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Abstract The microstructure of dual-phase steels consisting of a ferrite matrix with embedded martensite
inclusions is the main contributor to the mechanical properties such as high ultimate tensile strength, high
work hardening rate, and good ductility. Due to the composite structure and the wide field of applications
of this steel type, a wide interest exists in corresponding virtual computational experiments. For a reliable
modeling, the microstructure should be included. For that reason, in this paper we follow a computational
strategy based on the definition of a representative volume element (RVE). These RVEs will be constructed
by a set of tomographic measurements and mechanical tests. In order to arrive at more efficient numerical
schemes, we also construct statistically similar RVEs, which are characterized by a lower complexity compared
with the real microstructure but which represent the overall material behavior accurately. In addition to the
morphology of the microstructure, the austenite–martensite transformation during the steel production has a
relevant influence on the mechanical properties and is considered in this contribution. This transformation
induces a volume expansion of the martensite phase. A further effect is determined in nanoindentation test,
where it turns out that the hardness in the ferrite phase increases exponentiallywhen approaching themartensitic
inclusion. To capture these gradient properties in the computational model, the volumetric expansion is applied
to the martensite phase, and the arising equivalent plastic strain distribution in the ferrite phase serves as basis
for a locally graded modification of the ferritic yield curve. Good accordance of the model considering the
gradient yield behavior in the ferrite phase is observed in the numerical simulations with experimental data.
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1 Introduction

In many fields of steel applications, e.g., automotive engineering or manufacturing, the optimization of the
material properties becomes one of the main challenges. The reduction of weight as well as an increasing
stability and crash safety are main driving forces. Consequently, in the last four decades several new steel
types have been developed and are represented by the group of advanced high- strength steels (AHSS). One
important AHSS is the dual-phase (DP) steel, and otherwell-known types are transformation induced plasticity,
complex phase or martensitic steels. First developments of especially the DP steels showing greater formability
than conventional steels go back to the 1970s, see, e.g., [45] and [20]. For the production of DP steels, the
hot-rolled steel is processed by a controlled cooling from its high-temperature austenite or austenite–ferrite
state. This rapid cooling enforces the transformation from austenite tomartensite. In the end, themicrostructure
consists of a ferritic matrix phase with martensitic inclusions of complex shape. Controlling the transformation
is the crucial part of the adjustment of the mechanical properties of the final product. A variety of publications
have shown that this behavior mainly depends on microstructure factors such as volume fraction, shape, size,
spatial distribution, and the carbon content of the martensite phase, see, e.g., [5,19,20,39,41,42,52,63,90].

For the improvement in the properties of DP steels the microstructural composition as mentioned above
plays an essential part. A technique to measure polycrystalline microstructures is electron backscatter diffrac-
tion (EBSD). Thereby, an electron beam is focused on the examination sample and the diffracted electrons form
a two-dimensional pattern on a fluorescent screen. From this pattern the crystal structure and orientation can
be characterized. One application of EBSD is the determination of recrystallization states and their influence
on the mechanical properties of DP steels, cf. [12,15,18,29,65,70,86]. An extension of the EBSD technique
to obtain three-dimensional information is done by a combination of the EBSD with a serial sectioning by a
focused ion beam (FIB) system and results in a set of cross-sectional information, see [44,102]. In case of
DP steels the different phases cannot be distinguished by the crystallographic pattern produced by the EBSD.
Thus, a further measure captured in the EBSD analysis, the image quality also referred to as diffraction pattern
quality, describes the quality of the resulting EBSD pattern. Based there on [96] show the correlation of low
image-quality values to the occurrence of martensite, see also [99]. This is used by several contributions to
analyze volume fraction, morphology, and distribution of the martensitic inclusion phase of DP steels, see,
e.g., [35,36,97,98,100]. For the improvement in the representativity of the EBSD measurement especially the
phase fraction determination [21] propose a new EBSD scanning scheme with a two-step size movement of
the electron beam. Its improvements toward the EBSD-based texture analysis was shown in [22].

The increase in computational performance has enabled the analysis and modeling of the mechanical
properties as well as the simulation of DP steel applications, see, e.g., [87,88]. Due to the importance of the
microstructural assembly of themartensite in the ferrite phase, most publications on the analysis of the DP steel
behavior base on micromechanical models. The analysis of the mechanical properties considering different
physical aspects of the individual phases, i.e., ferrite and martensite, are reported in, e.g. [37,40,50,62,85].

One physical aspect, which will be also considered in the following, is the volume expansion of the
inclusion phase during the production process due to transformation of austenite to martensite. This effect is
also considered in the contributions by, e.g., [38,64,77,93].

