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Abstract

We study orientational grain fragmentation of cube-oriented FCC crystals by using a texture component based crystal plasticity

finite element method. We describe the starting texture of the crystals in terms of a spherical Gaussian. Orientational in-grain

heterogeneity occurring during loading is investigated as a function of friction and orientation scatter.
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1. Motivation for this study

Cube-oriented face centered cubic (FCC) crystals

exhibit the evolution of heterogeneous in-grain crystal-

lographic microtextures and deformation structures

during plane strain compression [1–15]. Cube-oriented
FCC crystals are metastable under plane strain, i.e. upon

loading they can show lattice rotations about the normal

direction (ND), the rolling direction (RD), or transverse

direction (TD) depending on the initial orientation

spread prior to loading and on the mechanical boundary

conditions.

Many experiments have documented the dependence

and the sensitivity of the microtexture and microstruc-
ture evolution in cube crystals on the deformation

conditions [1–15]. In these studies it was observed that

due to the kinematical metastability of the cube orien-

tation small changes in boundary conditions may entail

significant changes in microstructure and texture.

Various models were suggested to predict the micro-

textures of cube-oriented FCC crystals during defor-

mation which, however, in part contradict each other.
For example, early models for in-grain lattice rotations

about ND and RD were suggested by Dillamore and
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Katoh [16] as well as by Lee et al. [17]. Other models

favoring rotations about TD were later suggested by the

groups of Hansen [7] and Driver [11].

From this concise introduction to the field we can

extract two main aspects of microtexture evolution in

cube-oriented grains. First, no model has been able so far
to cover all experimental observations of lattice re-ori-

entations made by the various groups [1–15]. In partic-

ular, it is unclear whether the intrinsic re-orientation

tendency of cube crystals under plane strain loading

leads to rotations about TD, ND, or RD. Second, the

behavior of single cube crystals under plane strain loads

is obviously sensitive to the mechanical boundary con-

ditions. Both aspects imply that a refined model which
aims at explaining these observations must be sufficiently

sensitive with respect to small variations in starting and

boundary conditions (e.g. initial small texture variation

within the cube grain or changes in friction).
2. Theoretical approach

2.1. Introduction to the texture-component crystal plas-

ticity finite element method

Strong progress in the field of texture modeling has

been made by the introduction of crystal plasticity finite
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element methods [18–23]. Their particular strength lies

in the application of realistic mechanical boundary

conditions to fairly realistic initial microstructures. This

enables the user to take into account both, details of the
external loading and of the internal crystalline consti-

tutive response at the same time. In our study we use this

approach as a basis for the formulation of a novel tex-

ture component crystal plasticity finite element model

[24] which we then apply to the investigation of the

influence of starting and boundary conditions on the

deformation of cube-oriented FCC crystals.

The key idea of our new model variant lies in iden-
tifying a method of mapping a representative crystallo-

graphic orientation distribution, comprising a huge

number of crystal portions, on the Gauss points of a

finite element mesh using a compact mathematical form.

For this purpose we use the orientation component

method [25,26] which is a technique of approximating

an orientation distribution function in the form of one

or more symmetrical spherical central standard func-
tions. Such standard functions [25–28] have individual

height and full width at half maximum as a measure for

the strength and scatter of the crystallographic compo-

nent they represent. The novelty of our approach lies in

the connection of orientation components to a suited

crystal elasticity and plasticity constitutive model (we

use the formulation of Kalidindi [20]). The task of the

approach is to represent (in the present case) one
spherical orientation component (namely, the cube) on

the integration points of a finite element mesh. This

procedure works in two steps: In the first step the dis-

crete orientation gc (center of the Gauss distribution) is

defined for an orientation component and assigned in

terms of its respective Euler triple (u1;/;u2), i.e. in the

form of a single rotation matrix, onto each integration

point (Fig. 1). In the second step, these discrete orien-
tations are re-oriented in such a fashion that their

resulting distribution reproduces the Gauss function

originally prescribed (Fig. 1). This means that the scatter

which was originally only given in orientation space is

now represented by a distribution both, in real space

and in orientation space.
Fig. 1. The decomposition of a cube-oriented spherical component consists

