aty at finite temperatures with respect to the group
number is thus the same as shown in Fig. 4.

It should be noted that despite the fact that the range of & is one
order of magnitude higher than that of ¢, (see Fig. 2(a) and (b)), the
numerical constants before & listed in Table 1 are lower than those
before ¢, by two orders of magnitude. This means that the contri-
bution of & is one order of magnitude lower than that of ¢,.
Ignoring the contribution of & and the cross term ¢, - & in Eq.
(1a), the evaluated values for the available strengthening product
term Ato/c?? is lowered by 19 % on average with a standard devi-
ation of 22 %. A more detailed discussion of these aspects can be
found in, e.g., our recent paper [10].

3.4. Reducing two strengthening parameter into one strengthening
parameter as number of merit

Due to the strong anti-correlation of the volume and slip misfit
parameters shown in Section 3.2, Eq. (1a) or Eq. (1b) may be
further reduced to a single-variable function using either ¢, or &;.
We approximate &; in terms of &, using a linear function

& =K-& (8)
and Eq. (1a) is transformed to

Ato/c*? =A-€)* MPa, (9)
where

w (10)

A= <a1 @K+ a3K>
Studying Al solid solutions, we use the numerical constants
(a;,i=1,2,3) from Table 1, and K = —4.216 which provides the best
fit to Fig. 2(c). We then arrive at A = 8137, 6747, or 5640, depending
on the values of ¢, and &;. In [8], a single parameter (AV,, the extra
volume introduced by the solute atom in a matrix) is used to
express ATo/c?/3, similarly to Eq. (9). In order to compare these
two approaches with different parameters, we consider that
Vi = @/4, where 4 means that there are 4 atoms in fcc unit cell,
then AV, = (3a?/4)(da/dc) = (3a®/4)((1/a)(da/dc)) = (3a®/4)é.
With this knowledge we convert ¢, to AV,, and the pre-factor
becomes 44.8, 37.2, or 31.1 A~%, among which the last one perfectly
matches the value of 31.1 A=* obtained in [8]. It should be also
noted that in Ref. [8], the solute elements Mg, Cu, Cr, Mn, Fe, Si in
Al were studied. The misfit parameters of Mg, Cu, Cr, Mn, Fe in
Al fall in the range that the numerical constants of

a; =4.07 x 10°,a, = 1.38 x 10%,a; = 1.80 x 10> should be used
(see Fig. 2(b) and Table 1). These numerical constants (a;,
(i=1,2,3)) give the prefactor of 31.1 A~#®in Eq. (9), if ¢, is converted
to AV,, in Eq. (9). It is worth mentioning that in Refs. [7,8], & was
not considered as a material property correlating with the solid
solution strengthening, but the contribution of the slip misfit to
the strengthening was implicitly included in the dislocation-solute
interaction energy calculation by ab initio method. Therefore, using
single parameter expression as a trend measure for “solid solution
merit” still provides an acceptable fit as shown in Ref. [8], and the
contribution of the slip misfit is hidden by the anti-correlation rela-
tion between the volume misfit and the slip misfit.

The anti-correlation relation and the single-parameter fit cer-
tainly provide an advantage for estimating the solid solution
strengthening because &, which is difficult to measure and calcu-
late, can be replaced by ¢, which is relatively easy to measure
and/or calculate. One should, however, take caution when applying
this anti-correlation relation. Even though ¢, and & are strongly
anti-correlated, they still exhibits a certain scatter. Thus, Eq. (8)
is still only an approximation, and Eq. (9) gives a error of
~+500 MPa, roughly 20% of the prefactor, A. Nevertheless, this
anti-correlation relation is perfectly sufficient for the purpose of
our study in which we aim at general trends.