For the simulation of real microstructures, as also done in the references given above, suitable techniques
for the reconstruction of the microstructure morphology and its transformation into computationally useable
models, e.g., in the context of finite element discretizations, are necessary. Most available methods base on
the acquisition of information about the microstructural composition by, e.g., EBSD or scanning electron
microscopy (SEM) and obtain reconstructions by image processing tools, cf. [11,14,30,31,92]. Furthermore
inmost of themicromechanical analysis, themacroscopic response of theDP steel is also of interest. In general,
this macroscopic behavior is computed by suitable volume averages over the considered microstructure, which
is often only a small sample of the full material. In order to obtain a representative result with respect to the
overall material behavior, the considered sample must be a representative volume element (RVE). The RVE
is considered to be a partial volume of the material, which is statistically homogeneous from the macroscopic
point of view, cf., e.g., [25,32,34,60,84] and for a summary [103], where definitions for RVEs are discussed.

Theuseof parts of a realmicrostructure asRVEoften results in numerical drawbacks due to their geometrical
complexity and the resulting large number of degrees of freedom in the computational model. In reference to
the applied numerical methods, the efficiency for the prediction of the macroscopically mechanical response
can be increased by using more efficient computational methods. For example [49] and [26] use the Fast
Fourier transform method and the spectral method, respectively, to compute the average mechanical response
of microheterogeneous materials. Contrarily, the construction of simplified geometrical models is the aim
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of, e.g., [1–3], where an axisymmetric RVE cell is constructed based on morphological properties. Further
methods for the construction of RVEs based on three-dimensional Voronoi tessellation, e.g., [24], and on
the application of the Monte Carlo technique, e.g., [17]. Further techniques have been suggested in order to
reproduce the statistical distribution of grain size and shape obtained from experimental observations of two-
dimensional orthogonal sections, cf., e.g., [13] and [83]. In [68,69,72] the three-dimensional characterization
of DP steels result in statistically representative three-dimensional microstructures. An alternative approach is
the construction of statistically similar RVEs (SSRVEs), cf. [6]. These SSRVEs are characterized by a lower
complexity compared to the real microstructure, but they represent the overall material behavior accurately
enough. The reliability of this method especially for DP steel microstructures was shown in, e.g., [4,7,8,78].
For an extension of thismethod to 3D see [9] and for the construction usingMinkowski Functionals as statistical
descriptors we refer to [73].

In this paper the computational modeling of DP steels based on representative three-dimensional
microstructures is presented, which should be representative in the sense of reproducing the mechanical
response of real experiments. In detail the paper is organized as follows: Sect. 2 gives an overview of the
techniques used for the metallographic characterization of the considered DP steel. The processing of the met-
allographic data to reconstructions of the microstructure is given in Sect. 3. In Sect. 4, the three-dimensional
reconstructions are statistically and mechanically analyzed with respect to reference data. The construction
and enhancement of statistically similar volume elements for DP steel simulation are described in Sect. 5, and
the paper is concluded in Sect. 6.

2 Measurements of microstructure based on EBSD

For the metallographic characterization, we use data resulting from the 3D electron backscatter diffraction (3D
EBSD) method. Thereby a joint high-resolution field emission SEM/EBSD setup is coupled with a focused
ion beam system (FIB). It provides a set of cross-sectional planes obtained via sequential serial sectioning and
joint EBSD phase and texture mapping. The dual-beam setup (SEM,FIB) is shown in Fig. 1a, b.

The sample of the material, which should be treated, is mounted on a tiltable holder inside the microscope,
cf. Fig. 1b. During the investigation, the sample is tilted between two positions, i.e., the FIB-cutting and
the EBSD positions. In the cutting position, the FIB system mills thin layers (10nm - 1μm thick) from the
investigated surface of the sample. The other position is used for the EBSD analysis, where an electron beam
is focused on the milled surface and the back scatter diffraction patterns are monitored by the EBSD camera.
In order to reduce lattice damage that can be created by the ion milling procedure during the sequential cutting
operations, we used comparably low cutting rates, i.e., sufficiently small beam current values. Due to different
diffraction patterns several properties of the sample can be analyzed for each point, e. g., crystal orientation,
phase, and internal lattice distortion. The typical EBSD dataset covers, e.g., the specific in-plane coordinates
for measured points in the cross-section, where the Euler angles characterize the crystallographic orientation,
and the image quality indicates the defect-density-dependent quality of the diffraction pattern. Concerning the

Fig. 1 EBSD–FIB: a equipment, b technical setup, cf. [44]
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Fig. 2 Measured area in sheet metal with rolling direction (RD), transverse direction (TD) and normal direction (ND)

Table 1 Physical size and in-plane step size of 3D EBSD data sets

In-plane
step size (μm)

# of slices
(μm)

Distance
slice-to-slice (μm)

Size of data set in

RD(μm) ND(μm) TD(μm)

Slicescan 1 0.1 50 0.1 15.9 16.45 5
Slicescan 2 0.1 97 0.1 21.6 20.78 9.7

3D EBSDmethod we refer to [23,44,101,102]. Since here we make use of the image-quality values to identify
and digitalize the different DP steel phases, we also refer to [16,99] regarding the mapping of this quantity.
Irrespective of minor beam damage, however, the use of the image quality to differentiate between the ferrite
and the martensite phases is a sufficiently clear parameter: The intrinsic distortion of the martensite obtained
from the preceding quenching process is so profoundly larger than that of the ferrite, even when being exposed
to a certain degree of ion beam damage, that the two phases can be very well differentiated from each other.

