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a b s t r a c t

Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be

manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even

promoting local phase transformation. In the approach which we refer here to as ‘segregation engineer-

ing’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate

specific grain boundary structures, compositions and properties that enable useful material behavior. The

underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited

for designing interfaces in metallic alloys can be identified by considering four main aspects, namely,

the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure

and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases

or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by

a modest diffusion heat treatment, hence, making it available in large scale manufacturing.

Ó 2014 Elsevier Ltd. All rights reserved.

Introduction and motivation

Grain boundaries (GBs) are ubiquitous defects in metallic alloys

governing a range of properties, such as tensile strength, fatigue

resistance, fracture toughness, strain hardening, brittleness, con-

ductivity, or corrosion [1–7].

Unlike bulk phases they are planar and require 5 parameters to

be crystallographically characterized (disorientation, plane inclina-

tion). Hence, they cannot be regarded as scalar objects with homo-

geneous properties but as a high dimensional class of defects. For

example, even for highly coherent GBs such as first order twins

(R3 CSL (coincidence site lattice)) exponential property changes

can occur if the GB plane is misaligned by only a few degrees from

its most coherent position.

GBs can either weaken (inter-crystalline fracture, stress corro-

sion cracking) or strengthen (Hall-Petch effect) polycrystalline

metallic materials. In either case the types of GBs involved affect

the specific material response substantially as was discussed

particularly in the context of highly coherent versus random GBs.

These observations led to the concept of grain boundary engineer-

ing which aims at designing polycrystals with specific GB distribu-

tions [8–11].

The next logical step in this context lies in also considering and

engineering the segregation and its effects on GBs [12–24]. This is

an obvious thought since many if not all GB properties are accessi-

ble to decoration-driven manipulation such as cohesion [12–14];

energy [18–23]; fracture resistance [12]; electrical conductivity

[25,26]; transport coefficients [27]; electrochemical properties

[24,25,28]; hydrogen embrittlement [30,31]; mobility [32–38];

and resistance to or sources of dislocations [47–57] to name only

a few effects that are relevant for structural alloys.

We refer to such manipulation of GBs via solute decoration and

even confined transformation as ‘grain boundary segregation engi-

neering’ (GBSE) or just ‘segregation engineering’ [58]. Applying

GBSE needs to involve both, thermodynamic (segregation

coefficient; co-segregation; competing bulk phases) and kinetic

(diffusion) influence factors. Hence, not only the associated crystal-

lographic degrees of freedom and all segregated elements should be

considered but also time and temperature. However, as will be

addressed below, GBSE can for a number of alloys even be applied

when knowing the average segregation level to non-ordered or

‘random’ GBs, i.e., a full 5D crystallographic description is not in

all cases required. GB segregation changes with time when the heat

treatment or application temperature is high enough for diffusion.

Hence, also the GB properties may alter. GBSE considers solute

decoration not as an undesired and inherited phenomenon but

instead utilizes segregation as a tool for site-specific manipulation

that allows for optimizing specific grain boundary structures,
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compositions and properties that enable the design of beneficial

material behavior [42–46,58,59]. More specific, GB segregation

can be used as a microstructure design method since solutes affect

the structure, phase state and atomic bonds within the decorated

interface. Different scenarios are conceivable: first, segregation of

certain solutes might enhance GB cohesion (GB strengthening).

Second, the reverse might apply, namely, reduction in cohesion

and bonding strength (interface weakening) at GBs due to segrega-

tion. Third, segregation could be strong enough, in conjunctionwith

the available interfacial energy and local stresses, to result in a

phase transformation of or at the GB region [58]. Related to the lat-

ter point is the possibility for the formation of complexions, i.e.,

interface stabilized phases [60–66].

An important question in that context is the accessibility of

these segregation-dependent GB features via an ‘engineering’

approach. Indeed various examples are conceivable where such

misorientation- and plane-sensitive design approach can work,

namely, diffusion annealing, grain growth heat treatment, and

local phase transformation effects.

A typical example for an engineering heat treatment approach

to tune a desired segregation level at GBs lies in a combined diffu-

sion plus grain growth heat treatment: Since the reduction and GB

energy may depend on both, the GB plane inclination and its crys-

tallographic misorientation, such low energy configurations can be

obtained for instance by a grain growth heat treatment, where

low-energy interfaces prevail owing to their comparably small

capillary driving force. Another broadly applicable example of GB

segregation engineering lies in the reduction of the average grain

size due to an overall drop in GB energy caused by equilibrium

segregation.