3.5. Volume and slip misfit parameters in other systems with low
Peierls stress of matrices

Our study has been so far focusing on compositional trends in
misfit parameters in Al-based binary solid solutions that we got
from quantum-mechanical calculations. Next, we search for similar
trends (and their anti-correlations) in other solid solutions with
matrices possessing low Peierls potentials (e.g. fcc crystals and
basal slip in hcp metals). Our choice of systems is motivated by
the fact that the limiting factors for dislocation motion in metals
with high Peierls potentials (such as bcc metals) are different from
those in an Al matrix, i.e. the core structure of the screw disloca-
tion and the nucleation and migration of the kink-pairs. The solute
atoms can change the core structure of the dislocations [41], or
promote nucleation and migration of the kink-pairs [42], entailing
solid solution softening.

Focusing on systems with low Peierls potentials, we have
re-analyzed the reported data which include: (1) ab initio calcula-
tions of ¢, and &; in case of basal slip in Mg binary systems [6], (2)
the lattice parameters of Ni binary solid solutions determined by
experiments [19] and ab initio calculations [20], and the intrinsic
stacking fault energy obtained by ab initio calculations [21]. The
re-analyzed data are shown in Fig. 5.

In Mg binary solid solutions, the volume misfit parameters
related to the basal slip again follow a convex trend, except for a
few elements (see Fig. 5(a)). As we are using data published by
other groups it should be noted that the volume misfit parameter
calculated in Ref. [6] is based on a definition that is different from
the one used in this study. In Ref. [6], it is calculated by using the
concept of the strength of the point defect as originally proposed
by Eshelby [43]. The volume misfit parameter in Eq. (2a) was orig-
inally proposed by Cottrell [1] which is derived only from geomet-
rical quantities, such as the lattice parameter or the atomic
volume. For the slip misfit parameter, the trend is concave except
in the 2nd period (Fig. 5(c)).

In Ni binary solid solutions (Fig. 5(b)), the volume misfit param-
eters also follow a convex trend for the 5th and 6th periods from
group 3 (or 4) to 12. Starting from group 12 (or 13), the volume
misfit parameter decreases as the group number increases in the
3rd, 4th and 5th period. This feature resembles the trend of theo-
retically determined empirical atomic radii [35] where the atomic
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Fig. 5. Volume misfit parameters ¢, (a), (b) and slip misfit parameters & (c), (d) as functions of the group number of the solute element in Mg binary solid solutions (a), (c) and
Ni binary solid solutions (b), (d). The above figures are plotted by re-analyzing the data from Ref. [6] (Mg-X) and Ref. [19-21] (Ni-X).

radius decreases as the group number increases starting from
group 12. When Ni is alloyed with 3d magnetic elements, the con-
vex trend is violated, too, especially for Mn (group number 7), due
to different volume in magnetic elements cause by their magnetic
polarization.

The slip misfit parameters of Ni binary solid solutions are
shown in Fig. 5(d). In general, the concave trend is again followed,
but in the 5th and 6th periods local minima can be found in groups
6 and 7. Besides the evidence from the theoretical calculations [21]
shown in Fig. 5(d), the concave shape of the slip misfit parameter
in Ni binary systems is also evident in measured intrinsic stacking
fault densities [44]. According to these measurements the ability of
a solute to increase the intrinsic stacking fault density follows this
sequence (from strong to weak): Ti(4), Mo(6), W(6), V(5), Cr(6),
Mn(7), Co(9), Cu(11), Fe(8), where the group numbers are indicated
in round brackets. Considering that: (i) the group number of Ni is
10, (ii) the increase in the stacking fault density is a consequence
of the decrease of the stacking fault energy, we can conclude that
the ability of a solute to decrease the intrinsic stacking fault energy
follows the sequence of the ability of increasing the intrinsic stack-
ing fault density. Therefore, the slip misfit parameter decreases as
the group number of the solute element deviates from 10, i.e. from
the group number of the Ni matrix.