Here, we focus on the analysis of microstructures of DP steel sheets. On that account in Fig. 2 the area
measured byEBSDand its orientationwith respect to the sheetmetal directions are shown. The rolling direction
(RD) is equal to the longitudinal one, the transverse direction (TD) is in line with the width of the sheet, and
the thickness direction equals the normal direction (ND). The milling using the FIB results in cutting planes
parallel to the RD–ND plane, while the electron beam of the EBSD works within these planes at a certain step
size for its in-plane movement. Consequently, the resulting datasets of the EBSD measurement are associated
with planes arranged along the TD axis. In this paper, we analyze two 3D EBSD datasets, which are in the
following referred to as Slicescan 1 and Slicescan 2 with the physical information given in Table 1.

In the following we investigate the representativity of reconstructions of the microstructures. For this pur-
posewemake use of a special technique for EBSDmeasurements to obtain a large area scan. This techniquewas
originally proposed by [21] for the determination of phase fraction in multiphase materials. Its improvements
toward the EBSD-based texture analysis was shown in [22].

This technique is based on a new EBSD scanning scheme, which in contrast to the 3D EBSD method
performs a measurement only in one plane. It is mainly characterized by the stepping of the in-plane movement
of the electron beam. The beam is moved in a two-step size mode: the large step size (here 500μm) indicates
a coarse grid, at which the beam probes areas with a small step size (here 0.1μm). In our case a coarse grid of
32×4 points in theRD-ND-plane is considered, where at each point the probed (small) area is 15μm×15μm in
size, cf. Fig. 3. Thus, a sufficiently large area (16mm×2mm) of the considered DP steel is covered to estimate
representative statistical properties, e.g., phase fraction. Hereafter, this dataset is referred to as Largescan.

15µm

15µm

2mm

≈ 16mm

Fig. 3 Illustration of the measurement approach used for the Largescan data. Here we consider a coarse grid of 32 × 4 pattern
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3 Processing of EBSD data for phase reconstructions

For the computational modeling of DP steels including microstructural information, a reconstruction of the
microstructure is needed. Here, a reconstruction with respect to the different phases, which are mainly a ferrite
matrix with embedded martensite inclusions, is considered. In this section, first the method used for the 2D
reconstruction of a microstructure based on an EBSD dataset is presented. Subsequently, the results obtained
by applying this reconstruction method to the measurements described in Sect. 2 are shown. Consequently,
from the Largescan a set of 2D phase reconstructions is achieved and the Slicescan 1 and Slicescan 2 result in
three-dimensional phase reconstructions serving as basis for the finite element computations in this paper.

3.1 Reconstruction method

The basis for the microstructure reconstruction is the image-quality factor Q(x, y) obtained at each measure-
ment point of a two-dimensional EBSD map. Wilkinson and Dingly [96] show, that the image-quality factor
can be related to the intensity of the stored defect density obtained from plastic deformation and stress. For
example, [98] and [100] have exploited this fact for the phase identification in DP steels and found that high
image-quality factors correlate with ferrite and low factors correlate with martensite.

Wu et al. [100] also suggest to normalize the image-quality values, because they are sensitive to the EBSD
processing parameters. Accordingly, we compute the normalized image quality values for each 2D EBSD
measurement by

Qnormal(x, y) =
Q(x, y) − min

x,y
(Q)

max
x,y

(Q) − min
x,y

(Q)
· 100 , (1)

The resulting values are in the range [0, 100]. Figure 4a shows an example, where the grayscale map of the
normalized image-quality values Qnormal is shown for one 2D EBSD dataset of the Largescan measurement.
Therein the higher image-quality values (brighter regions) and the lower ones (darker regions) are associated
with ferrite and martensite, respectively.

The next step is the definition of a suitable threshold value of the normalized image quality to distinguish
between the ferrite and martensite phase. Note, that the value of the threshold is correlated with the resulting
phase fractions in the reconstructions, cf. [98]. Thus, the mechanical response obtained by using the recon-
structions in numerical computations will be also influenced by the choice of the threshold. Motivated by
[98], we compute the histogram of the image quality values, where we divide the full range into 50 categories
with the category length �l = 2. By counting all image quality values Qnormal within category i , we obtain
the frequency distribution h(i). From these values we compute the probability density function (PDF)

f (i) = h(i)
/ [∑50

j=1 h( j)�l
]

for i = 1, . . . 50 , (2)