/ ¼ 0�, u2 ¼ 0� for cube, Bunge-Euler notation) and assigning it in the form

In the second step (right hand side) all orientation portions, defined by the int

distribution.
After this mapping procedure, the texture component

concept is no longer required. This is due to the fact that

during the subsequent simulation each individual ori-

entation portion originally pertaining to a common
component can undergo an individual orientation

change. This means that the orientation component

method is used to feed a crystallographic orientation

distribution into a finite element simulation on a strictly

scaleable and quantitative basis, but the components are

in their original form not tracked during the simulation.

2.2. Model assembly

Fig. 2 shows the assembly of the finite element model.

Four surfaces were used to describe the boundary con-

ditions for the simulated plane strain compression tests.

This geometry and individual surface treatment was

chosen to mimic macroscopic boundary conditions

typical of a channel die experiment. The sample con-

sisted of 500 three-dimensional linear elements each with

eight integration points. An implicit crystal plasticity
procedure proposed by Kalidindi [20] was implemented

and used for the time integration of the constitutive

equations. The simulations used {1 1 1}Æ1 1 0æ slip sys-

tems and viscoplastic hardening. Different friction

coefficients (linear Coulomb law) were used to investi-

gate the influence of shear. All simulations were con-

ducted to 50% engineering thickness reduction.
3. Results and discussion

3.1. Orientational stability of an ideal cube single crystal

Fig. 3 shows the simulation results obtained for the

plane strain compression of an initially exactly cube

oriented and perfectly homogeneous single crystal, i.e.
all elements had the same initial orientation u1 ¼ 0�,
/ ¼ 0�, u2 ¼ 0� without any initial orientation scatter).

The friction coefficients on the top surface (contact

surface with compression plane) and bottom surface

(surfaces 1 and 2 in Fig. 2) were l ¼ 0:1. The friction
in extracting the preferred orientation from the function (i.e. u1 ¼ 0�,
of a single rotation matrix onto each integration point (left hand side).

egration points, are re-oriented to reproduce the prescribed orientation



Fig. 2. Setup of the finite element model (500 3D linear elements). Four rigid surfaces were used to simulate the boundary conditions during plane

strain compression, in particular different friction conditions of the different surfaces.

Fig. 3. Simulation result for plane strain compression of a cube single crystal. An exact cube orientation (u1 ¼ 0�, / ¼ 0�, u2 ¼ 0�) without any
initial orientation scatter was assigned to all elements prior to loading. The friction coefficient on surfaces 1 and 2 was l ¼ 0:1. The sample was 50%

reduced in thickness (engineering strain measure).
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coefficients on the two side surfaces were zero. Fig. 3

shows that the elements preserved a regular brick-like
shape after 50% deformation (engineering strain mea-

sure). The gray scale color code describes the von Mises

stress. It is very homogeneous throughout the specimen.

The {1 1 1} pole figure shows that orientational splitting

occurred only about ND. The orientation scatter is very

symmetric.
3.2. Orientational stability of a cube single crystal with

Gaussian orientation scatter

As-grown single crystals are never perfect but contain

lattice defects prior to loading, i.e. the orientation dis-
tribution in single crystals is neither a delta function in

orientation space nor laterally constant. The microtex-

ture in a real single crystal can, therefore, be described in

the form of an ideal (or exact) orientation together with

an orientational scatter around it. In the framework of

the texture component method introduced above we

describe the starting texture of the cube single crystal in

the form of a spherical Gauss component with a full
width at half maximum of 2.5�. This means that we map

a set of single orientations onto the finite element mesh

which satisfies a spherical Gaussian central function
about the ideal cube orientation (Fig. 4). The 500 dis-

crete orientations were assigned in random lateral order
to the elements of the finite element mesh.

Fig. 5 shows the deformation results for this set-up.

The other simulation parameters were identical to those

used in Section 3.1. In clear difference to the results for

the perfect initial cube orientation (Fig. 3) the pole fig-

ure in Fig. 5 shows that orientation splitting occurs

about ND and RD. Fig. 8a shows the corresponding

section from the orientation distribution function
(ODF). It clearly reveals that the orientation spread

after deformation is larger about RD (�22� for

f ðgÞ ¼ 10) than about ND (�14� for f ðgÞ ¼ 10). It must

be noted in this context that the data which are exactly

located on one of the two axes correspond to pure RD

or respectively ND rotations. The finite element mesh

and the stress distribution shows that slight shear dis-

tortion occurred in most elements.
3.3. Orientational stability of a cube single crystal with

Gaussian orientation scatter under large-friction condi-

tions

Fig. 6 shows the simulation results for the same case

as presented in Fig. 5, but the friction coefficient



Fig. 4. Gauss-type spherical approximation of the initial microtexture within a cube single crystal consisting of 500 single orientations in a ste-

reographic {1 1 1} pole figure projection. The full width at half maximum amounts to 2.5�.

Fig. 5. Simulation results for plane strain compression of a single crystal with a 2.5� spherical Gaussian orientation scatter about the exact cube

orientation prior to loading. Friction occurs only on surfaces 1 and 2 (top and bottom) with a friction coefficient of l ¼ 0:1. See also the ODF section

in Fig. 8.

Fig. 6. Simulation results for plane strain compression of a single crystal with a 2.5� spherical Gaussian orientation scatter about the exact cube

orientation prior to loading. Friction only occurs on surfaces 1 and 2 (top and bottom) with a friction coefficient of l ¼ 0:3. See also the ODF section

in Fig. 8.
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amounted to l ¼ 0:3. All other parameters were the

same as in Fig. 5. Orientation splitting during forming
clearly increases with larger friction on the top and

bottom surfaces. Although the re-orientation behavior

of most elements is similar to that shown in Fig. 5
additional orientation scatter appears about TD. The

scatter about the ND axis (Fig. 8b) is smaller than that
for the data shown in Figs. 5 and 8a. It is also important

to note that the overall orientational scatter in Fig. 6 is

more smeared out than that for the case with smaller



D. Raabe et al. / Scripta Materialia 50 (2004) 1085–1090 1089
friction (Fig. 5). This is also shown by the ODF which

reveals a much smaller maximum in the orientation

density at the exact cube component (Fig. 8b) when

compared to that for the case shown in Fig. 8a. Another
difference to Fig. 5 is that Fig. 6 shows more pro-

nounced element distortion and a more inhomogeneous

stress distribution.

3.4. Orientational stability of a cube single crystal with

Gaussian orientation scatter under surround friction

conditions

Fig. 7 shows the simulation results obtained for plane

strain compression of a cube single crystal with an initial

Gaussian orientation scatter of 2.5� assuming a friction

coefficient of l ¼ 0:1 on all four longitudinal surfaces

(see surfaces 1–4 in Fig. 2). The other simulation

parameters were the same as in Figs. 5 and 6. The ori-

entational scatter shows a strong component about TD
together with some weaker ND and RD scatter (Fig.

8c). Particularly the RD scatter is smaller than that for

the simulation with non-zero friction on only two sur-

faces (Figs. 5 and 8a).
Fig. 7. Simulation results for plane strain compression of a single crystal w

orientation prior to loading. Friction occurs on four surfaces with a friction

Fig. 8. Quantitative presentation of the in-grain orientation spread resultin

distribution function (ODF) for the three examples given in Figs. 5–7 in terms

which are exactly located on one of the two axes correspond to pure RD or r

friction on top and bottom, l ¼ 0:1 (see Fig. 5); (b) 2.5� orientation scatter pr

orientation scatter prior to loading, friction on four surfaces, l ¼ 0:1 (see F
3.5. Influence of initial orientation scatter and of friction

on the re-orientation behavior of cube crystals

Comparison of the results for an ideal initial cube
texture (Fig. 3) and for an initial Gaussian orientation

scatter (Figs. 4, 5) for identical friction conditions re-

veals that the simulation method is sufficiently sensitive

to account for effects arising from fine changes in

starting texture. The texture in Fig. 5 is characterized by

strong orientation splitting not only about ND, like in

Fig. 3, but even more pronounced about RD (Fig. 8a).

These results confirm many experiments [7–11],
namely, that the cube orientation is metastable under

plane strain conditions. This was also found in recent

theoretical studies on the re-orientation behavior of

different orientations by use of homogenization and

crystal plasticity finite element analysis [29,30]. This

investigation also confirmed that orientation gradients

in initially uniform cube crystals can occur under gra-

dient-free external loads. The intrinsic origin of this
effect was quantified in terms of the change in crystal

re-orientation upon small changes in initial orienta-

tion. Such starting conditions are in the present study
ith a 2.5� spherical Gaussian orientation scatter about the exact cube

coefficient of l ¼ 0:1. See also the ODF section in Fig. 8.

g after deformation in terms of u2 ¼ 0� sections from the orientation

of pole figures (ND: normal direction; RD: rolling direction). The data

espectively ND rotations. (a) 2.5� Orientation scatter prior to loading,

ior to loading, friction on top and bottom, l ¼ 0:3 (see Fig. 6); (c) 2.5�
ig. 7).
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represented by the Gaussian orientation scatter prior to

deformation. The theory in [29,30] was formulated as a

divergence operator applied to re-orientation rate vector

fields. The obtained scalar divergence function gave an
excellent quantification of the stability of grains under

homogeneous boundary conditions as a function of

their orientation. Positive divergence which is a source

in the re-orientation rate vector field characterize ori-

entations with diverging non-zero reorientation rates

which are kinematically instable and prone to build up

orientation gradients.

Besides such basic kinematical interpretation we
attribute the deviation between Figs. 3 and 5 also in

terms of the loss in local symmetry (Fig. 5). The slight

element distortion shows that due to the laterally ran-

dom distribution of the imposed initial 2.5� orientation
scatter the plane strain state is locally violated entailing

strong RD rotations (Fig. 8). These observations cor-

respond to a recent study [31] which showed that weakly

positive divergent orientations, such as cube in FCC,
reveal a larger dependence of their re-orientation

behavior on the local mechanical boundary conditions

(local deviation from a plane strain state) and, therefore,

a larger variety of the resulting orientation spreads, than

less divergent crystals [29,30].

Such effects arising from the loss in local symmetry

are surely assisted by friction. However, the influence of

friction is likely to promote TD rotations rather than
RD rotations because it induces longitudinal shear

strains [32]. With increasing friction coefficient and

increasing number of surfaces imposing non-zero fric-

tion (Fig. 6), the orientation and stress distribution be-

comes increasingly heterogeneous. The differences

between Figs. 5 and 6 which originate from an increase

in the friction coefficient from l ¼ 0:1 (Fig. 5) to l ¼ 0:3
(Fig. 6) clearly show that particularly strong forward
shears lead to TD rotations. Samples which are plane

strain deformed with small friction (Figs. 3 and 5) reveal

mainly ND or RD re-orientations depending on the

initial orientation scatter (Fig. 8).
4. Conclusions

We investigated the orientational stability of cube

FCC crystals under plane strain (50% engineering

thickness reduction) by use of a texture component

crystal plasticity finite element method. The main results

are:

• If the friction is small (l ¼ 0:1) and the initial orien-

tation of the sample is exactly cube everywhere in the
mesh (all elements have the same initial orientation

u1 ¼ 0�, / ¼ 0�, u2 ¼ 0� without any initial orienta-

tion scatter prior to loading) the orientation spread
after deformation can be described in terms of a pure

ND rotation.

• If the friction is small (l ¼ 0:1) and the initial orien-

tation of the sample is a cube orientation with 2.5�
spherical Gaussian scatter the orientation spread

after deformation can be described in terms of ND

and RD rotations.

• If the friction is large (l ¼ 0:3) and the initial orienta-

tion of the sample is a cube orientation with 2.5�
spherical Gaussian scatter the orientation spread

after deformation can be described in terms of ND,

RD, and TD rotations. The latter rotation mode is
due to the induced forward shear.
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