Next to the above two systems, indirect experimental evidence
indicates that the concave trend of the slip misfit parameters is

also valid in other fcc solid solutions, e.g. Cu and Ag. It was shown
in Ref. [45] that (i) the stacking fault energies in Cu and Ag based
binary solid solutions decrease as the alloy concentration
increases, and (ii) the higher the electron-atom ratio, the lower
the stacking fault energy. These observations were, however, based
on the Cu and Ag based binary solid solutions in which the solute
elements have all higher group numbers than Cu and Ag (they are
located on the right-hand side with respect to Cu and Ag in the
periodic table). This means, that the capability of the solute in
decreasing the stacking fault energy of Cu and Ag increases, as
the group number of the solute increases starting from 11 (Cu
and Ag are in group 11), which is consistent with the concave
trend.

Analyzing mutual inter-relations between both misfit parame-
ters, the sample correlation coefficients r from Eq. (6) have been
computed to be —0.73 and —0.74 for Mg-X (basal slip) and Ni-X,
respectively, which indicates anti-correlation relations between
¢y and &. When only comparing the coefficients, r, it appears that
the anti-correlation relations in Mg-X and Ni-X are not as strong
as that in Al-X (r = —0.92). It should be noted that if we again ran-
domly take out one data point, value of r varies +5.5% for Mg-X,
and +12% for Ni-X, while it is +0.7% for Al-X. Therefore, there
might not be sufficient data points for Mg-X and Ni-X to reliably
assess the level of anti-correlation. Another aspect is that in
Mg-X ¢, and & are not so strongly anti-correlated as in Al-X
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because (i) when the solute elements are from the 2nd period,
i.e. Li and Be, this anti-correlation relation is clearly violated, (ii)
and after reaching a maximum at group 13 in the 3rd and the
4th period, ¢, starts to decrease, but & continues to decrease. As
discussed in Section 3.1, the feature of having a maximum at group
13 in ¢, follows the trend of Slater’s empirical atomic radius [35]. In
contrast to that in Al-X, g, does not follow the trend of Slater’s
empirical atomic radius but, instated, the trend of the atomic
volume measured from pure substances.

Another important mechanism is the charge transfer that has
been shown in pure Mg to operate similarly as in pure Al during
stacking fault formation [46]. A similar relation between the
Fermi level and the intrinsic stacking fault energy (see Fig. 3) is,
however, not valid, when comparing Li and Al in Mg [46]. Han
et al. [46] have shown that the Fermi level of Mg-Al is higher than
that of Mg-Li, but the intrinsic stacking fault energy on basal slip of
Mg-Al is lower than that of Mg and Mg-Li (also see Fig. 5(a) and
(c)). As mentioned above, the concave trend of the slip misfit
parameter in Mg binary systems is only violated in the 2nd period
where Li is located, therefore, comparing Al and Li in Mg might not
be representative. Since Mg is also a simple metal, the free electron
model can be used as an approximation as for Al, too. Therefore, we
assume for Mg alloys (similarly as for Al alloys) that the volume
and slip misfit parameters are anti-correlated because of the
Fermi level shift caused by the volumetric effect.

As for Ni, the charge distributions in fcc metals are topologically
very similar to each other [47,48], and the mechanism of the
charge redistribution during the stacking fault formation has been
found to be very similar also among Al, Cu, and Ir, therefore we
expect it also to hold for Ni. Our explanation to the
anti-correlation relation between ¢, and &, in Ni binary systems
may follow the line of Al binary systems (see the end of
Section 3.1). The only difference might be that d-electrons are
more localized than s-p electrons. Therefore, similar to pure Cu,
the charge distribution in Ni is less directional and more
homogeneous than that in Al Consequently, the slip misfit
parameters of Ni binary solid solutions are not very sensitive to
alloying compared with Al and Mg binary solid solutions (see
Figs. 2(b) and 5(c) and (d)). It is also observed that the stacking
fault energies in both pure Cu and Ni are not sensitive to the
volumetric change [38].