Although GBSE can be applied to such diverse systems as solar

cells [67,68], superconductors [69], or ceramics [60–66] we focus

here on recent developments pertaining to metallic alloys used

for structural applications [70–82].

In these materials we see particularly high relevance and oppor-

tunities of the GBSE concept for designing improved ultra fine

grained and nanostructured metallic alloys where GBs constitute

a large fraction of the material. Particularly alloys with nanoscaled

grain size suffer often from very low ductility in conjunction with

inter-crystalline damage. In such materials particularly the inter-

nal interfaces are prone to void formation and damage initiation.

Grain boundary segregation: theoretical background and recent

experimental progress

Adsorption isotherm

GB segregation is characterized by the inhomogeneous distribu-

tion of solutes between the interface and its abutting crystals. The

concentration of the solutes on the GB exceeds their solubility in

the grain interior, sometimes by a factor of 2–3 and sometimes

even by up to several orders of magnitude [40–42]. An approxima-

tion for the segregation tendency of a solute is its bulk solubility:

the smaller the bulk solubility, the higher is the enrichment factor

of that element at the GB. The thermodynamics of GB segregation

has close analogy to monolayer gas adsorption at solid surfaces

according to Gibbs and can be formalized in terms of the adsorp-

tion isotherm [43]. In this concept the GB excess concentration is

Ci ¼ ÿ1=ðRTÞðdc=d ln xiÞT;V where xi are the molar concentrations

of the elements i in the bulk, dc is the change in GB energy upon

segregation at constant temperature T and volume V. The value

for Ci can be obtained by measuring the change in interfacial

energy as a function of concentration changes in logarithmic

presentation.

Although the Gibbs adsorption isotherm outlined above enables

a quantitative analysis of GB segregation, the actual measurement

of the interfacial energy as a function of bulk composition and tem-

perature is experimentally rather challenging in the case of GBs

[16]. Therefore, it is pertinent to use the Langmuir-McLean

isotherm [44] which approximates segregation by balancing

adsorption and desorption rates. It assumes that dynamic equilib-

rium is established between the segregating solutes at the GB and

that adsorption is limited to one monolayer. The Langmuir-McLean

isotherm reads xGBi =ðxGB;0i ÿ xGBi Þ ¼ xBi =ð1ÿ xBi Þ expðÿDG
GB
i =RTÞwhere

xGBi is the molar GB occupation fraction of element i, xGB;0i the molar

GB fraction of the same element in saturation, xBi is the molar

concentration of i in the bulk, and DxGBi is the free molar energy of

segregation. Approximating the system as a dilute case yields

bi ¼ xGBi =xBi ¼ expðÿDGGB
i =RTÞwhere bi is the segregation coefficient

which is also referred to as GB enrichment factor. The Langmuir-

McLean relation states that GB segregation occurs for DGGB
i < 0, that

GB coverage increases with the bulk solute content and that segre-

gation drops with increasing temperature. The Langmuir-McLean

model is usually more practical for quantifying segregation at solid

state interfaces than the Gibbs concept, since it does not require

detailed knowledge of the GB energy, and its variationwith temper-

ature or composition. However, the segregation free energy DGGB
i is

usually an unknown property. Also, it is worth noting that the

Langmuir-McLean segregation model treats the GB implicitly as

an individual phase with specific thermodynamic properties, which

are different from those of the matrix. Other isotherm models, for

instance those by Fowler, Guggenheim and Freundlich, consider

interactions among the segregated solutes [46].

Fig. 1 shows experimentally obtained segregation coefficients

for a number of Fe-, Ni-, and Cu-matrix binary systems compiled

mainly by Hoffmann, Lejček [14,40–42,46], Shea, and Hondros

[12,15,39], as well a s some measurements conducted by the cur-

rent authors using atom probe tomography [29,76,83,85]. Fig. 1

reveals that solutes with very low miscibility, i.e., high positive

Fig. 1. Grain boundary segregation data compiled from published values of

Hoffmann, Lejček [14,40–42,46], Shea, and Hondros [12,15,39], as well as some

measurements conducted by the current authors using atom probe tomography

[29,76,83,85]. The data show the GB enrichment factor

bi ¼ xGBi =xBi ¼ expðÿDGGB
i =RTÞ relative to the element’s bulk solubility. These data

can serve as a guideline for segregation engineering via the identification of suited

elements with strong GB segregation tendency.
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heat of mixing, segregate strongly. For instance, C in Fe was

observed to have a segregation coefficient as large as nearly 104.