where f (i) ·�l denotes the probability of Qnormal to be in the category i . For the grayscale map in Fig. 4a, the
PDF is plotted in Fig. 4c. The graph shows a bimodal distribution of Qnormal, i.e., the histogram shows two
maxima at category 30 and 84 with a minimum in between, which is comparable with the results obtained by
[98]. They can be described by the superposition of two standard normal distributions also known as Gaussian
function, cf. [100] and [18]. Each function of these distributions is obtained by an iterative least-squares fit
using the MATLAB peakfit function by [58]. On that account we divide the whole PDF in two data segments
at the position of the minimum between both peaks, i.e., lowest value between the maxima. Then the standard
normal distributions are fitted separately to each of these PDF data segments. The resulting functions are also
plotted in the graph shown in Fig. 4c, where the green and red lines indicate the standard distribution functions
for the martensite (left) and the ferrite (right) peak, respectively. Then the final threshold ZQnormal is estimated
at the intersection point of both the peak functions, which is indicated by a ‘◦’ at the category axis in Fig. 4c.
With this threshold, we are able to reconstruct the binary representation of the microstructure by assigning a
measured point with Qnormal ≤ ZQnormal to the martensite phase and a point with Qnormal > ZQnormal to the
ferrite phase. The resulting binary phase reconstruction for the considered microstructure (Fig. 4a) is shown
in Fig. 4b.

From the comparison of the grayscale image-quality map in Fig. 4a and the corresponding phase recon-
struction one can directly observe two problems associated with the identification of the phases, which are
also mentioned by [18]:
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Fig. 4 a The grayscale image-quality map of a DP steel microstructure and b the corresponding binary image of the phase
reconstruction (black=martensite,white= ferrite) using the threshold,which is determined from c the probability density function
of the normalized image-quality factor Qnormal (green line/red line fitted standard normal distribution, open circle intersection
point, times symbol peaks if standard normal distribution). The blue frame in a and b represents the region, which serves as
example for the description of the reconstruction method. The underlying microstructure in a and b is 15μm × 15μm in size
and the blue frame covers a region of 5μm × 5μm. (Colour figure online)

• Very small and possibly unrealistic islands identified as ferrite phase appear inside martensite inclusions
which lead to unnecessarily fine discretizations when constructing a finite element mesh for themicrostruc-
ture. The much stiffer mechanical behavior of martensite at stress levels typically occurring in sheet metal
forming would, however, essentially prevent any plastic deformation in these ferrite regions.

• Several thin structures appear in the reconstruction, cf. Fig. 4a, which can be identified as ferrite-to-ferrite
grain boundaries comparing the grayscale image-quality map with the phase reconstruction. Due to the
different crystal orientations in neighboring grains and the higher defect density at the grain boundaries,
the image-quality factor is also lower compared to regions inside the grains. Consequently, the grain
boundaries might be identified as martensite phase. Since we are interested in a two-phase reconstruction
of the microstructure the grain boundaries between two ferrite grains should also be assigned to the ferrite
phase.

For a better understanding of the aforementioned aspects, we select a smaller region of the considered
microstructure. This region is indicated by a blue frame in Fig. 4a, b and is shown in Fig. 5a. In Fig. 5b the
binary image of the phase reconstruction is shown,which is obtained from applying the image-quality threshold
value and which is identical to the blue frame in Fig. 4b. In addition, we mark the regions associated with
ferrite islands by green circles. For the ferrite-to-ferrite grain boundaries, we use a red dashed line as marker.
To overcome these problems, we apply several morphological operations, which are described step-by-step in
the sequel and are illustrated in Fig. 5.
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Fig. 5 a Grayscale image-quality map corresponding to the blue frame marked in Fig. 4a with the size of 5μm × 5μm.
b Reconstruction of ferrite (white) and martensite (black) phase by the application of the threshold ZQnormal determined by the
intersection point in Fig. 4b. Additionally the unsafe regions aremarked: holes (green solid lines), thin structures (red dotted lines).
Resulting phase reconstructions after applying image processing steps in the following order: c filling small regions, originally
identified as ferrite, d double staggered erosion of the martensite phase by a 3 × 3 sample, e double staggered dilatation of the
martensite phase by a 3× 3 sample. f Color map of the differences between the original (b) and filtered (e) phase reconstruction,
where removed and added pixels are colored red and green, respectively. (Colour figure online)