If we assume the underlining solid solution strengthening
mechanism is the same in the systems where the Peierls potentials
of the matrices are low, such as fcc and basal slip in hcp. Following
the procedure in [6,8,10], one should be able to obtain the numer-
ical constants for Eq. (1a), for Ni and Mg (basal slip) binary
systems.

Once these numerical constants in Eq. (1a), for Ni and Mg (basal
slip) binary systems are obtained, following the trends shown in
Figs. 2, 5 and 4, the position of the solute elements of the least
strengthening capability can be identified at points where ¢, = 0
and & = 0. According to Figs. 2 and 5, the values corresponding
to & = 0 and & = 0 can be found approximately around the group
number of the matrix Guauix and 18-Gauix, Where Guawix iS the
group number of the matrix element. As shown in Fig. 4, very effec-
tive strengtheners can be found in groups 1 (alkali metals) and
group 9. When the solute elements have their group number
higher than 12, i.e. entering the main groups, caution should be
taken since the trend could deviate severely from the
anti-correlation relation between ¢, and & as shown in Figs. 2
and 5(a) and (b).

It is should be noted that dislocations dissociate more in Mg
(basal slip) and Ni than in Al, due to their low stacking fault ener-
gies than Al Consequently, in a solid solution with randomly dis-
tributed solute atoms, such as in Mg-Al [9], the dislocations may
have multiple configurations, i.e. bow-out shapes. Different

dislocation configurations correspond to different energy barriers
against dislocation motions, hence causing different critical
resolved shear stresses, and different configurations associated
with different energy barriers prevail over the others in different
temperature ranges. Despite of that, for a specific temperature
range, the above generalized trends of strengthening capabilities
of the solute elements should still be valid.

4. Summary

We have used quantum-mechanical calculations to identify
compositional trends in the volume and slip misfit parameters
using Al binary solid solutions as a model case. The volume misfit
parameter (&) follows a convex trend as a function of the solute
group number in the Periodic table. In contrast, the slip misfit
parameter (&) follows a concave shape. The only exception are
solutes beyond the group 12, i.e. leaving the transition metal group
and entering the main group. In Al binary solid solutions, &, and &
are found to be strongly anti-correlated. This findings enables us to
identify a single-parameter description of solid solution strength-
ening as we illustrate using the volume misfit parameter (solid
solution strengthening measure of merit). The anti-correlation
has been qualitatively explained in terms of the Fermi level shift
caused by the volume change associated with the respective
solutes.

Having the compositional trends, the solid solution strengthen-
ing capability of the different solutes in Al has been evaluated.
Elements showing rather poor solid-solution strengthening capa-
bilities have minimum volumetric misfit. They are mostly from
group 4, 5, 11, and 12, i.e. close to the group of the matrix (here
Al) or from the group with the group number that - when added
to the group number of the matrix - gives 18. The elements with
maximum solid solution strengthening capability can be found
around groups 1 and 9. Based on additional considerations regard-
ing the diffusion of group 1 and group 9 elements in Al, we suggest
that the most effective solid solution strengtheners should be
group 9 elements for the Al model alloy case.

Using previously published data from the literature we identify
qualitatively identical compositional trends (convex volume misfit
parameter and concave slip misfit parameter) also in Mg (basal
slip) and Ni binary solid solutions. We believe that our findings
can be generalized and applied to the strengthening capability of
solutes also in other systems with low Peierls potentials. We thus
conclude that the elements showing poor solid solution strength-
ening capabilities have a group number close to (i) that of the
matriX Gmauix and (ii) 18-Gmatrix, Where Gpawix is the group number
of the matrix element. Caution should be taken when the group
number of the elements is higher than 12. The above identified
trends and anti-correlations in the misfit parameters can serve as
a guideline within a future theory-guided materials design when
identifying optimal solutes that provide an application oriented
solid solution strengthening for a given matrix.
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