Recent experimental progress in studying grain boundary segregation,

transformation and design

GB segregation can be studied by Auger electron spectroscopy,

secondary ion mass spectrometry, transmission electron micros-

copy, analytical electron microscopy, field ion microscopy and

atom probe tomography (APT). While being in principle capable

of delivering certain GB segregation information, most of these

methods – when used individually – lack either crystallographic

detail, chemical resolution, and/or spatial resolution. Also, as there

is a large variety of GBs (5 independent crystallographic parame-

ters are required to describe a GB) the achieved statistics are rarely

sufficiently robust. Another limitation is that GB segregation data

were often taken on embrittled systems, where only those GBs

could be probed that were accessible after inter-crystalline frac-

ture, hence, only specific types of GBs could be investigated.

Finally, GB segregation is an atomic scale phenomenon, i.e., precise

and at the same time statistically significant data are hard to

obtain. These principle problems associated with characterizing

GB segregation with (a) atomic scale precision and (b) with high

crystallographic detail impeded up to now a more quantitative

approach to GBSE. This discrepancy between the current theoreti-

cal and crystallographic understanding and the accessibility and

plausibility of observed and predicted GB segregation effects was

recently discussed by Wynblatt and Chatain. They also outlined a

model of the dependence of GB segregation on the 5 macroscopic

parameters of GB orientation [84].

Further progress along these lines was recently made through

the maturation of APT-based and TEM/APT correlative methods

[85–96] and by aberration-corrected high resolution analytical

TEM techniques [60,61,63,65,97]. The first one is based on lattice

reconstruction directly from atom probe data. This approach is also

referred to as atom probe crystallography [89–95,86]. The second

one is the combination of transmission electron microscopy

(TEM) and APT conducted on the same sample position, also

referred to as correlative TEM/APT [85–88]. Another method is to

obtain crystallographic GB information from EBSD probing on sets

of oblique slices (sample edges) in conjunction with subsequent

APT probing [96]. These methods are capable of providing comple-

mentary characterization of both, atomic scale chemical segrega-

tion and the associated crystallography of the GB affected at

identical sample positions.

The accuracy of GB segregation data obtained by such correla-

tive mapping methods using electron microscopy (EBSD or TEM)

in conjunction with subsequent APT is affected by various factors.

First, the angular resolution in the crystallographic characteriza-

tion of misorientation angles obtained by TEM nanobeam diffrac-

tion is typically �1° [85]. In EBSD it is usually �1–3° depending

on the instrument and software used. Another source of experi-

mental error is the precision of cutting the specimens containing

the GB probed portion by FIB. This uncertainty is eliminated if

the orientation measurement is directly conducted on the APT

tip [85]. This can be done both, by SEM-based EBSD and by TEM

nanobeam diffraction, where the latter approach provides high

yield and typically also higher orientation precision.

Other errors are associated with APT: first, the allocation of

evaporated atoms to a GB (rather than to the abutting grain)

depends on projection and lens effects. The projection method is

not accessible in current analysis approaches and based on a model

of the magnetic field surrounding the tip. Lens effects occur in

cases where field evaporation prevails at the decorated GBs leading

to distortions of the anticipated ion flight path. In cases of very

strong lens effects such positioning errors of the evaporated ions

can amount up to several nm.

Another potential source of errors lies in the manual peak fitting

of the ladder diagrams, which can be estimated by determining the

upper and lower bounds to not exceed ±1 atoms/nm2 [25,85].

However, all these errors are small compared to the typically mea-

sured decoration values as discussed in the following.

To give an example Herbig et al. [85] recently showed that spe-

cifically the correlative use of TEM and APT, when applied to inves-

tigate GB segregation on nanocrystalline materials containing

multiple GBs per APT sample, enables obtaining a high analytical

throughput while maintaining excellent spatial and chemical reso-

lution [87]. Fig. 2 shows an example of this approach, applied to

Fig. 2. Advanced method to quantify GB segregation by combined use of TEM and

APT on the same sample, here applied to the case of carbon GB segregation in

ferrite. Investigating nanocrystalline materials containing multiple GBs per APT

sample allows for high throughput while maintaining excellent spatial and

chemical resolution [85]. The diagram shows segregation data obtained from 121

GBs on different seven APT tips measured in six days of experimental time. The data

are taken from [85].
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the characterization of carbon segregation to GBs in a nanocrystal-

line steel.

Recent progress in simulating GB segregation with respect to

segregation engineering

Recent progress in segregation simulations provides opportuni-

ties for GBSE. Three developments are emphasized: This is on the

one hand the analysis of GB segregation by ab initio simulations

[13], in part in close conjunction with corresponding high resolu-

tion aberration corrected TEM experiments [98–101]. Duscher

et al. [98] studied the origin of catastrophic brittle fracture on

the Cu–Bi system. They used a combination of two atomic charac-

terization methods and ab initio simulations to probe the geomet-

ric and electronic structure of a Cu GB with and without Bi. The

authors mapped the distribution of Bi in the GB plane and further

detected thereby induced changes in the electronic structure. The

associated density functional theory (DFT) analysis revealed that

the Cu atoms surrounding the segregated Bi reduce GB cohesion

by assuming a more Zn-like electronic structure. Buban et al.

[99] showed via a combined HR-STEM and ab initio study that Zr

and Y ions occupy defined segregation sites at alumina GBs and,

thereby, influence the GB energy and, consequently, mechanical

and electrical properties of alumina. Chen et al. [100] conducted

a combined first principle – HR TEM study on the influence of oxy-

gen segregation to 3 and 9 GBs in cubic boron nitride. Their study

reveals that oxygen segregation decreases the GB formation ener-

gies causing reduced adhesion energies which results in GB weak-

ening. Similarly, Wang et al. [101] showed by using a combination

of advanced electron microscopy, spectroscopy and DFT calcula-

tions 3D images of complex, multi-component GBs with both

atomic resolution and chemical sensitivity. They observed that

even a simple MgO compound revealed complex ordered defect

superstructures on its GBs inducing electron trapping in the band-

gap of the oxide. While DFT based simulation methods offer cer-

tainly the most precise results and deep insight into bonding

effects due to segregation, they are typically confined to analyzing

high symmetry interfaces with a low CSL value. This is due to the

fact that DFT solvers require the use of periodic boundary condi-

tions. Also, important progress is stimulated by using molecular

dynamics and molecular statics simulations in conjunction with

improved interatomic potentials that are in part based on DFT sim-

ulations [102]. In this context specifically bonding effects stem-

ming from the magnetic moments are challenging to capture in

systems based on Fe-, Co-, or Ni [103]. Atomic scale simulations,

although providing less electronic detail compared to first princi-

ples predictions, offer the advantage to study also less ordered

GBs. Important applications of such simulations towards GBSE

can be seen in simulation on the topic of grain size stabilization

in nanocrystalline materials [17,104,105] owing to the segrega-

tion-driven reduction in GB energy [22,23,43,105].

At a more coarse grained level, beyond vibrational modes, phase

field and phase field crystal modeling can be used as an alternative

to predict interactions of mechanical and chemical phenomena at

the single GB scale [107,108]. In the context of GBSE the phase field

model has recently been used for instance to predict solute decora-

tion and phase transformation phenomena at segregation deco-

rated GBs [58,109–111].

From GB segregation to GB segregation engineering: Examples

Alloy design by applying GB segregation engineering

An important field where GBSE is used for improving material

performance is the B doping of creep resistant polycrystalline

Ni-based alloys used for power plant applications at temperature

of up to 700 °C. Fig. 3 shows an example of alloy 617 where B seg-

regation on high angle GBs was revealed by using correlative TEM

and APT, leading to enhanced GB cohesion and the promotion of

the formation of precipitates [78].

Another domain where GBSE can be efficiently employed is the

stabilization of nano-crystalline grains [17,104,105] by reducing

the GB energy through segregation, Fig. 4 [22,23,43,105]. Many

nanocrystalline metallic materials undergo undesired discontinu-

ous grain growth already at modest temperatures owing to the

high capillary driving pressure exerted through the interfacial

energy. Hence, inserting solute segregation to GBs in such systems

is an essential target for two reasons: firstly, the capillary driving

force for competitive grain coarsening is reduced and secondly,

when choosing adequate solutes, GB cohesion can be enhanced.

In some systems this principle was successfully used to stabilize

nanocrystalline structures [112–121]. Recently it was observed

that C decoration to GBs is an essential principle behind the stabil-

ization of nanocrystalline grains and sub-grains and its resulting

effects on the strength of heavily deformed pearlitic steel wires

[75,76,122,123] and martensite [71].

Alloy design by using segregation-driven GB phase transformation

The concept of GBSE can be developed further by combining GB

segregation with elastic stresses to promote local phase transfor-

mation at GBs [29,58]. This effect was observed at GBs in high

strength steels and in Ti alloys. It works specifically for segregation

in conjunction with subsequent martensite-to-austenite reversion

at martensite GBs. These transformed interface regions can act as

compliance layers or, respectively, mechanical buffer zones imped-

ing for instance crack penetration along lath martensite lamellae.

Also, such regions can facilitate further phase transformation and

hence larger austenite zones which can initiate a nano-scale TRIP

effect (transformation induced plasticity) [29,58,59]. Martensite

reveals rather different types of GBs, namely, prior austenite,

packet, block, or lath boundaries, which have all different energy,

structure, misorientation, mechanics, and segregation properties

[124–127] and which could in principle all be manipulated in the

way described.

These results reveal that the approach of reversing martensite

GBs back into austenite via GB segregation is a very efficient way

of making the material more resistant against crack penetration.

Specifically, in martensite lath structures with their low mutual

misorientations, a thin austenite buffer layer, impeding crack pen-

etration, is of specific benefit. In order to realize local phase trans-

formations of martensite lath GBs at modest heat treatments a set

of criteria has been suggested [29,58,59]: First, elements with a

high segregation coefficient should be chosen. Second, these ele-

ments should reduce the transformation temperature from mar-

tensite to austenite. Third, they should prefer segregation over

bulk precipitation (e.g., carbide formation). Fourth, nucleation

should be supported in the GB region e.g., by elastic stresses.

Complexions

In classical interface theories the existence of three types of GB

phases is discussed: These are intrinsic (undecorated) GBs; mono-

layer adsorption layers; and GB wetting films. However, recent

TEM work revealed the existence of further types of impurity-

containing intergranular films of equilibrium thickness in various

ceramics and metals, as well as at metal-ceramic hetero-interfaces.

Dillon, Harmer, Cantwell et al. [61–66] and Baram et al. [60] for-

mulated an extension of the Gibbs definition of a bulk phase to

interfacial features. They refer to these equilibrium states as inter-

face complexions. More specifically, the concept suggests that such
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complexions are interface-stabilized phases (also referred to as

interphases) that are chemically and structurally distinct from

any of the abutting bulk phases. Baram et al. [60] studied such

effects on interface structures between gold and metal oxide. They

found that the interface structures formed equilibrium phases that

obey thermodynamic rules analogous to those applied to bulk

phases. They suggest that an interface complexion can be consid-

ered as a separate interface phase, which can transform into differ-

ent other phases (complexions) with different properties by

adjusting chemistry and heat treatment. Dillon et al. [62] studied

this phenomenon on alumina with controlled doping of impurities.

High-resolution TEM revealed that GBs could either consist of one

chemical species; have a single adsorbed (segregated) monolayer

of a solute; an adsorbed bilayer of one or more solutes; multiple

adsorbed layers; or thin intergranular wetting films of constant

thickness. It was also observed that transitions from one complex-

ion to another can be accompanied by a reduction in energy. From

these observations the authors suggested that bulk phase diagrams

can be modified to include equilibrium interface phases, or com-

plexions [60].

The thermodynamic stability of these nanoscale impurity-

containing intergranular films was explained in terms of a balance

of various interfacial forces and by making analogies to surface

pre-melting and pre-wetting theories. If GBs and surface adsorp-

tions are analogous, one may also expect that, in certain systems,

interfacial phases can take on a discrete thickness, leading to the for-

mation of distinct bilayer and trilayer interfacial phases [60,128].

These observations on complexions are conceived to be relevant

to the field of GB segregation engineering, and hence, included

here. It should be noted that the level of solute segregation is – like

temperature – a variable that determines the state and energy of a

GB that can be relatively easy and effectively manipulated. It can

be assumed that segregation and subsequent possible phase for-

mation at a decorated GB might proceed via a sequence of GB

Fig. 3. Segregation of B to a high angle GB in Ni-alloy 617. B improves – via improved GB cohesion and GB precipitation – the rupture strength as shown in terms of the

comparison of alloy 617 (Nicrofer5520Co) and the B-doped variant alloy 617B (Nicrofer5520CoB) in the range between 600 and 750 °C (105h). Data taken from [78].

Fig. 4. Dependence of the average grain diameter, dmean, on the total carbon

concentration in a ball-milled Fe–C alloy. The diagram is taken from the work of

Chen et al. [106].
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phase states before finally a new bulk phase is formed at the dec-

orated GB.

Both, the sequence and the final GB state depend on the corre-

sponding free energy ratios among the competing phases. Hence,

by picking adequate alloying elements or combinations of them,

solute decoration vs. phase transformation or respectively

complexion formation can be designed and guided provided that

corresponding free energy data are available.

Improving interface damage resistance via GB segregation

engineering

Here we discuss as an example a set of experiments on temper

embrittlement of a binary Feÿ8.8 wt.% Mn alloy. The aim is to

reflect on the possible effects of GB segregation engineering on

the material’s resistance to crack formation, crack propagation,

and failure. The model alloy discussed here for this purpose was

after quenching subjected to a diffusion heat treatment at 450 °C

for different annealing times ranging from a fewminutes to several

100 h. The damage resistance of the heat treated samples was then

studied by impact tests, Fig. 5. The mechanical analysis was accom-

panied by microstructural investigations of the GBs after the differ-

ent heat treatment intervals.

The data reveal a strong and non-linear dependence of the

observed impact energy, used here as a measure for the materials

toughness, on the heat treatment duration. For short annealing

times at 450 °C in the range between a few seconds and up to

100 h the alloy undergoes a substantial embrittlement where it

practically loses all of its toughness. For very long annealing times

beyond several 100 h at this temperature the alloy does not only

recover most of its original toughness observed after quenching

but even shows higher values than it originally had.

Although these data were not obtained by fatigue testing it may

be anticipated that this trend of the embrittlement as a function of

heat treatment time may be applicable also to other loading states

rather than the here imposed impact testing.

The primary reason for the immediate embrittlement of the

alloy already after very short annealing times at 450 °C is attrib-

uted to the segregation of Mn to the GBs and the associated deco-

hesion that it causes. The recovery in toughness, however,

observed for very long annealing times, is less well understood at

this stage. Two explanations can be put forward in this context.

The first one refers to the effect of very high Mn segregation to

the GBs and the associated martensite to austenite reverse

transformation [29,58]. This would lead to thin austenitic layers

between the martensitic laths which might act as a soft barrier

against crack propagation. Similar effects are discussed for Ti alloys

where thin films of b-Ti, located between a-Ti crystals, might play

a similar role. The here assumed blunting effect on cracks when

entering into such soft GB phase layers is, however, still under

debate.

The second effect refers also to the formation of reversed

austenitic zones on the martensite GBs. However, the underlying

effect that is here assumed to increase GB cohesion with increasing

annealing time lies in the ‘cleaning’ effect that the formation and

growth of these austenite islands have. The idea is that once an

austenitic nucleus is formed on a martensitic GB, partitioning leads

to the accumulation of Mn into this newly formed austenite film,

thus removing solute Mn from the martensite GB. Hence, less Mn

segregates to the martensite GBs, recovering some of the original

GB cohesion. Also this effect has still to be analyzed in more detail.

Another more trivial additional reason for improving damage

resistance of alloys due to GB segregation engineering lies in the

reduction of the GB energy due to equilibrium solute decoration

according to the Gibbs adsorption isotherm. This means that dur-

ing heat treatments the driving force for capillary-driven grain

coarsening is reduced, leading to an overall smaller grain size.

Current challenges and opportunities in GB segregation

engineering

A specific challenge in GB research and, more specifically, in the

field of GB engineering related to segregation (GBSE), lies in the

joint characterization of both, structure and chemistry of GBs at

atomic scale. The difficulty lies in the multiple degrees of freedom

associated with the description of a GB (5 crystallographic and 3

atomistic parameters) that all affect GB segregation. This results

in an almost infinite amount of GB variants which renders the

identification of correlations between GB type and segregation

and the associated investigation of manipulation opportunities

challenging [85,129–131]. Even the often helpful simplification of

this problem into three GB classes, namely, low angle GBs, random

high angle GBs, and highly coherent GBs, is not generally useful in

this context. This is due to the fact that in the field of GBSE even the

most coherent GBs, i.e., twin boundaries, can contain incoherent

portions, typically in the form of ledges or facets that deviate from

coherency where impurities reside and locally alter the GB’s prop-

erties. In other words, approaches towards GBSE cannot be based

merely on the CSL concept but may have to consider the GB plane

inclination or GB defect structures, too [85]. Very similar argu-

ments hold for corresponding ab initio, MD, or phase field crystal

simulations.

It should be emphasized that in some cases a simplifying GBSE

approach is conceivable though. For instance when aiming at

reducing the overall grain size by segregation engineering, leading

to the reduction in the grain boundary energy and mobility, a glo-

bal trend information about the degree of equilibrium solute dec-

oration of non-ordered or ‘random’ GBs is sufficient. Hence, in

such cases a 5D crystallographic analysis of segregation is not nec-

essarily required but instead the overall level of solute partitioning

between grain interiors and the abutting GBs suffices as starting

information for a GBSE approach, using for instance segregation

trends as presented in Fig. 1. Also, in systems with a high fraction

of low angle GBs, such as for instance observed in subgrain struc-

tures in aluminum alloys and low carbon steels, a nearly linear

trend between the misorientation and the solute decoration was

observed, Fig. 2. Hence, also in such cases the GBSE approach does

not require a full 5D GB analysis, i.e., GB planes can be neglected in

a first approach.
Fig. 5. Influence of Mn segregation on the development of the toughness of a

Feÿ8.8 wt.% Mn alloy after different annealing times at 450 °C.
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Another opportunity to overcome the enormous challenges

associated with conducting experiments in such a huge parameter

space lies in using corresponding simulation methods which

enable chemical trend screening of GB decoration. While density

functional theory is not an adequate method for such trend screens

owing to the requirement of using periodic boundary conditions

and small simulation cells, the phase field crystal model might

be suited to systematically tackle such a task [132,133]. The phase

field crystal method is a quasi-continuum model that works at

atomic length and diffusive time scales assuming conservative

dynamics. It can be informed by atomic interactions obtained from

density functional theory. The phase field crystal method can treat

the overdamped dynamics of several 107 atoms.

Applications where GBSE could help to improve material

performance are the fields of GB oxidation, cohesion, damage,

GB-assisted phase transformation, and creep pore formation. In

the case of oxidation, segregation alters the local chemical state

and creates a local potential difference between the GB and the

abutting bulk crystals. This mechanism can lead to faster local

oxidation at GBs which is an effect that is amendable to GBSE.

Cohesion at GBs can be influenced by segregating solutes that

increase rather than decrease cohesion. An example of B segrega-

tion in Ni was given in Fig. 3. Also, the co-segregation of beneficial,

cohesive solutes to GBs can be an interesting strategy to occupy

atomic positions at GBs with the aim to avoid segregation of sol-

utes that reduce cohesion. Finally, the formation of compliant

phases (Fig. 6) or suited segregation occupation at GBs can prevent

damage initiation, for instance by arresting cracks at GBs. These

locally formed GB phases do not necessarily have to be complex-

ions, i.e., interface stabilized phases, but can be conventional

phases that preferentially form at decorated GBs. Examples are

the formation of austenite at martensite GBs or the formation of

b-Ti films at former a-Ti GBs.

Conclusions and outlook

Recent theoretical and experimental advances in the fields of

GB segregation and GB phase transformations offer opportunities

for the manipulation of internal interfaces with the aim of improv-

ing the materials’ mechanical response. Although the focus was

placed here on metallic alloys, similar principles apply to ceramic

materials and semiconductors. Solute decorated GBs can lead to

different types of equilibrium phenomena. These include classical

equilibrium segregation; monolayer occupation; bi- and trilayer

occupation (i.e., complexions, interface stabilized phases); wetting;

and regular equilibrium bulk phase formation or, respectively,

phase reversion. All these types of segregation-induced GB phe-

nomena can be utilized to design specific features for improving

the mechanical response of such alloys. Examples are the increase

in GB cohesion, fracture toughness, or resistance against creep pore

formation. We refer to this approach of manipulating GBs by solute

decoration and phase transformations as grain boundary segrega-

tion engineering.
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