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Lamination microstructure in shear deformed copper single crystals
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Abstract

We investigate the formation of microscopic patterns in a copper single crystal deformed in a shear experiment. Using high-resolution
electron backscatter diffraction imaging, we find a band-like microstructure consisting of confined areas in the sample with rotated lat-
tice. Digital image correlation allows us to exactly determine the macroscopic state of deformation of the sample. This data can be used
as a side condition to calculate the lamination parameters from the theory of kinematically compatible lamination of separate material
regions, each deforming in single slip. The parameters given by the theory agree with the measured properties, i.e. a lattice rotation of 3�
and a lamination normal rotated 7� counterclockwise from a h111i direction.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many studies on the behavior of metals under stress aim
at understanding the evolution of plastic deformation.
Since plastic behavior of materials is the result of the inter-
action of lattice defects at several length scales, the overall
macroscopic properties are strongly influenced by the for-
mation of internal microstructures. The main concern of
this work is to obtain a better understanding of deforma-
tion patterning phenomena in plasticity, particularly
regarding the formation of laminates. These internal struc-
tures generally arise when the energy density of the body
becomes non-convex. This leads to a frustration of the
homogeneous state, which makes it energetically favorable
for the material to develop a microstructure.

In plasticity such a loss of convexity in the energy can,
for example, stem from the phenomenon of cross- (or
latent-) hardening [1–3], when activity in one slip-plane
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suppresses activity in the others. The well-known example
of geometric softening, where the lattice in a crystal locally
rotates until one slip system is oriented such that it can
accommodate the applied load [4–7] can also be explained
by a loss of convexity in the energy [8]. In fatigue experi-
ments, as well as in experiments involving only a single-
pass deformation, the formation of laminate-like micro-
structures has been observed [9–11]. This lamination
behavior was explored by Ortiz and Repetto [8], who gen-
erally considered it a phenomenon stemming from cross-
hardening.

In this work, we study the formation of lamination
microstructure in plastically deformed copper single crys-
tals under well-defined single-pass loading conditions. We
measure the macroscopic deformation by the digital image
correlation method and characterize the microstructure
using electron backscatter diffraction. This allows us to
quantitatively compare the predictions from the theory of
laminates to the actually observed microstructure. To our
knowledge, this is the first such quantitative analysis of
the microstructure formed during plastic deformation.

In simple shear experiments, nearly uniform macro-
scopic strain can be achieved with the use of a sample
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geometry in which friction effects are negligible in the
region of interest [12,13]. The use of single crystals as spec-
imens allows defined macroscopic activation of a subset of
the 12 face-centered cubic (fcc) slip systems h110i {111}
(see Table 1) during deformation. The external plastic
deformation is accommodated by mobile dislocations
which cause the slip. The interactions between mobile
and immobile dislocations and subsequent dislocation
trapping lead to the hardening of the material. Regarding
to the hardening effects, the plastic part of the stress–strain
curve of single crystals is divided into several stages [14,15].
Stage I (easy glide) occurs only during single slip, and the
hardening rate is small compared to the other regions.
Stage II (linear hardening) is characterized by a relatively
high constant work hardening rate due to the dislocation
interactions. Stage III corresponds to a decrease in work
hardening rate due to the dynamic recovery which is sensi-
tive to temperature and strain rate.

The load–displacement dependence during the shear
deformation is measured by a mechanical loading device.
The evolution and spatial distribution of the deformation
is traced on the surface of the sample using digital image
correlation (DIC). This allows the macroscopic properties
of the deformation to be determined. The microstructure
of the sheared material was then characterized using orien-
tation microscopy based on the analysis of the electron
backscatter diffraction pattern (EBSD). In addition, a phe-
nomenological crystal-plasticity finite-element method (CP-
FEM) simulation was conducted, the macroscopic results of
which qualitatively agree with the DIC measurement.

In the present experiments we chose the orientation of
copper single crystals considering the direction of the
applied load such that two slip systems in a single slip plane
have highest (and equal) Schmid factors. The DIC analysis
of the resulting strain shows a large region of almost homo-
Table 1
Schmid and Boas’ fcc slip system nomenclature used in the text. For example

System B2 B4 B5 A3 A2

Slip systems in an fcc crystalffiffiffi
2
p

s �½0�11� �½10�1� �½�110� ±[101] �½01ffiffiffi
3
p

m (111) (111) (111) ð�111Þ ð�111

Fig. 1. (a) Schematic drawing of the specimen holder with the specimen used
crystal sample positioned in the sample holder as shown in (a). (c) Positions of t
individual slip directions are indicated by the arrows. The nomenclature is giv
geneous, affine deformation. The sample in this region is in
simple shear, with the shear normal, however, slightly
rotated with respect to the originally chosen slip plane.
Therefore, a second set of slip systems must be activated
to accommodate this macroscopic deformation. An analy-
sis, assuming infinite cross-hardening (the material is in sin-
gle slip at each material point) predicts a lamination
microstructure—similar to the ones found in shape mem-
ory alloys—that corresponds almost exactly to the orienta-
tion patterning observed in the EBSD measurement.