We start with a simple “filling small regions” operation on the binary image of the phase reconstruction,
whereby all ferrite regions with an area surface lower than 75 pixels are switched to martensite, cf. Fig. 5c. To
remove the pixels associatedwith thin structures like the ferrite-to-ferrite grain boundaries,we apply a two-stage
procedure. In the first stage we use a double staggered erosion of the black (martensite) pixel. In each erosion
step a 3 × 3 sample consisting of white pixel is placed centered on each white pixel, whereby neighboring
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Fig. 6 Reconstruction of microstructure obtained from Slicescan 1: a full phase representation (red ferrite, green martensite), b
ferrite phase. The dimensions are 15.9μm × 16.45μm × 5μm. (Colour figure online)

black (martensite) pixels are overwritten. Doing this in a double- staggered procedure, thin structures up to
4 pixel in width and height can be removed. This is a typical size of the grain boundaries appearing in the
structures analyzed here. Obviously, in addition to the grain boundaries the size of the martensite inclusions is
decreased by this erosion process, cf. Fig. 5d. To correct for this effect, we apply the counterpart of the erosion
procedure, a double staggered dilation, thereafter. On that account, a 3 × 3 sample consisting of black pixels
is placed centering on each black pixel in two cycles, where the result is shown in Fig. 5e. The reason for the
double staggering for both steps is that a direct application of an, e.g., 5× 5 sample will produce a coarsening
of the curved shape of the martensite islands. The effects of the described boolean operations are shown by a
color indication of the differences between the initial phase reconstruction (Fig. 5b) and the resulting cleaned
phase reconstruction (Fig. 5e) in Fig. 5f. Therein the (martensite) pixels added by the “filling small region”
operation are colored green and the (martensite) pixels removed by the “erosion” operations are colored red.
A direct comparison with the original grayscale image-quality map (Fig. 5a) shows the functionality of the
applied method.

At this point one side effect of the “erosion–dilation” operation should be mentioned. The sharp and spike-
like boundaries of the martensite inclusions in the initial phase reconstruction are smoothed, which is helpful
for later discretization by finite elements, but it is disadvantageous for a precise reconstruction. Note that for
higher-order computational modeling approaches, where specific material properties are assigned even to the
ferritic grain boundaries or where the individual character of grains have to be taken into account in case of
crystal plasticity FE-approaches, the thin lines may be treated differently in order to specifically identify these
grain boundaries.

3.2 Results for DP steel microstructures

The previously presented procedure is applied to the data sets obtained by the EBSDmeasurements mentioned
in Sect. 2 for the phase reconstruction of the DP steel’s microstructure. All datasets consist of compilations of
microstructural information determined by in-plane measurements on small areas. The phase reconstruction
method is individually applied to each of these in-plane data sets, i.e., (i) the histogram is computed, (ii) the
threshold ZQnormal is determined, (iii) the phases are reconstructed, and (iv) the filters are applied.

Between each measurement for Slicescan 1 and Slicescan 2 the position difference can be described as a
vector orthogonal to the measured area, i.e., in the transverse direction (TD), see Fig. 2. Consequently, from
these data sets a three-dimensional phase reconstruction of the microstructure can be obtained by stacking the
slices. Here we use the software Mimics®1 to generate a three-dimensional geometrical model. The resulting
phase reconstructions for Slicescan 1 and Slicescan 2 are visualized in Figs. 6 and 7, respectively.

In contrast, the measurement of the Largescan produces datasets whose offset vectors lie in the same plane
as the measured area, i.e., RD–ND plane, see Fig. 2. Consequently, the application of the phase reconstruction
method results in 132 two-dimensional phase reconstructions. In Fig. 8 the complete grayscale image-quality
map and the resulting phase reconstruction is shown. Note that in order to reduce the size in this visualization,
we omit the distance between the representation of the individual small area scans, cf. Fig. 3, and place the
areas directly next to each other.

1 Medical Image Segmentation for Engineering on AnatomyTM (Mimics®) is a registered trademark of the Materialise HQ,
Belgium.
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Fig. 7 Reconstruction of microstructure obtained from Slicescan 2: a full phase representation (red ferrite, green martensite), b
ferrite phase. The dimensions are 21.6μm × 20.78μm × 9.7μm. (Colour figure online)

Fig. 8 Reconstruction of the Largescan measurement: a grayscale image-quality map and b filtered phase reconstruction (ferrite:
white, martensite: black). The dimensions of the total area are 15.98mm× 1.56mm (including large step size) and for each block
15μm × 15μm

4 Representativity of 3D reconstructions

The choice of the representative volume element (RVE) is a crucial part of the homogenization of random
microstructures. A suitable RVE should represent the characteristics of the microstructure morphology to serve
as basis for a reliable computation. For the characterization of the morphology several statistical measures
have been introduced in the literature. For a general discussion see e.g., [10,59] and [47]. Various statistical
descriptors have been introduced in the last decades, see. e.g., [27,103], or [91] for comprehensive overviews.
Such descriptors can be divided into scalar-valued quantities like, e.g., some basic parameters such as the
volume fraction or the internal surface density, and statistical measures of higher order.

For our analysis we focus on the scalar-valued basic parameters as statistical descriptors of the morphology
of the consideredDP steel. Firstwe determine these statistical quantities of the two-dimensional reconstructions
obtained from the Largescanmeasurement. They should serve as reference since [21] have shown that the large
scan area is a reliable technique to measure characteristics of multiphase materials, e.g., the phase fraction.
After that we compute and compare the statistical values for the two three-dimensional reconstructions to
analyze their representativity.

4.1 Basic parameters

For the statistical description of random microstructures basic parameters can be analyzed, cf. [59]. Since we
here focus on a DP steel, which typically consists of two phases, i.e., ferrite and martensite, we introduce these
parameters for the martensite inclusion phase.

The first essential parameter is the phase fraction, which is defined as the volume fraction of the inclusion
phase in the three-dimensional case and as the cross-sectional area fraction in the two-dimensional case, i.e.,

PV := V I

V 0 and PA := AI

A0 , (3)
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where V denotes the volume and A the cross-sectional area. For an estimation of the volume fraction based
on the two-dimensional data the relation P∗

V = PA is used. The superscripts I and 0 indicate the quantities
computed for the inclusion phase and the total microstructure, respectively. Thus, for example V I denotes the
volume of the inclusion phase and V 0 is the total volume. While these fractions describe how the inclusion
phase assemble the whole microstructure, the specific internal surface density is a measure for how fine the
inclusion phase is distributed. In the three-dimensional case it can be calculated by

PS := SI

V I (4)

with the interface area SI separating the inclusion and matrix phase. Its counterpart for a two-dimensional
cross section is the specific internal interface length density

PL := L I

AI , (5)

where L I describes the circumference of the inclusions in the considered cross section. Both quantities can be
related to each other following [59] such that a three-dimensional measure PS can be estimated in terms of the
2D counterpart PL by P∗

S = 4PL/π. This relation is important for later analysis of the reconstructions, since
statistics obtained from the reconstructions of the two-dimensional Largescan dataset will be compared with
the ones of the three-dimensional data sets Slicescan 1 and Slicescan 2. The characteristics of the shape of the
inclusion, e.g., convexity or non-convexity, can be captured by the specific density of the integral of the mean
curvature, i.e.,

PM := M I

V I , (6)

where V I denotes the volume of the inclusion. In this equation the integral of the mean curvature M I over the
interface S between inclusion and matrix is considered, where the definition is

M I := 1

2

∫

S

(
min

β
[κ] + max

β
[κ]

)
dS. (7)

Herein κ is the curvature in a certain tangential direction β defined as κ(β) := 1/r(β) with the curvature
radius r . For the following statistical analysis we use the relation P∗

M = 2π XA with the specific Euler
number XA following [59] to compare the values for the two- and three-dimensional reconstructions.

4.2 Statistical analysis

The evaluation of the representativity of the reconstructed three-dimensional microstructures is conducted by
a statistical analysis using the basic parameters from Sect. 4.1. Following [21] we use the quantities obtained
from the Largescan as reference values. For the correlation of the two-dimensional and three-dimensional
quantities we assume that the ensemble average of the cross-sectional area fraction P∗

V , computed for each
block in Largescan, is statistically comparable to the volume fraction PV of the volumetric structures, which
is identical to the phase fraction. For the 3D counterparts of the phase fraction, the specific internal surface
density, and the specific density of the integral of the mean curvature, we use the relations given in Sect. 4.1 for
the correlation between the two- and three-dimensional case. For the quantities computed from the Largescan
data, we calculate the ensemble average over all individual small area scans, i.e., for a particular quantity PQ
the ensemble average is calculated by

P∗
Q := 1

nblocks

nblocks∑

i=1

P∗
Q,i with Q = V, S, M, (8)

where nblocks denotes the number of small area scans in the Largescan.For the numerical calculation of the
basic parameters the algorithms provided by [59] are used.

In Fig. 9 the distribution of the basic parameters over the small area scans obtained from the Largescan
is shown ( ). Using Eq. (8) the ensemble average P∗

V ( ) and the standard deviation ( ) is calculated and
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Fig. 9 Basic parameters of Largescan: a phase/cross-section area fractionP∗
V , b specific internal surface densityP∗

S and c specific
density of the integral of the mean curvature P∗

M . Statistical measures evaluated for each block (blue dots), ensemble average
(dotted line) and standard deviation (gray square). (Colour figure online)

Table 2 Basic parameters computed for the reconstructions described in Sect. 3.2

Largescan Slicescan 1 Slicescan 2

Value Std.dev. (%) Value Error (%) Value Error (%)

P∗
V 0.144 ±34.38 PV 0.099 −31.25 0.089 −38.19

P∗
S 0.713 ±20.34 PS 0.645 −9.54 0.612 −14.17

P∗
M 0.831 ±20.70 PM 1.071 28.88 0.976 17.45

The values for Largescan are ensemble averages over the whole set of small area scans, whereby the values for Slicescan 1 and
Slicescan 2 are directly computed from the three-dimensional representation

also plotted. It can be seen that the values of the parameters calculated for some small areas are out of the
range of the standard deviation. This shows that a single small area cannot be considered as representative
and substantiates the application of the large area scan technique. For the reconstructions of Slicescan 1 and
Slicescan 2 we also compute the statistical parameters and summarize all results in Table 2, where we also
add the relative deviation with respect to the Largescan data set.

The comparison of the basic parameters computed for the slicescans with the ones of the Largescan in
Table 2 shows the poor representativity of the full reconstructions of Slicescan 1 and Slicescan 2. The values
differ significantly from the reference and the deviation is close to the standard deviation in some cases. At first
glance this could be unexpected, because the values of the measurements of the cross sections (slicescans) are
a kind of averages over several two-dimensional data comparable to the ensemble averages computed from the
measurements of the large specimen (Largescan). But the measurements for the slicescans are scanned only
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with a small step size (0.1μm) in the third direction to get smooth reconstructions of the inclusions’ geometry.
Consequently, the variance of the measurement position in the material is much smaller than during the large
area scan technique, where the area-to-area distance is approximately 500μm, cf Sect. 2. This enhances the
representativity of the measurement, cf. [21,22]. An obvious solution may be to increase the measurement
region, but the investigated volumes is still technically limited in size by the measurement technique. A higher
representativity may be obtained by choosing a more suitable position for the EBSD measurements within
the sample. However, this is difficult due to the high complexity associated with the underlying measurement
technique.

4.3 Mechanical comparison

For completenesswe compute the overallmechanical response of the reconstructedmicrostructures for uniaxial
tension and compare them with experimental data, which was provided by ThyssenKrupp Steel Europe. For
this purpose first the framework for the numerical calculations is briefly recapitulated.

4.3.1 Computational modeling

For the numerical computationswe use direct two-scale finite element simulations to obtain the overall effective
mechanical behavior. On that account we give here only a briefly recapitulation of this approach and for details
we refer to, e.g., [28,56,74,75,82]. In computational homogenization a RVE representing the underlying
microstructure is attached at each integration point of the discretized macroscopic boundary value problem.
Consequently, at the microscale, additional boundary value problems have to be solved where the deformations
are described in terms of the microscopic deformation gradient F with J := det[F] > 0. With the associated
work-conjugated stress measure, the first Piola–Kirchhoff stress tensor P , the microscopic Cauchy stresses are
computed by σ = 1

J P FT. Overlined characters are related to the macroscopic level as, e.g., the macroscopic
deformation gradient F with J := detF > 0 and the first Piola–Kirchhoff stress tensor P . The latter quantity
can be calculated by volumetric averaging, i.e.,

P = 1

V

∫

B
P dV → σ = 1

J
P F

T ; (9)

the domain of the RVE with volume V is denoted by B. From the macro-homogeneity condition also referred
to as Hill–Mandel condition, see [34], suitable boundary conditions at the microscale are derived. Well-known
boundary conditions fulfilling this condition are (i) the uniform traction conditions, (ii) the linear displacement
conditions, and the (iii) periodic boundary conditions. In this paper linear displacement boundary conditions
and periodic boundary conditions are applied depending on the periodic or non-periodic morphology of the
microstructure. The consistent macroscopic moduli are considered for higher computational efficiency, for
details we refer to [55] and [75], in this context see also [89].

Since in the simulations the different constituents of the DP steel microstructure are resolved, i.e., ferrite
and martensite, an isotropic finite elastoplasticity formulation for the individual phases at the microscale is
needed. Here, a standard isotropic finite J2 elastoplasticity formulation is considered which is based on the
multiplicative decomposition of the deformation gradient F = Fe Fp in an elastic (Fe) and a plastic part
(Fp), see [46,48]. For details of the thermodynamic formulation as well as for the numerical treatment see
[43,53,54,66,79–81]. The strain energy function is assumed to be additively decoupled into an elastic part and
a plastic part. Following [80] a quadratic elastic free energy function in terms of the logarithmic elastic strains
is considered making use of the Lamé parameters λ and μ. For the plastic behavior the individual phases are
assumed to follow an exponential-type hardening as in [94], superimposed with a linear hardening. Thus, the
plastic strain energy function reads

ψp = y∞α − 1

η
(y0 − y∞) exp(−ηα) + 1

2
h α2 (10)

with the equivalent plastic strains α. The associated hardening function β = ∂αψp fits appropriately experi-
mental yield curves of purely ferritic and purely martensitic steels. The material parameters y0, y∞, η and h
are the initial yield strength, the plastic yield strength at the initialization of the linear hardening, the degree
of exponential hardening, and the slope of superimposed linear hardening, respectively. The flow rule for the
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Fig. 10 a Material parameters adjusted to experimental curves, b nominal stresses P11 in MPa versus strains �l/l0 in uniaxial
tension (loading direction: RD) for the experimental data (courtesy of ThyssenKrupp Steel Europe) and the resulting model
response: pure ferrite which is produced in the laboratory adjusting for a similar alloying composition as in the ferrite of the DP
steel, pure martensite (produced in laboratory) adjusting for a similar carbon content as in the martensite in the DP steel, and
experimental response in RD- and TD-direction of the considered DP steel

plastic quantity is integrated using an implicit exponential update algorithm, which preserves plastic incom-
pressibility [43,54,80,95].

For the elastic response in the individual phases, it is assumed that both phases behave like the overall
DP steel and an elasticity modulus of E = 206,000MPa and a Poisson ratio of ν = 0.3 are identified from
experiments. The associated Lamé-parameters are λ = 118,846.2MPa and μ = 79,230.77MPa. For the
characterization of the hardening behavior, uniaxial tension tests are performed for the single phases and
then the finite plasticity model as described above is adjusted to the experiments. For this purpose, artificial
pure ferrite and martensite materials need to be produced in the laboratory which exhibit the similar alloying
element composition, grain size distribution and thus a similar material behavior compared to the individual
phase materials of the DP steel. This may influence the quality of direct micro–macro calculation of DP
steels compared with macroscopic experimental data. In particular this is not straightforward at all for the
pure ferrite material such that still a significant deviation may occur with respect to the ferrite for the DP
steel. The associated stress–strain response for the individual phases obtained from experiments and from
computations using the elastoplasticity formulation are illustrated in Fig. 10b and the associated material
parameters are given in Fig. 10a. The production poses extraordinary challenges to the experimentalist since
the artificially produced pure phases differ from the phases occurring in the micro-heterogeneous DP steel.
The crucial part in the production of the pure martensite specimen is represented by the carbon content, since
in DP steels the martensite inclusions tend to attract more carbon during the production process and show
therefore a higher carbon content than the pure material artificially produced with the same alloying elements.
Consequently, an artificially produced pure martensite with an increased carbon content of approximately 50%
is investigated. It is remarked that in DP steels the martensite undergoes mainly elastic deformations since the
initial yield stress is significantly higher than the one of ferrite and thus, the plastic yielding regime is typically
not reached in the martensite. Additionally, [33] showed, that during the production of pure martensitic steel
different martensite blocks are formed, which reveal different nanohardnesses. But here we are only interested
in the overall mechanical behavior of the martensite and not in particular martensite blocks. Consequently,
the aforementioned issue of varying mechanical properties through the martensite phase is of lower relevance
and is not considered in the following. For comparison, the computational microstructure models with the real
material response we take into account data from experiments provided by ThyssenKrupp Steel Europe. These
experiments consider uniaxial tension applied to a test specimen, which is manufactured from the DP steel
by cutting a strip along the rolling direction (RD) and the transverse direction (TD) of the sheet. The overall
mechanical response of the DP steel is also depicted in Fig. 10b which shows similar curves for the RD- and
the TD-directions.

4.3.2 Reconstructed three-dimensional microstructures

For the numerical computation using the two-scale finite element simulation we discretize the reconstruc-
tions of Slicescan 1 and Slicescan 2 by 10-noded tetrahedral finite elements. The mesh constructions were
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Fig. 11 Overall mechanical response, i.e., first Piola– Kirchhof stresses versus relative elongation, from uniaxial tension tests of
the considered DP steel and the reconstructions of Slicescan 1 and Slicescan 2. a RD-direction (Px vs. �lx/lx,0), b TD-direction
(Pz vs. �lz/lz,0). The experimental curves are provided by ThyssenKrupp Steel Europe

done in the software package 3-matic®2 because of its direct interface for the import of the geometrical
data obtained with MimicsTM, cf. Sect. 3.2. The discretization results in 612.323 and 413.681 finite ele-
ments for the microstructure of Slicescan 1 and Slicescan 2, respectively. Since the morphology of the
microstructures is not periodic at the boundary, we apply linear displacement boundary conditions at the
microscale.

In Fig. 11 the comparison of the overall mechanical response of the real material in the uniaxial tension
experiments and the results obtained from the simulations of the three-dimensional microstructures are shown.
A rather big gap between simulations and experiment is observed. A possible reason is that the martensite
phase fraction is too small, which was already identified in Sect. 4.2. Since martensite has a higher yield curve,
a higher yield curve of the calculation for the DP steel would be expected for larger martensite fractions as
well. As will be seen later in this paper, this, however, is not the main reason. Consequently, the reconstructed
three-dimensional microstructures hardly serve as RVEs in, e.g., homogenization procedures of multiscale
simulations. In the sequel an approach to overcome this problem is presented in order to achieve an RVE for
the computation of the overall effective mechanical properties of the considered DP steel.

5 SSVEs for the simulation of dual-phase steels

From the statistical analysis shown in the Sect. 4.2, we summarize that the full reconstruction of the three-
dimensional microstructure cannot be used in a straightforward way to devise RVEs for the computation of the
overall effectivemechanical properties. The challenge associatedwith these reconstructions is givenby the tech-
nical limitations associated with the measurement technique, namely, an insufficient size of the reconstructed
portion leading to an inclusion morphology, which statistically differs from the reference. