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Existing alternatives for the calculation of geometrically necessary dislocation (GND) densities from
orientation fields are discussed. Importantly, we highlight the role of reference frames and consider
different sources of error. A well-controlled micro cantilever bending experiment on a copper bicrystal
has been analyzed by 3-dimensional electron back scatter diffraction (3D EBSD). The GND density is
determined experimentally by two different approaches and assessed theoretically, assuming a homoge-
neous bending of the cantilever. Experiment and theory agree very well. It is further shown that the
deformation is accommodated mainly by GNDs, which carry and store lattice rotation, and not (only)
by mobile dislocations that leave a crystal portion inspected, without lattice rotations. A detailed GND
analysis reveals a local density minimum close to the grain boundary and a distinct difference in edge
to screw ratios for both grains.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Stored dislocations are generally divided into geometrically
necessary dislocations (GNDs), which accommodate a lattice
curvature from a deformation gradient, and statistically stored
dislocations (SSDs), which accumulate due to statistical
entanglements. The focus of this work is entirely on the class of
GNDs. As GNDs are the result of a deformation process, they are
mainly a measure for differences in plastic flow and they con-
tribute to the stored energy and strain hardening during cold
working.

Nye [1], Kröner [2,3] and Bilby et al. [4] established a continuum
dislocation theory that provides the connection between the lattice
curvature and a continuous GND distribution. Sun et al. [5] were
the first to apply this theory with the help of electron backscatter
diffraction (EBSD) to resolve GND distributions in Al bicrystals.
Since then, a range of studies into GND distributions have been
performed, all based on employing conventional EBSD pattern
analysis by Hough transform [6–12]. More recently, EBSD pattern
cross correlation has been applied to obtain more accurate lattice
rotation and GND results, [13–19]. As most GND studies are based
on 2-dimensional EBSD measurements, they consequently deal
with the missing out-of-plane components in Nye’s dislocation
tensor in various ways. Recent advancements, by solving an addi-
tional static stress equilibrium condition, have led to a complete
(but still surface based) dislocation tensor, though [20]. The cur-
rent work is entirely based on 3D EBSD measurements and there-
fore neither limited by an incomplete Nye tensor nor by a missing
dimension in the GND density field. Our 3D EBSD measurements
are performed by serial sectioning with a focussed Ga+-ion beam
and a subsequent mapping of the consecutive sections by EBSD.

The number of methods to map dislocation densities by other
means is rather limited and includes methods such as direct
observations by electron channelling contrast imaging (ECCI) and
transmission electron microscopy or indirect observations by etch
pits or X-ray diffraction profile analysis. This and the difficulty to
differentiate between GNDs and SSDs is probably the main reason
why there have been only very few attempts so far to compare the
outcome of GND calculations with direct measurements of disloca-
tion densities, [21].

In the present work we attempt to verify the density of GNDs
obtained by 3D EBSD on the basis of an experiment which creates
an analytically quantifiable amount of GNDs. We use a constrained
micro-cantilever bending experiment, assuming that the GND
density can be calculated from an experimentally determinable
bending radius. Provided that the deformation is carried mainly
by GNDs, this will be a suitable set-up to relate GND densities to
the plastic deformation gradient, [22].
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Only few micro-beam bending experiments have been docu-
mented in literature and they are essentially devoted to measuring
continuum properties of the beams. Crystal bending was studied
by Stölken et al. [23] on Ni polycrystalline thin films. They reported
a size-dependent strength and strain hardening. In two studies by
Demir et al. [24,25], size dependent yield stress values were
observed during bending of monocrystalline cantilever beams
and shear localizations were mapped by EBSD. In a similar
cantilever bending experiment, conducted on single crystalline
copper, the same authors observed a Bauschinger effect, [26].

The outline of this paper is as follows. In section 2 we revisit the
calculation of geometrically necessary dislocation densities from
orientation data. We address some important details as well as
alternative possibilities to extract dislocation densities. The details
of our in situ cantilever micro-beam bending experiment are out-
lined in section 3. In section 4 we characterize the bending induced
deformation by applying the framework of section 2 and finally we
discuss the results qualitatively and quantitatively in section 5,
followed by an error discussion in section 6.
Fig. 1. Within a closed circuit C, the net Burgers vector of all dislocations enclosed
by the circuit is equal to that of all dislocations pointing through any surface S,
limited by C.
2. Geometrically necessary dislocations

2.1. Dislocation tensor

Nye introduced a tensor to describe a crystal’s state of disloca-
tion in terms of a local Burgers vector, [1]. This continuum based
concept assumes a continuously dislocated state of the crystal lat-
tice, which is mathematically described by a dislocation (or Nye)
tensor field.1 In principle, it allows the number of dislocations to
increase to infinity, whereas their Burgers vectors may become
infinitely small.

It is arbitrary with respect to which reference frame(s) this
dislocation tensor is defined, but, as pointed out by Wheeler et al.
[11], it is imperative to be consistent. In line with [27,28,11] we will
use an enhanced summation convention, in which latin and greek
subscripts stand for resp. the crystal2 and the sample frame.
Repeated indices are understood to be summed over the range
1; . . . ;3. For example, the tensor aic describes the net Burgers vector
content in a crystal direction xi, from all dislocations that penetrate a
unit area perpendicular to a chosen sample direction xc. Thus, all dis-
locations that penetrate an infinitesimal surface area perpendicular
to a sample direction dlc yield a net Burgers vector dbi of

dbi ¼ aic dlc: ð1Þ

The dislocation tensor is usually non-symmetrical and by that free
of redundant information. Furthermore, its unit is L�1, which means
that a multiplication by a surface normal dl of unit L2 delivers a
Burgers vector with unit L1.

The physical fact that individual dislocations neither end nor
start within the crystal lattice is mathematically reflected in a con-
servation of the net Burgers vector. Within a closed circuit C, the net
Burgers vector of all dislocations enclosed by the circuit is equal to
that of all dislocations pointing through any surface S, limited by
C, Fig. 1. That is, by integrating over surface S, we consider the total
Burgers vector contribution of all dislocations enclosed by C,

bi ¼
ZZ

S

aic dSc: ð2Þ

By the introduction of a deformation tensor E, which locally
relates the distorted lattice to the sample frame, an open Burgers
1 It should be noted that Kröner derived a transposed tensor: aKr ¼ aT
Nye.

2 We implicitly mean an orthonormal frame, associated with the crystal frame in a
defined manner.
circuit along C0 within the crystal frame can be converted to a
closed circuit C within the sample frame, see Fig. 2:

bi ¼ �
Z

C0
dijdxj ¼ �

I
C

Eic dxc; ð3Þ

where dij represents the identity tensor and a ‘‘�’’ sign is added to
comply with the RHFS rule. By applying the Stokes theorem for
2nd order tensors, the line integral along C over E is converted to
a surface integral of the curl of E over the enclosed surface S:

bi ¼ �
ZZ

S

5� Eic dSc: ð4Þ

A direct comparison of Eqs. (2) and (4) then yields the fundamental
equation of continuum dislocation theory:

aic ¼ �5�Eic ¼ �ecba Eia;b; ð5Þ

where e represents the Levi–Civita permutation tensor and Eia;b rep-
resents a partial differentiation of the deformation tensor with
respect to sample coordinates b.

The deformation E can be decomposed into a linear superposi-
tion of elastic lattice strain and lattice rotation (i.e. orientation).
By assuming that GNDs tend to arrange in constellations of lowest
energy (polygonization) the elastic strain contribution becomes
negligible. Eq. (5) then simplifies to the curl of the orientation field:

aic ¼ �5�gic ¼ �ecba gia;b: ð6Þ
2.2. Reference frames

As emphasized by the subscripts, the dislocation tensor, a, in
Eq. (6) is based on two reference frames that do not necessarily
coincide. When the dislocation tensor is decomposed crystallo-
graphically into contributions of individual sets of dislocations this



Fig. 2. Schematic of a Burgers circuit in a deformed crystal (left) and a sample frame (right). The tensor field to be integrated along the integration path is indicated by small
black coordinate frames on the right. Only within the sample frame the integration path becomes closed, but still yields the same net Burgers vector as indicated by small red
vectors.

Table 1
Dislocation tensor for different reference frames.

Frames Dislocation tensor

Crystal Crystal aij ¼ �ð5� gicÞgcj

Sample Crystal aaj ¼ �gai ð5 � gicÞgcj

Crystal Sample aic ¼ �ð5 � gicÞ
Sample Sample aac ¼ �gai ð5 � gicÞ

404 P.J. Konijnenberg et al. / Acta Materialia 99 (2015) 402–414
has to be taken into account (Section 2.3). As pointed out by
Wheeler et al. [11], it is perfectly possible to transform the disloca-
tion tensor to a different set of reference frames by a pre- and/or
post- multiplication with the (inverse) local orientation tensor,
see Table 1. Independently, the differentiation inside the curl
remains with respect to the chosen sample frame. Although all
variant descriptions in Table 1 are equivalent, the first description
proved to be most efficient for our computational purposes
(Section 2.5).

In literature a 5th variant of Eq. (6) is often used, by an implicit
change of the sample reference frame [3,8,9]. Consider two
infinitesimally misaligned orientations g1 and g2. By a change of
the sample reference frame to g1 (i.e. g1 ¼ I), the infinitesimal lat-

tice rotation between both orientations dx ¼ g1dgT (Appendix A)
simplifies with the help of Eq. (A.2) (in component notation) to

dxij ¼ �dgic: ð7Þ

Formally Eq. (7) appears contradictory, as both sides refer to differ-
ent frames. However, by setting the sample reference frame identi-
cal to the local crystal frame, latin and greek subscripts refer to the
very same frame. With this, Eq. (6) can now be expressed as

aij ¼ 5�xij ¼ ejkl xil; k: ð8Þ

Since both frames are identical, all previous four variants of Eq. (6)
merge into Eq. (8). In being identical to the local crystal frame, the
new sample frame now varies with the orientation field. This
imposes a subtle but important constraint on the applicability of
Eq. (8) to discrete orientation maps. Since they are acquired along
a fixed discrete regular grid, differentiation along an arbitrary sam-
ple direction would require an interpolation of the orientation field.

2.3. Decomposition of the dislocation tensor

It was Nye [1] who pointed out that an arbitrary dislocation
state can be constructed from a set of K = 9 linear independent dis-
locations, each weighted by an individual dislocation density, q:

aij ¼ qkbk
i � tk

j ¼ qkAk
ij; ð9Þ

with k ¼ 1;2; . . . ;K for each dislocation involved and b; t and A
respectively for the Burgers vector, line element (j t j¼ 1) and dislo-
cation dyadic and � to emphasize the otherwise implicit dyadic
vector product.

In general, a dislocation dyadic consists of 3 screw components
on the diagonal and 6 off-diagonal edge components. Depending
on the choice of the reference frame, the character of a dislocation
can be inferred from its dyadic components. For pure edge and
screw dislocations minimally one coefficient and for mixed dislo-
cations minimally two coefficients will be non-zero. When decon-
structing a dislocation tensor, it is imperative to keep the reference
frames for Burgers vector and line element in line with those of the
dislocation tensor as derived from Eq. (6). The line element repre-
sents a unitless direction of magnitude one, L0. Thus, unit wise the
product of dislocation density and Burgers vector matches with the
dislocation tensor L�1.

The only repeated index in Eq. (9) is the dislocation index, such
that it expands as follows,

Ak¼1
11 Ak¼2

11 � � � Ak¼9
11

Ak¼1
12 Ak¼2

12 � � � Ak¼9
12

..

. ..
. ..

.

Ak¼1
33 Ak¼2

33 � � � Ak¼9
33

2
666664

3
777775

qk¼1

qk¼2

..

.

qk¼9

2
66664

3
77775 ¼

a11

a12

..

.

a33

2
66664

3
77775: ð10Þ

Hence, a given dislocation tensor can be deconstructed into a set of
linear independent dislocations and corresponding densities by
essentially solving the inverse of a 9 � 9 compound dyadic matrix.
The null space (i.e. a ¼ 0) of the compound dyadic in Eq. (10) repre-
sents all combinations of dislocation densities that remain without
geometric impact. By definition they must represent SSD densities
[29].

2.3.1. Crystallographic decomposition of the dislocation tensor
Although a crystallographic deconstruction is computationally

more costly, it potentially enables a deeper insight into the under-
lying deformation mechanisms. In order to solve any dislocation
densities, a set of dislocations must first be defined. An interpreta-
tion of the dislocation densities is served best with a set, chosen
such that it reflects the slip systems of the material in question.
Except for the simple cubic case (Section 2.3.2), the effective set



Table 2
Dislocations and dislocation set sizes for some common lattices, as well as the
number of combinations to create a subset of K ¼ 9 dislocations according to Eq. (11)

Lattice Dislocations Set size Comb.

bcc b ¼ 1
2

1
2

1
2

� �
; t ¼

ffiffi
6
p

6 h112i 16 11440

b ¼ 1
2

1
2

1
2

� �
; t ¼

ffiffi
3
p

3 h111i

fcc b ¼ 1
2

1
2 0

� �
; t ¼

ffiffi
6
p

6 h112i 18 48620

b ¼ 1
2

1
2 0

� �
; t ¼

ffiffi
2
p

2 h110i

hex b ¼ hai, screw 21 293930
b ¼ hai, basal edge
b ¼ hai, prism edge
b ¼ hcþ ai, pyr. screw
b ¼ hcþ ai, pyr. edge
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size, S, of a dislocation set after symmetrization, exceeds the max-
imum solvable number of K ¼ 9 and leaves Eq. (10) in principle
under-determined.

Essentially two methods are commonly employed to come to a
solution within an S-dimensional dislocation density space
[30,29,5,6,10,16,31,12]. An L2 minimized S-dimensional density
solution exists, which is explicitly solvable via a singular value
decomposition of the compound dyadic. Alternatively, an L1 mini-
mized solution is computationally more costly (e.g. via a simplex
heuristic) and can be based on the dislocation length, associated
line energy or Schmid factor.

It is the components of the solution vector that represent GND
densities. Thus, from a physical standpoint, a minimization of the
sum of the absolute solution vector components (L1-norm) is pref-
erential over a minimization of the total solution vector length
(L2-norm).

Our approach is an L1 minimization, in line with [10], with the
difference that we minimized the associated line energy. The total
number of combinations out of which a minimum yielding combi-
nation must be obtained, amounts for a subset of K ¼ 9 disloca-
tions out of a set size S to:

CK¼9
S ¼

S

9

� �
; ðS P 9Þ: ð11Þ

In Table 2 the theoretical number of combinations is listed for some
common slip systems. It should be noted, though, that the number
of linear independent combinations is usually lower. Furthermore,
the uniqueness of the solution is not guaranteed.

2.3.2. Simple cubic decomposition of the dislocation tensor
In some cases it is sufficient to disregard the individual contri-

butions in a dislocation set in favor of a total bulk density result.
As pointed out by El-Dasher et al. and Ruggles et al. [6,12], it is
defensible to avoid solving Eq. (9) altogether in order to come to
a reasonable estimation. For this the dislocation tensor is decon-
structed as in a simple cubic case, as introduced by Nye. With all
line elements and Burgers vectors parallel to the reference frame
axes, each dislocation dyadic comprises exactly one non-zero com-
ponent. Due to this, the compound dyadic in Eq. (10) becomes
sparse, with only non-zero elements on the diagonal,

Ak¼1
11 0 � � � 0

0 Ak¼2
12 � � � 0

..

. ..
. ..

.

0 0 � � � Ak¼9
33

2
666664

3
777775

qk¼1

qk¼2

..

.

qk¼9

2
66664

3
77775 ¼

a11

a12

..

.

a33

2
66664

3
77775: ð12Þ

In consequence, the total bulk density, qtot, can be conveniently
expressed in terms of the entrywise 1-norm of the dislocation ten-
sor, [6,12]:

qtot ¼
X

k

j qk j¼ 1
j b j

X
i

X
j

j aij j¼
kaijk1

j b j : ð13Þ

Important constraints to this approximation are that it neither
allows for multiple Burgers vector magnitudes nor is the total den-
sity outcome independent of the choice of reference frame.
Effectively, it is thus limited to cubic symmetries and the term
lower bound may seem not entirely apt. In spite of these limita-
tions, the simple cubic deconstruction enables additional alterna-
tives to quantify the dislocation content.

2.4. GND estimation based on the average disorientation angle

Physically, the dislocation density can be interpreted in terms of
a low angle grain boundary model. For this, it is assumed that the
average misorientation, hav, of a pivot voxel with its surrounding
voxels is accommodated by a simple low angle tilt grain boundary.
This boundary type accommodates a lattice misorientation with a
minimal number of dislocations. It may consist of a single set of
parallel edge dislocations with a reciprocal distance of
1=d ¼ hav= j b j, with b for the Burgers vector.

In a first approximation, the grain boundary is assumed to be
located midway between the pivot voxel and its surrounding vox-
els and constructed of six cube faces, as indicated in Fig. 3. By
assuming an equal step size of a in all dimensions, the total dislo-
cation length per boundary fragment amounts to: L ¼ a2hav= j b j.
As each boundary fragment connects two adjoining voxels, half
of this length can be attributed to each voxel. The local dislocation
density then results from relating the total dislocation length of all
six boundary fragments to the pivot voxel volume:

qtot ¼
6
2

hava2

j b j
1
a3 ¼

3hav

j b j a : ð14Þ

This and a similar result can also be derived in a more formal way,
as shown in Appendix B.

2.5. Some computational considerations

In the following we address some computational issues that
need to be taken care of when solving dislocation densities.

2.5.1. Choice of reference frames
Although all variants of Eq. (6) are equivalent, the first in

Table 1 proves to be most efficient for an L1 minimization. Only
here a is independent of the sample reference frame and conse-
quently the dislocation dyadics associated with it as well. The
advantage is that all linear independent combinations of disloca-
tion dyadics can be efficiently re-used at each data point.
Although this is not very time-consuming in itself, the overall com-
putation time quickly increases with the number of data points.

2.5.2. Symmetry
Although Eq. (6) will be applied to neighboring orientations that

differ only slightly, the crystal symmetry of the orientation field
must still be taken into account to ensure that the smallest dg
between neighboring orientations is used and to ensure a consis-
tent orientation description throughout the entire field.

A differential orientation between two neighboring orientations
is described by dg ¼ g2 � g1. In contrast to Dg; dg is not orthonor-
mal and in consequence symmetry operators are not applicable.
A minimal dg can be extracted via the corresponding disorientation
Dgdis ¼ g1g�1

2 from:

dg ¼ ðDgT
dis � IÞg1: ð15Þ



Fig. 3. GND estimation based on the local average disorientation of a pivot voxel (red) with its first shell of neighbors (gray). The assumed low angle tilt GB is indicated by a
dashed line (left) and shown in 3D (right) composed of 6 individual fragments. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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By the choice of a specific symmetry operator for g, the crystal
frame in aic becomes tacitly specified and with that the outcome
for aic as well. Hence, when the curl is calculated the symmetry
operator for a pivot orientation must be maintained constant in
all three dimensions. Moreover, this specific symmetry operator
must also be applied when transforming the corresponding aic to
another set of reference frames. From a computational point of
view it is therefore advantageous to avoid any symmetrization of
the pivot orientation, i.e. use it ‘‘as is’’. This imposes no additional
constraint to Eq. (15) since it is always possible to find one arbi-
trary disorientation (and its inverse) by a symmetrization of just
one of both orientations.
3. Experimental method

An in-plane cantilever micro-beam of about 21 lm � 3 lm
� 3 lm was produced by Ga+-ion milling from an edge of a poly-
crystalline sample of pure and recrystallized copper in a Zeiss
1540 CrossBeam FEG SEM.

Before the milling process the sample was mechanically pol-
ished from two perpendicular surfaces to create a sharp edge.
EBSD-based orientation mapping was performed on one of the
sides in order to reveal the microstructure and crystal orientations.
Subsequently, an area containing a large angle grain boundary was
selected for the preparation of a cantilever micro-beam. In order to
remove material that was possibly affected by surface strain, the
two surfaces were first removed up to a depth of 3 lm, by
Ga+-ion milling in grazing incidence along these surfaces. Next,
the cantilever was prepared by milling with a Ga+-ion beam accel-
erated at 30 kV. For the removal of large volumes of material a 2 nA
beam current was used, for fine finishing the beam current was
reduced to 500 pA. Apart from the fixed end, the beam was com-
pletely cut free from the surrounding bulk material, see Fig. 4.
The beam was cut such that it contained a single approximately
cross-sectional grain boundary at about a third beam length dis-
tance from the fixed end.

The cantilever was deflected by positioning a micromanipulator
tip (Kleindiek Nanotechnik) perpendicularly against its free end
(end loaded cantilever beam). The force from the micromanipula-
tor acted perpendicular only at the start of the experiment. With
increasing beam deflection, the force angle decreased inevitably
but had no noticeable influence on the deformation conditions of
the cantilever. Limitations to the range of the micromanipulator
tip prevented a full deflection of the cantilever. Approximately
25% of the free end did not impact the anvil (see below) and
remained virtually undeformed.

End loaded cantilever beams of this size deform differently
compared to their macroscopic counterparts. Most of the imposed
strain tends to accumulate around the fixed end, leading rather to
buckling than to bending. In order to achieve a more homogeneous
deformation state, the cantilever was deflected in a ‘‘mildly con-
strained’’ manner by milling a quarter-circle-shaped anvil below
the actual cantilever, as is indicated in Fig. 4. This particular
arrangement forced the cantilever to adopt a constant bending
radius. Due to this constraint, a tangential point between the beam
and the anvil existed, which gradually shifted from the fixed
towards the free end with increasing deflection. This prevented
already deformed volumes between the fixed end and the tangen-
tial point to take up further deformation. Through a constant acti-
vation of new slip systems alongside the shifting tangential point a
more homogeneous deformation state was achieved, as compared
to an unconstrained experiment.

After the cantilever had been deformed, a 3-dimensional orien-
tation map of the beam was measured by 3D EBSD using a combi-
nation of serial sectioning with a Ga+-ion beam and EBSD
orientation mapping on the individual sections [32]. Sectioning
was performed with a 500 pA beam, milling for 2 min on a window
of 300 nm thickness and a width as the cantilever length. This win-
dow was moved towards the milled surface by 100 nm for each
serial section. The acquisition of EBSD data was done at 15 kV
acceleration voltage using an EDAX-TSL Hikari detector at an
acquisition rate of 100 Hz and 4 � 4 binning. A square acquisition
grid with 100 nm step size was used. The patterns were analyzed
with a Hough resolution of 120 pixels � 1� and a 9 � 9 convolution
filter. The resulting dataset of 100 nm � 100 nm � 100 nm resolu-
tion was analyzed by an in-house developed 3D EBSD post process-
ing software, QUBE.
4. Results

After acquisition of the 3D EBSD data set the slices were rea-
ligned (translational only) by minimizing the total inter-slice
misorientation. The signal to noise ratio of the raw orientation data
was improved by the application of a quaternion based median fil-
ter with a kernel size of 3 � 3 � 3 voxels and a cut-off angle of 4�.
This noise-reducing and edge-preserving smoothing filter will be



Fig. 4. SEM image of the cantilever micro-beam before (left) and after (right) bending. Observations at resp. 0� and 20� tilt.

Fig. 5. Cross section of the cantilever micro-beam (unfiltered dataset). Color
scheme: IPF-X, color indicates the crystallographic direction parallel to the sample
frame x-axis (red). The central beam axis is indicated by a red wire tube of 500 nm
radius. Its shape is based on a 2nd degree polynomial and linear fit to the external
beam contours.

Fig. 6. Cantilever micro-beam (unfiltered dataset). Color scheme: local average
disorientation (LAD) from 0� to 3�. Voxel opacity scales linearly with angle value.
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outlined in a separate publication. Grains of similar orientation
were then reconstructed with a critical threshold angle of 4�.
This angle ensured a robust separation of the micro-beam from
the anvil. In Fig. 5 a cross section of the bicrystalline beam is shown
in an inverse pole figure color (IPF-X) scheme. Although slight color
nuances tend to be obscured by the rendering technique, some
overall orientation gradients in both grains can still be recognized.

The initial (undeformed) orientation of both grains is still pre-
served in the structure of the underlying quarter circle anvil (not
shown). On average, both grains are misoriented by about 55.3�–
h0.75,0.50,0.43i. For R 6 35, no sufficiently close Coincidence Site
Lattice (CSL) relation is found for this misorientation. Hence, it
can be categorized as a random large angle grain boundary. After
deformation, the misorientation in the vicinity of the grain bound-
ary is confirmed to be nearly identical to that of their undeformed
counterparts in the anvil.

In Fig. 6, the cantilever is represented in a local average disori-
entation (LAD) color scheme.3 This color scheme encodes the
3 Comparable to ‘‘kernel average misorientation’’ or ‘‘local misorientation’’.
average disorientation angle of each voxel with its nearest neighbors
(here 26), up to a chosen cut-off angle of 3�. Furthermore, the opacity
of the voxels depends linearly on the LAD value. This representation
allows an improved view into the volume by biasing larger values at
the expense of smaller values.

Fig. 7 demonstrates the total summed GND density distribu-
tion as obtained according to section 2 on the unfiltered (a) as
well as the median filtered (b) dataset. The opacity of the voxels
scales with log qGND. The orientation curl was determined for
directly neighboring voxels within a range of 0.0001� up to
resp. 3� (unfiltered dataset) and 4� (median filtered dataset).
The dislocation tensor was deconstructed into an FCC set of 12
pure edge and 6 pure screw dislocations. The L1 minimization
was based on the associated line energy, which is approximately
1.4 times higher for edge dislocations than for screw dislocations
in copper. The total calculation time amounted to about 55 min
on a Hewlet-Packard Z800 workstation with an Intel Xeon X5690
3.47 GHz processor.

The total GND density as shown in Fig. 7(b) can be conve-
niently split-up by the dislocation character. This is shown in
Fig. 8 where the contributions from edge GNDs (a) and screw
GNDs (b) are shown separately. Also here the voxel opacity
scales with logqGND



Fig. 7. Cantilever micro-beam. Color scheme: total GND density in the range from 1:0� 1014 m�2 to 1:0� 1016 m�2. (a) Unfiltered dataset, GND cut-off angle 3�. (b) Median
filtered dataset (kernel size: 3 � 3 � 3, cut-off angle 4�), GND cut-off angle 4�. Voxel opacity scales with log qGND.

Fig. 8. Cantilever micro-beam, median filtered dataset (kernel size: 3 � 3 � 3, cut-off angle 4�). Color scheme: (a) GND edge density (b) GND screw density in the range from
1:0� 1011 m�2 to 1:0� 1016 m�2. Voxel opacity scales with logqGND.
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5. Discussion

5.1. Bending vs. shearing

In order to use the present cantilever bending experiment for an
assessment of the GND analysis method suggested here, it is rele-
vant by which mechanism the deformation took place. During the
bending process the beam may microscopically comply with the
macroscopic shape change in two different manners or a mixture
of them, as illustrated in Fig. 9. Either bending occurs by
building-in GNDs and the associated lattice rotation (Fig. 9a),
shortly bending in the following or it proceeds by a transition of
mobile dislocations on subsequent lattice planes without storage
of any dislocations (Fig. 9b), shortly shearing in the following. If
the deformation is carried mainly by the bending mechanism the
GND density will be much higher than in the case of the shearing
mechanism, in which a large number of dislocations will glide into
the free surface.

Therefore, we calculated the average orientation along the cen-
tral (or neutral) axis as is indicated in Fig. 5. The central axis has
been approximated by a 2nd degree polynomial and a linear fit
to the beam’s external contours. The average orientation was based
on all voxels within a radius of 500 nm around the central axis (red
wire tube). The grain boundary intersects the central axis within a



Fig. 9. Schematic of both limiting cases for the deformation of a cantilever micro-
beam. (a) Lattice rotation and storage of GNDs (‘‘bending’’). (b) Deformation
without dislocation storage (‘‘shearing’’).

4 A low angle twist grain boundary needs a twice as high dislocation density as a
tilt grain boundary of identical misorientation.
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small range (marked ‘‘GB’’ in Fig. 10) instead of a well-defined
point because of a slight inclination.

As a reference for the original, undeformed beam orientation we
picked two representative orientations from within the anvil. The
average disorientation angle between the orientations on the
central axis and the reference orientations was determined and
compared to the macroscopic rotation of the cantilever, as
described by the central axis, see Fig. 10.

It shows that the crystal rotation and the macroscopic rotation
correspond closely. Any positive difference between the beam and
lattice rotation (i.e., the lattice rotates less than the beam) is a suit-
able indication for the amount of additional shear that took place,
cf. Fig. 10. The shape change of grain I is therefore largely sup-
ported by lattice rotation. Only close to the fixed end some addi-
tional shear can be noticed. A negative difference, as in grain II,
implies a stronger lattice rotation (up to 3.5�) than the external
beam shape change would demand.

From this we conclude that most of the deformation occurred
mainly by the bending mechanism and that a contribution from
the shearing mechanism has been largely negligible.

5.2. GND distribution

It can be seen from Fig. 6 that the part of the cantilever that has
undergone deformation shows a dense network of steep orienta-
tion gradients throughout the volume. In contrast to that, the
remaining part at the free end seems not to be affected very much.

The orientation gradient network is also reflected by a similar
GND distribution, cf. Fig. 7. The GND image provides a more quan-
titative insight into the local deformation pattern though. In grain
I, high GND densities are reached near the grain boundary and
close to the free surface that touches the anvil. Compared to grain
II the density distribution appears slightly more homogeneous. Not
surprisingly, as both the GND and the LAD distributions depend on
the misorientation, the overall tendency of the GND density distri-
bution resembles the LAD distribution. However, due to the inher-
ent averaging character of the LAD calculation, the qualitative
resemblance with the GND distribution after median filtering is
strongest, see Fig. 7(b).

The volume GND distribution is summarized by the (averaged)
GND density profile along the central axis, see Fig. 11. Around the
grain boundary a small volume of lower density levels is found,
which sets in several voxels before the grain boundary.
Therefore, the minimum seems genuine even though we did not
compute a GND density across the grain boundary. This observa-
tion could possibly be understood as a consequence of local
hardening due to dislocation pile-ups at the boundary. This pre-
vents further slip systems from being activated or to enter this vol-
ume which leads to a relative depletion of this volume. Another
possibility could be a local change of the stress field due to the nec-
essary strain accommodation across the boundary. This could pre-
vent dislocations from the main deformation field to enter a
volume in the vicinity of the boundary. Clearly, this result is oppo-
site to recent findings by Jiang et al. [18], who found an increased
GND density at the grain boundaries in polycrystalline copper.
However, we attribute this contrast to a much smaller length scale
in the present work.

Also shown in Fig. 11 is the (averaged) LAD profile along the
central axis (blue). The GND and the LAD profiles show a strong
resemblance. An approximation of the GND density (red), based
on Eq. (14), shows indeed a very close match for grain I but also
an overshoot for grain II. Apparently, the assumptions for
Eq. (14) (Appendix B) are less valid for grain II than for grain I.

A comparison of the contributions from edge and screw GNDs,
Fig. 8, reveals a different character of their respective distributions.
Edge dislocations can be associated with the observed density hot
spots, while screw dislocations are more homogeneously dis-
tributed. This difference is also confirmed by the (averaged) profile
along the central axis, cf. Fig. 12. The screw GND density profile is
less pronounced, compared to the edge GND density profile. Also,
their relative contribution to the total GND density differs dramat-
ically between both grains. In grain II, the edge contribution is
more than twice as high as the screw contribution. Possibly, this
difference originates from an activation of different slip systems
due to a different grain orientation. Furthermore, considering the
fact that edge dislocations generate a stronger lattice rotation than
screw dislocations,4 this could explain the observed local peak in the
lattice rotation, Fig. 10.

5.3. Assessment of GND density levels

As a lower bound estimation of the expected GND density we
assume that the lattice curvature is facilitated by radially aligned
sets of low angle tilt grain boundaries, as shown in Fig. 9(a).
Furthermore, we will assume the cantilever to be single crystalline
with a suitable orientation such that the macroscopic shape change
is possible with a minimum dislocation density (lower bound).

The homogeneous dislocation density q that arises from a sim-
ple low angle tilt grain boundary of misorientation h and (effective)
width Dx is given by:

q ¼ h
j b j Mx

: ð16Þ

In a most homogeneous case, all low angle tilt grain boundaries
are assumed to be equidistant at Dx, all along the length l of the
beam. This means that the total bending angle of the beam htot is
dispersed over l=Dx boundaries (polygonization). The misorienta-
tion angle per boundary will then amount to h ¼ htotDx=l.
Substitution into Eq. (16) delivers the following dislocation
density:

qhom ¼
htot

j b j l : ð17Þ

In contrast, in a case of strongest possible localization, just one
grain boundary accommodates the total bending angle of the
beam. The local dislocation density becomes:

qinhom ¼
htot

j b j Mx
: ð18Þ



Fig. 10. Profiles of crystal (blue) and beam (red) rotation along the central beam axis, as indicated in Fig. 5. The crystal rotation is determined with respect to its original
orientation. The difference between both rotations is shown in black. The position of the grain boundary is marked by ‘‘GB’’. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Profiles of the total GND density (black) and the local average disorientation (LAD) angle (blue) along the central beam axis, as indicated in Fig. 5. The LAD based GND
approximation from Eq. (14) is shown in red. The position of the grain boundary is marked by ‘‘GB’’. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The ratio of both cases, qinhom=qhom ¼ l=Mx demonstrates that,
depending on the degree of localization strong fluctuations in the
dislocation density can be expected. If averaged over the total
beam length, both estimations will become identical, though,
which illustrates that for a comparison the average density will
be most suitable.

With a bending radius R ¼ l=htot ¼ 16:25 lm and a Burgers vec-
tor of j b j¼ 2:55 Å Eq. (17) delivers a GND density of
qhom ¼ 2:4� 1014 m�2. This estimate is in good agreement with
the experimentally obtained average dislocation density for grain
I of 3:5� 1014 m�2 (median filtered dataset). The partial deforma-
tion of grain II resulted in a slightly lower average dislocation den-
sity of 1:3� 1014 m�2 (median filtered dataset). For the unfiltered
dataset, the experimental values are somewhat higher, grain I:
1:2� 1015 m�2 and grain II: 8:6� 1014 m�2. Clearly, this can be
attributed to a stronger orientation noise in the unfiltered dataset.
6. Error analysis

In the following, we evaluate the impact of several error sources
on the GND density. We disregard systematic errors that arise from
the EBSD system, such as the calibration or the band detection
algorithm. From an inspection of Eq. (6) it follows that the main
errors are relative orientational and positional inaccuracies. We
start, however, with the validity of Eq. (6).
6.1. Differentiability

The validity of the right hand side in Eqs. (6) and (8) depends
directly on the differentiability of the orientation tensor field. As
shown in Appendix A, the expression for a differential orientation
dg ¼ g2 � g1 represents a lattice rotation, only to the amount to

which the term g ¼ dgdgT remains negligible.



Fig. 12. Profile of the total GND density (black) as well as contributions from screw GNDs only (blue) and edge GNDs only (red) along the central beam axis, as indicated in
Fig. 5. The position of the grain boundary is marked by ‘‘GB’’. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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This rather abstract error can be quantified for the case of a low
angle tilt grain boundary. Suppose both reference frames on either
side of the boundary are tilted around a common x-axis by an
angle h and the boundary plane is perpendicular to e.g. the
y-axis. The difference in orientation, dg, between both frames is
then given by:

dg ¼
0 0 0
0 cosh� 1 �sinh

0 sinh cosh� 1

2
64

3
75w

0 0 0
0 0 �sinh

0 sinh 0

2
64

3
75: ð19Þ

The latter matrix represents a true rotation, whereas the first
matrix strictly only does for h! 0. For sake of simplicity, we
assume no misorientation in x and z, through which the corre-
sponding dislocation tensors become as follows:

a ¼ 1
Dy

0 0 0
�sinh 0 0

cosh� 1 0 0

2
64

3
75w 1

Dy

0 0 0
�sinh 0 0

0 0 0

2
64

3
75: ð20Þ

Without any assumption about the dislocation type the lower
bound approximations already reveal an overall dislocation den-
sity of resp. q1 ¼

jsinhjþjcosh�1j
jbjDy and q2 ¼

jsinhj
jbjDy. While q2 is in accordance

with theory, q1 is too high by a factor cosh� 1, Fig. 13. For small h,
this error can be approximated by a Taylor polynomial, / 1

2 h2. As a
quantification, Fig. 13 also shows the relative error in dislocation
density, ðq1 � q2Þ=q2. For this particular example it reaches up to
13% at an angle of 15�. It can be anticipated, though, that this error
will be different for more complex dislocation tensors.

In general, we can conclude that with an increasing disorienta-
tion angle the GND density is increasingly overestimated. As a con-
sequence, disorientations above a certain angle need to be
excluded.
6.2. Positional errors

Any discrepancy between the assumed and the actual probing
position of the electron beam represents a positional error. Main
sources for in-plane positional errors are a deflection of the elec-
tron beam, a position change of the sample and sample tilt, [33,32].
The first two are generally addressed as ‘‘drift’’ and are due to,
for example, capacitive charging effects or mechanical variations
of the stage. As drift tends to increase piecewise with time, two
measurement points experience a drift difference that increases
with the time span between their acquisition. Hence, neighboring
points in an individual scan line tend to have the smallest relative
drift, while neighboring points in different serial sections of a 3D
data set may show the largest relative drift. As a consequence, drift
predominantly appears as a mismatch between neighboring slices.
It can be corrected for, to some extent, by a minimization of the
mismatch between two sections (slice re-alignment), [32]. The suc-
cess of this procedure is, however, limited by the in-slice drift. This
drift is usually much less systematic in character and therefore
more difficult to correct for.

The error from misaligned slices can be roughly estimated with
Eq. (14). If, on average, the misorientation angles between neigh-
boring voxels are equal, j hx j’j hy j’j hz j, then a change of j hz j
by a factor f will have an effect on the total density of:

q�tot

qtot
’ 2þ f

3
: ð21Þ

Hence, under these assumptions a 100% increase in hz will cause an
increase of the GND density by 1/3.

Apart from in-plane errors, FIB milled surfaces can exhibit also
out-of-plane errors, such as a non-parallelity of neighboring slices
or surface roughness (curtaining). These errors are, however, usu-
ally smaller than the drift related ones.

6.3. Orientation errors

Under good conditions, literature estimates for the relative ori-
entation error in Hough based EBSD range between 0.2� and 0.5�
[34,13,17]. However, with increasing acquisition speed, compro-
mises with regard to pattern and Hough-space resolution become
necessary, all with the consequence of a higher relative and
absolute error. Hence, due to a limited instrument time, 3D EBSD
typically suffers from a higher orientation noise than 2D EBSD con-
ducted under good conditions. Orientation noise translates into
corresponding contributions to the GND density. This represents
a random background to the true GND signal and is frequently



Fig. 13. Absolute (left axis) and relative (right axis) error for a tilt LAGB as a
function of the disorientation angle.
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addressed as spurious density. The spurious GND density that
arises from a given misorientation noise can be approximated by
Eq. (14). Apart from an additional factor of 3 this approximation
is equivalent to an earlier approach by He et al. [8]:

qsp ¼
3hn

j b j a ; ð22Þ

with qsp for the spurious density, hn for the misorientation noise
angle, b for the Burgers vector and a for the step size.

A GND density must be sufficiently high compared to the spuri-
ous density. This demand can be expressed in terms of a signal to
noise ratio, snr, of the average GND density to the spurious density,

snr ¼ ðq=qspÞ
2. A substitution in Eq. (22) delivers

q ¼ 3hnsnr
1
2

j b j a : ð23Þ

With this, it is possible to illustrate the effect of filtering on the
spurious density in grain I. For the unfiltered dataset, a mean GND
density of 1:2� 1015 m�2 was obtained. Under the assumption of
Fig. 14. Lower and upper limits for the step size as proposed by Kysar et al. [31].
Burgers vector b ¼ 2:55 Å. The combinations of step size and GND densities, as
obtained for grain I, are indicated by ‘‘A’’ (unfiltered dataset) and ‘‘B’’ (median
filtered dataset). An additional lower limit for the step size, as given by Eq. (24) is
shown as an example for both data points. Point A: snr ¼ 8:5 and hn ¼ 0:2�; point B:
snr ¼ 8:5 and hn ¼ 0:06� . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
hn �0.2�, Eq. (23) yields a snr � 8:5. If, conservatively at least a sim-
ilar snr is assumed for the median filtered dataset, then for a mean
density of 3:5� 1014 m�2 the misorientation noise at the same step
size has been reduced to hn 60.06�.
6.4. Step size

It is evident from Eq. (6) that the dislocation density depends on
the acquisition step size. Fundamental to our analysis is the
assumption of a continuous dislocation density. In an approach
by Kysar et al. [31] this imposes a lower limit to the acquisition
step size of the average dislocation spacing, approximated by
1=

ffiffiffiffiqp . Towards the higher end, they argued that the step size
should be limited by the length scale of the main frequencies in
the deformation field (e.g. the subgrain size), estimated by 1=qb,
Fig. 14. As pointed out by Jiang et al. [19], within the step size lim-
its set above, the GND density that is resolved can still vary some-
what. In this context, it is important to note that the discrimination
between GNDs and SSDs, afterwards by analytical means, is mainly
a matter of step size and due to that not necessarily in line with a
general physical understanding of GNDs and SSDs. For instance, at
a step size too large two opposite GNDs would cancel each other
out and remain undetected. Jiang et al. [19] observed this effect
as a decrease of the GND density with increasing step size in
strained copper.

Without claiming completeness we conclude that the step size
of 1� 10�7 m as used in the present work, complies with the step
size limitations for the obtained average GND densities, ranging
between 1:3� 1014 m�2 and 1:2� 1015 m�2. In general the
relative contribution from noise in a GND signal will also change
with the step size. Orientation noise itself is independent of
the step size by definition. If e.g. a linear orientation gradient
(with a constant rotation axis) is sampled with a decreasing step
size, it follows from Eq. (6) that the noise contribution in the
GND signal is relatively increased. In order for the GND signal
to be sufficiently larger than the spurious density, a step size
must be integrative, i.e. large, enough [35]. Given a minimum
signal to noise ratio, snrmin, it follows from Eq. (23) that the step
size must exceed

a P
3hnsnr

1
2
min

j b j q : ð24Þ

This lower limit to the step size is characterized by the numerator in
Eq. (24). As an example, it is shown in Fig. 14, for the snr and hn as
obtained for grain I in section 6.3.
7. Conclusions

In the present paper we have reconsidered the existing theories
for the calculation of GND densities from 3D orientation fields, as
acquired for example by 3D EBSD. Importantly, we have high-
lighted the role of the reference frames in detail when calculating
Nye’s dislocation tensor. Furthermore, we have shown that, pro-
vided a number of assumptions are satisfied, the total GND density
can be approximated quite accurately from the local average dis-
orientation angle.

A second important point concerns the consideration of various
error sources. In line with other authors, we identified orientation
noise and misalignment due to drift as the most important errors
for small misorientations. Furthermore, we discussed the differen-
tiability of the orientation field, which decreases with increasing
misorientation angle and a suitable range for the acquisition step
size.
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Our theoretical considerations are complemented by a
well-controlled micro cantilever bending experiment on a copper
bicrystal. Through a comparison of the macroscopic cantilever
rotation with the internal crystal rotation it was shown that the
cantilever deformed mainly by a bending mechanism and not by
a shearing mechanism. Subsequently, we compared the experi-
mentally determined GND densities from a 3D EBSD data set with
a theoretical lower bound estimation for a homogeneous bending
of a cantilever. The theoretically and experimentally determined
values agree very well, which demonstrates that the experimental
approach is suitable to validate our 3D GND calculations.
Additionally, we made two observations: A distinct difference in
the edge GND to screw GND density ratios between both grains,
as well as a local minimum in the total GND density distribution
at the grain boundary.

Appendix A. Infinitesimal misorientations

Suppose two orientations g1 and g2 which are both orthonormal
but also sufficiently close, such that holds: g2 � g1 þ dg. The
orthonormality condition, ggT ¼ I, then unfolds for g2 (in terms of
g1) as follows [36]:

g1gT
1 þ g1 dgT þ dg gT

1 þ dg dgT ¼ I; ðA:1Þ

with I for the identity matrix. By neglecting the last term on the left

hand side and by introducing a dx ¼ g1dgT the previous equation
can be written as:

dxþ dxT � 0: ðA:2Þ

Thus for sufficiently small misorientations, dx represents a
skew symmetric matrix. Due to a vanishing trace, dx represents
an infinitesimal rotation whose axis is specified by the
off-diagonal components.
Appendix B. GND approximation

Suppose again two orientations, as in Appendix A, which are
sufficiently close. If the sample frame is changed to one of both
crystal frames, one orientation becomes the identity, dij, whereas
the other becomes the disorientation, Dgij, between both orienta-
tions. The orientation difference is then approximated by a skew
symmetric matrix: dxij ¼ Dgij � dij. The matrix dxij ¼ eijk �xk com-
prises the elements of an infinitesimal rotation vector �xk.

With the aid of the curvature tensor jij ¼ �xi;j Eq. (8) can be for-
mulated as:

aij ¼ ejkleilmjmk: ðB:1Þ

which simplifies to Nye’s relation between the dislocation tensor
and the lattice curvature:

aij ¼ jji � djijmm: ðB:2Þ

Assumption 1. By discretizing the curvature with an average
rotation angle,5 hav , around a unit disorientation vector, r, and a
constant step size, a, in all dimensions the previous equation can be
expanded as follows

aij ’
hav

a

�r22 � r33 r21 r31

r12 �r11 � r33 r32

r13 r23 �r11 � r22

2
64

3
75; ðB:3Þ
5 In a strict sense; the LAD of only face touching voxels, in a 2 � 2 � 2 kernel.
in which rij stands for the ith component of the unit disorientation
vector between two orientations, neighboring in the jth dimension.
Assumption 2. We limit the approximation to a single type of
Burgers vector, i.e., for cubic crystal symmetries only. This allows
it, by taking the entrywise 1-norm of Eq. (B.3), to come to an esti-
mation of the total GND density.
Assumption 3. A further simplification is possible by omitting an
evaluation of the disorientation axes altogether. This is possible for
specific statistical distributions of the disorientation axes.

Random disorientation axes: In each row of Eq. (B.3) the sum of
the absolute off-diagonal terms represents an ‘‘incomplete’’
L1-norm of the unit disorientation vector r, e.g. in row 1:
j r2 j þ j r3 j. Such an ‘‘incomplete’’ L1-norm will range between 0
and

ffiffiffi
2
p

, with a numerically determined expectation value of �1.
A similar argument holds for the diagonal elements; the numeri-
cally determined expectation value amounts �

ffiffiffi
2
p

=2. With this,
the entry-wise 1-norm of Eq. (B.3) can be approximated as:

qtot ’
3ð2þ

ffiffiffi
2
p
Þhav

2a j b j ’ 5hav

a j b j : ðB:4Þ

If crystallographic symmetry effects are considered, disorienta-
tion axes are no longer evenly distributed and consequently a
change to Eq. (B.4) should be anticipated. However, a numerical
evaluation of crystallographically randomly distributed disorienta-
tion axes (Laue class: m�3m), for disorientations up to 15�, resulted
in only minor changes to Eq. (B.4).

Textured disorientation axes: In a symmetrical low angle tilt
grain boundary, the disorientation axis lies within the boundary
plane. Hence, the physical low angle tilt grain boundary model
introduced in section 2.4 represents a case with a strong texturing
of the disorientation axes. It is then easy to see that in Eq. (B.3) all
rii components must be naught and of the rij components only
three are one, whereas the remaining ones must be naught as well.
With this, the entry-wise 1-norm approximation delivers exactly
the same result as Eq. (14):

qtot ’
3hav

a j b j : ðB:5Þ

Both Eqs. (B.4) and (B.5) represent a coarse but efficient approx-
imation of the overall GND density based on the local average dis-
orientation. They can be regarded as an approximation for two
extreme statistical distributions of the disorientation axes in Eq.
(B.3). Given the assumptions, they also confirm the existence of
an approximate scaling between the GND density and the average
disorientation angle.
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