2. Experiments

2.1. Sample preparation and shear experiments

The single-crystal samples were cut from copper single
crystal (99.98%) produced by the melt-grow method. The
specimens were cut by spark erosion, polished mechanically
and then electrolytically. The dimensions of the single-crys-
tal samples are 3 mm � 2 mm with a height of 10–15 mm.
The shear tests were performed on a special miniaturized
testing device by Kammrath & Weiss GmbH (44141 Dort-
mund, Germany), as described in Refs. [16,17]. The com-
puterized device features two moveable cross-heads
allowing the sample to remain in a stable centered position
during testing. The load was controlled by the load cell with
maximal load value of 1 kN. The displacement with the
deformation rate 5 lm s�1 was measured by the machine
extensometer. The position of the specimen in the sample
holder of the testing device is schematically shown in
Fig. 1a. The distance between the sample holders, i.e. the
length of the freestanding part of the specimen, is 2.4 mm.

Fig. 1b shows the initial orientation of the undeformed
single crystal ð10 1Þ½12�1�. The deviation of the crystal lat-
tice from the given orientation does not exceed 0.5�. The
, -B4 indicates a shear in the direction of �½10�1� � ½111�. From [8].

A6 C1 C3 C5 D4 D1 D6

�1� �½�1�10� ±[011] �½�10�1� �½1�10� �½�101� �½0�1�1� ±[110]
Þ ð�111Þ ð�1�11Þ ð�1�11Þ ð�1�11Þ ð1�11Þ ð1�11Þ ð1�11Þ

for the shear experiments. (b) Crystallographic orientation of the single-
he active slip planes according to the given crystallographic orientation; the
en in Table 1.



1 For interpretation of color in Figs. 3–6 and 9, the reader is referred to
the web version of this article.
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shear load is applied along the ½12�1� direction shown in
Fig. 1b. Under these loading conditions, two coplanar slip
systems of the single crystal in the aforementioned crystal-
lographic orientation have Schmid factors of magnitude
approximately equal 0.63 (A2 and A6 in Table 1). These
two slip systems are shown schematically in Fig. 1c; the slip
directions A2 and A6 are indicated by the arrows. The gray
triangle corresponds to their common ð�1 11Þ plane and is
oriented parallel to the load direction ½12�1�. Since the pri-
mary active systems are coplanar (and thus their deforma-
tions are compatible), one can consider their sum as a
single system for which the activation direction is the direc-
tion of the applied load. Other slip systems with the non-
zero Schmid factors are also shown in Fig. 1c in accordance
with the nomenclature in Table 1.

2.2. Digital image correlation method

In order to measure the strain on the surface of the spec-
imen in situ, we used the DIC method [18,19]. The DIC
method is based on the recognition of geometrical changes
in the grayscale distribution of surface patterns after strain-
ing. In order to obtain a stochastic optical pattern, white
acrylic spray was used for the background and graphite
spray for optical decoration. For DIC we used an Aramis
System (version 6.0.0-3) by GOM Inc. equipped with two
digital cameras (CCD-1300, maximal resolution
1280 � 1024 pixels) placed behind of the testing device.
The recording time for each frame was set to 1 s.

2.3. Structural characterization using high-resolution EBSD

The structural characterization of the surface of the
samples and the orientation microscopy were performed
by scanning electron microscopy (SEM) using a JEOL
JSM 6500F microscope with a field emission gun operated
at 15 kV. The microscope is equipped with a detector for
the imaging of backscattered electrons (BSE imaging).
The EBSD patterns were recorded and evaluated by an
EDAX/TSL EBSD System equipped with a Digiview cam-
era. In the high-resolution EBSD measurements the expo-
sure time for each frame was set to about 0.5 s at the
smallest binning size, and for the calculation of the Hough
transformation a binned pattern size 240 � 240 and an
angular spacing control of 0.5� were chosen.

2.4. FEM

The CP-FEM has been applied for the simulation of the
metal deformation [20]. A phenomenological crystal-plas-
ticity model based on the work of Kalidindi et al. [21]
and Asaro [22] was used in this study for the time integra-
tion of the constitutive equations. The elastoviscoplastic
model was implemented in the finite-element code MARC
using the user-defined subroutine HYPELA2. We used a
three-dimensional finite-element mesh with 2400 eight-
node brick elements for the discretization of the sample.
3. Experimental and FEM results

3.1. Deformation of the single-crystal sample

The single-crystal specimens were deformed in simple
shear. The shear strain of the plastic deformation as mea-
sured in the machine extensometer amounts to c = 0.23
(technical shear strain). The load–displacement dependence
was recorded during the shear deformation with the step
size of 5 lm. Fig. 2a (blue1 curve) presents the dependence
between the applied shear stress s and shear strain c as cal-
culated from the load–displacement data for the given sam-
ple geometry.

Above s = 15 MPa the deformation of the specimen is
predominantly plastic and the slope (the hardening rate
ds/dc) of the approximately linear stress–strain dependence
is nearly constant (inset in Fig. 2a). The constant value of
ds/dc corresponds to stage II of the plastic deformation
(linear hardening). In order to quantify the hardening rate
during plastic deformation, we estimate the shear modulus
G from the slope of the unloading branch of the black
curve to G � 15 GPa. This value is somewhat lower than
the more exact shear modulus obtained by measuring the
ultrasonic velocities (depending on the crystal direction,
the values of the shear modulus obtained in this way are
between 20 and 80 GPa [23]), but is of the same order of
magnitude. We calculate the mean value of the hardening
rate hds/dci = 130 MPa � G/120. This value correlates to
hardening rates in stage II (linear hardening) given in the
literature for the deformation of single crystals (G/200)
[24,25]. No occurrence of the stage I (easy glide), which is
characterized by a single glide with a low hardening rate
of about G/5000, was observed here.

In the applied DIC approach, digital images of the spec-
imen surface decorated with the optical pattern were
recorded during the experiment. Fig. 2b shows the digital
images of the sample before (upper image) and after the
deformation (lower image). The presented images were
overlaid with the obtained strain fields and reveal the distri-
bution of the shear angles on the specimen surface in accor-
dance to the color scale (right-hand side in Fig. 2b).

As seen in Fig. 3, the DIC measurement on the surface
of the sheared copper single-crystal sample reveals an inho-
mogeneous deformation with some concentration of strain
near the clamps. There is also a larger region of fairly
homogeneous deformation in the central area of the
sample.

The values of the shear angles of the homogeneously
deformed central region were averaged, and in Fig. 2c the
time-resolved change of the mean shear angle is shown.
From this curve it follows that the residual plastic deforma-
tion amounts to a = 11.6� (c = 0.20). Since the DIC images
were recorded simultaneously with the load–displacement



Fig. 2. (a) Shear stress s–shear strain c dependence obtained from the load–displacement measurement (blue curve) and using the DIC method (black
curve), respectively. Inset: the hardening rate ds/dc calculated for the plastic deformation part of the stress–strain curve estimated from DIC. (b) Digital
images of the sample surface decorated for the DIC method before (upper image) and after the deformation (lower image) overlaid with the obtained
distribution of the shear angles according to the color scale. (c) Time-resolved change of the shear angle during the deformation experiment estimated by
the DIC method. The value of the shear angle was averaged over the central region of the investigated area as indicated in (b). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 3. The three- and two-dimensional strain components from DIC measurement: (a) U11, (b) U12, and (c) U22.
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measurement, we obtain the dependence between the shear
stress and shear strain estimated using DIC (black curve in
Fig. 2b). This curve gives the effective deformation behav-
ior of the sample after excluding the contributions of the
sample holder or test device.

The DIC strain measurement also reveals the distribu-
tion of macroscopic strain and of the deformation gradient
on the surface of the deformed crystal. In order to analyze
the deformation in more detail, we compare the observed
deformation gradient F to a simple shear situation G(c,u)
with only two parameters: the magnitude c and the orien-
tation of the shear normal with respect to the vertical
(expressed by the angle u). The comparison is done by min-
imizing an energy E(F,G) that measures the difference
between a given strain G and the observed deformation
gradient F. The energy used is akin to a frame indifferent
elastic energy assuming that F = FelG, i.e. the deformation
not covered by G has to be accommodated by an elastic
deformation Fel. We choose:
EðF ;GÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFG�1ÞT ðFG�1Þ

q
� Id

����
����

2

: ð1Þ

Here, the double bars in Ak k2 ¼
P

i;jA
2
ij denote the Hilbert–

Schmidt norm of a matrix A. This Hilbert–Schmidt norm of
a symmetric strain tensor is equivalent to linear elastic energy.
The square root T ¼

ffiffiffi
A
p

of a positive semidefinite matrix is
the unique positive semidefinite matrix such that T2 = A.

As one can see in Fig. 4, the strain in the homogeneous
region is very well approximated by a simple shear G with a
normal slightly rotated—about 4–5�—clockwise from the
vertical, since E(F,G) is very small compared to E(F, Id).
Averaging the deformation gradient in the homogeneous
region (rows 4–12 and columns 3–19 of the nodes in the
DIC figures, counting from the top-left) yields:

EðF avg;GÞ ¼ 6:1� 10�6 with

G ¼ 0:1991

�0:0156

� �
� 0:0779

0:9970

� �
þ Id: ð2Þ



Fig. 4. (a) Magnitude c of simple shear for the final deformation at t = 136 s. (b) Angle u of the shear normal, clockwise with respect to x2 direction for the
final deformation at t = 136 s. (c) Logarithm of the measure of difference between the strain F and a simple shear G, ln (E(F,G)) for the final deformation at
t = 136 s. (d) Angle u of the shear normal at t = 30 s.
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One can see that G corresponds to a simple shear of mag-
nitude c = 0.1997, and normal n rotated clockwise by
u = 4.47� from the vertical.2

To assess the overall deformation of the sample, the
average deformation gradient over the whole sample as
measured by DIC was calculated. Unfortunately, the
DIC-matching software does not always recognize enough
points in the deformed sample, especially in highly strained
regions. Because of this, assuming symmetry, only the top
half of the sample—up to measurement row 9—could be
used. This calculation reveals that the averaged total defor-
mation Ftot corresponds almost exactly to the intended
boundary condition of a simple shear with vertical normal,
so that:

EðF tot;GÞ ¼ 1:5� 10�4 with G ¼
1 0:21

0 1

� �
: ð3Þ

Given the imperfect pattern matching in DIC, which did
not allow the particularly highly strained regions near the
clamps to be considered, this shear of magnitude c � 0.21
is in agreement with the value given by the machine exten-
someter. Fig. 4d also shows that for an early stage of the
deformation, at t = 30 s, the bulk part of the sample
already shows a variation in the shear normal away from
the glide plane of the primary slip system. This explains
why we experience stage II plasticity starting early in the
deformation process, since more than one glide plane has
to be active to accommodate this deformation.
2 The shear parameters were obtained using a gradient-flow method to
find the minimizers of E(F, �). This method was implemented in MATLAB.
3.2. Structural characterization of the deformed sample

3.2.1. BSE overview imaging

Fig. 5a shows the BSE micrograph of the single crystal
after shear deformation. The direction of the applied shear
load is indicated by white arrows. From the geometry of
the deformed sample one can estimate that the freestanding
side plane of the crystal is tilted after the shear deformation
to about 12� as marked with the green lines. The blue lines
on the right-hand side again mark the position of the side
face and its normal direction. In this micrograph, the for-
mation of glide bands can be observed in the deformed part
of the crystal. In the inset of Fig. 5a we present a BSE
micrograph of higher resolution which provides more
details and a higher BSE contrast. The direction of the
bands is then indicated by the red line. The angle between
the observed bands and the side plane of the deformed part
amounts to about 12�. Taking into account that the tilt of
the side plane was also 12�, it can be concluded that the
microbands of the deformed single crystal are oriented par-
allel to the initial position of the crystallographic plane of
the primary slip, i.e. are aligned along the direction of
the applied shear load. The areas with the observed glide
bands were characterized using EBSD analysis.

3.2.2. EBSD characterization

Fig. 5b shows an EBSD map of the deformed part of the
crystal. The measurement was done with a scanning step
size of 5 lm. The EBSD map shows the relative variations
of the orientation of the crystal lattice within 3� according
to the color scale. The reference orientation relates to the
blue areas. The formation of the microbands with a differ-
ent orientation (red) compared to the material in between



Fig. 5. (a) BSE overview micrograph of the copper single crystal after shear deformation. The direction of the applied load is shown by the white arrows.
The position of the side plane and its normal are drawn in blue. Inset: BSE micrograph of higher resolution placed adjusted to the scale. The angle between
the microbands and the side plane of the deformed crystal amounts to 12�. (b) EBSD map of the area in the deformed part of the specimen which shows
the relative crystallographic orientation changes within 3� according to the color scale. The plane traces of the slip planes are presented as black lines and
labeled according to the nomenclature given in Table 1. The direction of the microbands which are tilted to 7� with respect to the primary slip plane A is
shown by the red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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(green/blue) can be observed from this map. Using the
evaluation software from TSL, the plane traces of the
{11 1} slip planes are displayed according to the averaged
lattice orientation of the investigated area as shown in
Fig. 5b. As shown previously in Fig. 1c, the common slip
plane of the primary active slip systems is initially oriented
parallel to the shear load (along h112i). This plane trace is
drawn in Fig. 5b by the thick black line and marked as A.
When comparing the direction of this {111} plane with the
direction of the microbands (displayed as a red line), a
deviation of about 7 degrees can be determined. Thus,
the direction of the microbands is not crystallographic.
Furthermore, since the development of the microbands
occurs along the direction of the applied load and parallel
to the initial position of the primary slip plane, a macro-
scopic tilt of the crystal lattice out of the initial state to
about 7� can be determined in the final state of the
deformation.

Fig. 6a shows an EBSD map of part of the deformed
area containing some microbands. The measurement was
done using a scanning step size of 2 lm. From this micro-
graph, a further feature of the bands can be observed,
namely the additional patterning inside the ‘‘red” micro-
bands which are subdivided into parts by orthogonal inter-
sections (ladder-like substructure).

3.2.3. High-resolution EBSD

Fig. 6b shows the high-resolution EBSD measurement
of the area that includes the microband and the surround-
ing material. The step size of the scanning measurement
was 0.1 lm. The EBSD map presents the orientation distri-
bution relative to a reference point (initial orientation)
according to the color scale within 3�. The red zones in
Fig. 6b show the area on the edge of the microband. The
green/blue areas correspond to the material outside of
the microband. The orientation difference indicates that
the crystal lattice inside of the band is titled 3� relative to
the material outside of the band.

In order to understand in which way the material
rotates, we used an alternative representation of the EBSD
results (Fig. 6c). In Fig. 6c the variation in the crystal ori-
entation out of the normal direction is displayed in the
same orientation deviation range as in Fig. 6b. Fig. 6c
reveals no significant rotation of the lattice out of the front
face. This observation shows that the lattice rotation of
approximately 3� occurs within the plane. In Fig. 6b the
positions of the plane traces for measurement points inside
and outside of the band are displayed. As schematically
shown on the right-hand side in Fig. 6b, the rotation of
the lattice inside of the band occurs counterclockwise com-
pared to the outside region.

3.2.4. BSE imaging of the microbands

The microstructure of the deformed single crystal was
investigated using BSE imaging. The BSE image in Fig. 7
presents an area of the deformed part of the crystal which
contains a single microband. The position of the micro-
band is indicated by braces.

We discuss what information can be extracted from the
BSE contrasts observed for the deformed specimen (Fig. 7).



Fig. 6. (a) EBSD map of the part of the deformed area with several microbands. The map shows the relative crystallographic orientation changes within 3�
according to the color scale. The plane traces of the slip planes are presented in the right corner. (b) High-resolution EBSD map on the edge of a
microband (lower part). The colors indicate the distribution of the crystal orientation relative to the reference point (initial orientation) within 3�. The
plane traces of the slip planes are presented for the areas inside (red) and outside (green/blue) of the microband. A graphical illustration of the observed
local lattice rotation is presented on the right-hand side. (c) High-resolution EBSD map on the same area shows variation in the crystal orientation out of
the normal direction according to the color scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this paper.)

Fig. 7. SEM micrograph produced by the BSE imaging, showing a single
microband (marked with braces). The positions of the slip-plane traces in
comparison to the direction of the microband (red line) are shown with
white lines. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)
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The electrolytic polishing applied additionally after the
deformation leads to a negligible topographic roughness
of the crystal surface. Therefore, the topographic contrast
and also the material contrast can be neglected here. One
can assume that the structures observed in the BSE images
correspond to pure electron channeling contrast. The elec-
tron channeling contrast arises due to the dependence of
the intensity of the backscattered electrons on the fulfill-
ment of the Bragg condition, i.e. the intensity depends on
the tilt angle of the lattice with respect to the incident
beam. For a small local tilt of the lattice, the contrast is
induced predominantly by the superposition of strain fields
from dislocations in the body [26,27]. As already shown, no
significant tilt of the lattice with respect to the incident
beam (i.e. no tilt out of the plane of the investigated sur-
face), either in the microband and in the surrounding mate-
rial, is observed. Therefore, we assume that the observed
contrast in the BSE images arises predominantly from
strain fields of trapped dislocations in the deformed single
crystal. Inside the microband in Fig. 7, bright lines aligned
with the trace of the slip plane A can be observed. Thus,
some strain fields produced by the lattice distortion due
to the storage of dislocations can be assumed along the slip
plane A. This could be associated with the trapping of the
mobile dislocation inside of the slip plane due to interac-
tions between the dislocations of the slip systems A2 and
A6 inside the slip plane A or due to the intersection of this
mobile dislocations with some forest dislocations. The
enhanced mobility of the dislocations in the slip plane A
suggests activation of the corresponding slip systems A2
and A6 inside the microbands.

3.3. Crystal plasticity finite-element simulation of the shear

experiment

The deformation found in the crystal-plasticity simula-
tion described in Section 2.4 qualitatively agrees with the
DIC measurement. We see a large inhomogeneous defor-
mation near the fixed boundary on the top and the bottom
of the sample. In particular, the deformation is high near
the corners. There is also a large, homogeneously deformed
region in the center of the sample.

In this central region, the deformation amounts to a
simple shear, with a shearing normal rotated slightly clock-
wise with respect to the [111] crystal axis of the sample.
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The rotation is only approximately 1�, as opposed to the
4.5� rotation found in the DIC measurement. Nevertheless,
qualitatively, this would result in the same kind of micro-
structure as calculated in the following section.

4. Energy minimizing microstructure

In the following we introduce the theoretical framework
that we use to analyze the experimentally observed disloca-
tion microstructure described above. We rely on a contin-
uum finite plasticity model, assuming strong cross-
hardening, as described by Ortiz and Repetto [8].

4.1. Loss of convexity and formation of microstructure

Consider, using the framework of continuum mechan-
ics, a body in a reference configuration X 	 R3 and a
smooth enough deformation y : X! R3, as illustrated in
Fig. 8. The deformation gradient is denoted by $y = F.
To illustrate the key ideas we now consider the extreme
case of an ideally plastic, elastically rigid solid with infinite
cross-hardening. This corresponds to an energy functional
for the crystal of the form:

EðF Þ ¼
0 if QF ¼ csi � mi þ Id

for i 2 f1; . . . ; 12g and Q 2 SOð3Þ
1 otherwise:

8><
>: ð4Þ

In other words, the energy density is zero, as long as one
can find a slip system si � mi accommodating the deforma-
tion gradient up to a rigid rotation Q. In between these rays
of single-slip deformation the energy is large (in fact, it is
infinite), which renders the function non-convex. As we will
see in the next section, this leads to the phenomenon that
through the formation of a fine structure, e.g. by alternat-
ing layers of material, respectively, deformed in different
single slips, one can accommodate, in an average sense, a
larger variety of deformation gradients besides the obvious
macroscopic single slip. The important restriction, how-
ever, is that the whole deformation has to be kinematically
compatible, i.e. F has to be the gradient of a continuous
function.
Fig. 8. Reference and deformed configuration. A piecewise affine defor-
mation is sketched, where $y(x) equals one constant tensor for x 2 X1 	 X
and a different constant tensor for x 2 X2 	 X.
4.2. Piecewise affine deformations

A frequently observed type of kinematically compatible
microstructure consists of so-called rank-one laminates.
Assume that the deformation is piecewise affine and that
there are only two affine components, i.e. $y = F1 in
X1 	 X and $y = F2 in X2 = XnX1, F1 and F2 constant
(as illustrated in Fig. 8). This means that the deformation
gradient is a certain constant F1 in a subset of the reference
configuration denoted by X1, and a different constant F2 in
the rest of the body denoted by X2 = XnX1 (X without X1).

Under this condition, the requirement of kinematic
compatibility is equivalent to the existence of an invariant
plane, i.e. a plane that is stretched equally by both F1 and
F2. The two differently deformed material domains can
then be ‘‘glued together” on this invariant plane, as illus-
trated in Fig. 8. This relationship can be expressed by
requiring that:

QF 1 � F 2 ¼ b� n; ð5Þ

where Q is a rotation matrix, n is a normal vector and b is a
vector. This is also known as the Hadamard jump condi-
tion. The two deformation gradients are then compatible
along an invariant plane with normal n. One can show that,
in general, this equation either has no solution or it has two
solutions [28].

This structure is very important in the theory of the mar-
tensitic phase transformation, where Eq. (5) is known as
the twinning equation. For more information, see Ref.
[29]. We will use the twinning equation to connect two
regions with activity in different slip systems to form an
energy-minimizing microstructure, assuming strong cross-
hardening.

4.3. A lamination microstructure accommodating the

measured macroscopic boundary values

We consider the orientation of the sample during the
shear experiment as illustrated in Fig. 1. It is clear that a
completely homogeneous shear of this type can be accom-
modated by an activity in the A2 and A6 slip systems, since
c � ½12�1� � ½�111� ¼ c � ð½01�1� � ½�111� � ½�1�10� � ½�111�Þ. These
slip systems are naturally compatible along the ½�111� direc-
tion. Due to the free boundary conditions, there is therefore
a variety of possibilities to construct this deformation as a
kinematically compatible plastic deformation.

The DIC measurement, however, reveals that the actual
deformation differs somewhat from this simplified assump-
tion. Instead, there is a large, fairly homogeneous region
(taken as above in Section 3.1) with average strain:

U ¼
0:9555 �0:0198 0:0445

1:1036 0:0198

0:9555

0
B@

1
CA ð6Þ

in the final deformation state. In calculating this average
strain by changing the basis from the one in the DIC mea-
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surement to the crystal directions, we assume that the
deformation normal to the crystal surface is the identity.

A MATLAB program was employed to find a deforma-
tion, satisfying Eq. (5), with the two deformation gradients
being simple shear in fcc slip systems, which—on average—
yields the macroscopic strain, Eq. (6), from the measure-
ment. The program uses a gradient flow method for the
magnitudes of slip in the involved slip systems with respect
to the energy

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUP�1ÞT � ðUP�1Þ

q
� Id

����
����

2

; ð7Þ

where P = (1 � k)Q(c1P1 + Id) + k(c2P2 + Id). Here, k is
the volume fraction of one part of the laminate, P1 and
P2 are the two displacement gradients occurring in the lam-
inate, and Q is the lattice rotation from the twinning Eq.
(5) under which they are compatible. Eq. (7) is therefore
a relaxation of the energy in Eq. (4) that allows for a small
elastic deformation.

The major plastic deformation component is an equal
(opposite sign) activity in the aforementioned A2 and A6
slip systems, which are naturally kinematically compatible
among each other without a rotation Q. One can therefore
consider this slip as one part of the laminate.

For the secondary component of plastic deformation,
there are of course several different choices that would be
compatible with this deformation. Two of those choices
are particularly natural, since they are compatible regard-
less of the magnitude of slip: (i) an equal mixture of C1
and C5 (opposite sign); and (ii) an equal mixture of B4
and D4 (same sign). Geometrically, the three slip system
combinations A2 � A6, C1 � C5 and B4 + D4 (nomen-
clature from Table 1) form a closed loop on the tetrahe-
dron in Fig. 1c.

One also has the choice as to which volume fraction is
attributed to which slip. Using the histogram of the distri-
bution of lattice rotations on the whole homogeneously
deformed part of the face of the crystal, it can be deter-
mined that the ‘‘green” parts of Fig. 5 occupy approxi-
mately two-thirds of the total area in the picture. This
area can now either be the primary component in the plas-
tic deformation or the secondary component.

The results of the MATLAB gradient-flow program are
displayed in Table 2. It can be clearly seen that the
Table 2
Results for matching the strain U from Eq. (6) with a lamination of slip system
values ci signify the magnitude and direction of slip in the i slip-component, a is
and the lamination normal, measured clockwise. The value b is the angle of la
remaining energy from the gradient flow. All rotations are exactly in the [101] p
the A2 slip system with positive sign from Table 1 and the A6 system with ne
normal closer to the ½�111�-direction was picked, since the other solution woul

Choice of slip systems k cP1

P2 = B4 + D4 2/3 0.35
? P2 = B4 + D4 1/3 0.18
? P2 = C1 � C5 2/3 0.28

P2 = C1 � C5 1/3 0.14
A2 � A6 and C1 � C5 combination as well as the
A2 � A6 and B4 + D4 combination yield lamination
parameters almost exactly as observed in the experiment
(marked by an arrow in Table 2), with the large volume
fraction attributed to secondary and primary slip, respec-
tively. The resulting deformations are illustrated in Fig. 9.

This means, firstly, that the calculated lamination direc-
tion is rotated approximately 7� counterclockwise with
respect to the ½�111� direction in the region with larger vol-
ume fraction. Secondly, the lattice in the area of smaller
volume fraction (red regions in Figs. 5c and 6a) is rotated
counterclockwise by approximately 3� in comparison to the
neighboring area.

The BSE imaging discussed in Section 3.2.4 leads to the
assumption that inside of the ‘‘red” microbands the shear
activity of A2 and A6 slip systems dominates. This would
imply the choice of the combination A2 � A6 for primary
slip inside the microbands and C1 � C5 as the secondary
active slip in the areas outside the microbands.

It should also be noted that the assumption of infinite
cross-hardening leads to slightly larger values for both
the lamination angle and the lattice rotation in the calcula-
tion. The difference between the measurement and the cal-
culation could therefore be explained by a small amount of
mixing of the two slip systems.

Furthermore, the appearance of the substructure in the
microbands which is observed in the orientation map in
Fig. 6a can be attributed to the presence of a small amount
of different slip systems activated inside the microbands.
Their interaction can lead to the observed inhomogeneities
in the slip distribution.

Of course, it is important that this microstructure is
accessible though the dynamic process of the shear experi-
ment, i.e. that there is a continuous path from an unde-
formed body to the final microstructure. For this, it is
necessary that the lamination angle (denoted a in Table
2) does not change significantly during the deformation.
Because the DIC data is available for the intermediate
time-steps during the deformation, this angle can be calcu-
lated for the whole process of the deformation using Eq. (5)
in the same way as it was done for Table 2. Fig. 10 shows
the evolution of this angle a. It can be seen that, after an
initial phase, where the deformation is in any case very
small, a is nearly constant. The calculation of this angle
s. The value k is the volume fraction of the area deformed in slip P2. The
the angle between the ½�111�-direction in the area of larger volume fraction

ttice rotation (clockwise) of the region of smaller volume fraction. E is the
lane. In all cases, P1 = A2 � A6 (this denotes an equally large activity of
gative sign). Also, of the two solutions of Eq. (5), the one with twinning
d give an entirely different picture.

cP2 a b E

0.042 �0.19� �1.9� 5.0 � 10�6

0.082 �7.5� 3.8� 5.0 � 10�6

�0.040 �6.3� 3.3� 5.0 � 10�6

�0.074 �14.3� �5.6� 5.0 � 10�6



Fig. 9. Illustration of the two laminates that agree well with the measured macroscopic strain. One can see that both of them average to approximately the
same deformation. The green and red areas correspond to the respective areas in Fig. 5. (a) A2–A6 activity in the small volume fraction ‘‘red” region. The
secondary slip system C1–C5 is active in the area colored green. (b) B4 + D4 activity in the small volume fraction ‘‘red” region. The primary slip system
A2–A6 is active in the area colored green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
paper.)

Fig. 10. Change of lamination angle (in the reference configuration) for
P2 = C1–C5 during the course of the plastic deformation.
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is done in the reference configuration (as opposed to the
values in Table 2, which are calculated in the final configu-
ration), in order to ignore the change in lamination angle
due to the shearing of the lamination normal itself. The
other parameters, like ci, evolve almost linearly over the
course of the shearing. This means that, despite increasing
activity in the slip systems, the lamination structure itself
can remain unchanged.

In summary, we have seen that a theoretical analysis
assuming infinite cross-hardening can predict a lamination
microstructure in the shear-deformed copper single crystal
that corresponds almost exactly to the orientation pattern-
ing observed in the EBSD measurement.

5. Conclusions

In the present experiments we performed shear deforma-
tion on copper single crystals oriented such that two slip
systems are primarily active. DIC analysis of the resulting
strain shows a large region of almost homogeneous defor-
mation. The sample in this region is in simple shear, with
the shear normal slightly rotated with respect to the origi-
nally chosen slip plane normal. Therefore, a second set of
slip systems had to be activated to accommodate this mac-
roscopic deformation, which can lead to the formation of a
microstructure in the deformed single crystals. In high-res-
olution EBSD measurements we found microbands that
consist of regions where the crystal lattice is rotated by 3�.
The bands are aligned on a plane with normal rotated
approximately 7� away from a [111] direction in the crystal.

We have showed here that the theory of kinematically
compatible lamination can predict such a microstructure.
The basic assumption is that of infinite cross-hardening,
which is satisfied fairly well in an fcc crystal with low stack-
ing fault energy, such as copper. This cross-hardening leads
to the fact that each material point can only deform in sin-
gle slip. These regions of single slip then have to satisfy the
Hadamard jump-condition, in order to avoid long-range
elastic forces (and therefore a high elastic energy), and
the average of the deformation gradients has to coincide
with the macroscopic strain.

In our case, we were able to measure the macroscopic
strain using the method of DIC. This, together with some
assumptions on the active slip systems, is enough to calcu-
late the parameters of the formed microstructure. We find
very good agreement of the lattice rotation and the lamina-
tion normal between the theoretical prediction and the
EBSD measurement.

The finite-element calculation that was performed yields
a similar macroscopic deformation. The slip systems acti-
vated there, however, are impossible to arrange in a kine-
matically compatible fashion. Of course, the FEM
simulation cannot, due to insufficient resolution, predict a
lamination microstructure. Therefore, the simulation has
to ignore compatibility and pay the higher energy required
for the activation of more than one slip system at the same
point—despite cross-hardening—which explains the indif-
ference of the simulation to compatibility conditions.
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Including certain kinds of lamination could be a way to
improve FEM simulations of crystal plasticity.

We conclude that in this experiment, a lamination-type
microstructure was observed. The question whether such
a microstructure can be found under general loading con-
ditions in finite plasticity is an open mathematical problem.
For linearized crystal plasticity, this problem has been
solved with a positive answer [30]. A further open question
is that regarding the dynamics of such deformation, i.e.
whether or not a certain microstructure can be formed
given the whole time-dependent process of deformation.
We assume that the lamination normal cannot change sig-
nificantly over time, since this would automatically contra-
dict the assumption of strong cross-hardening. The general
problem of the dynamics of pattern formation in single-
crystal plasticity is currently being investigated.
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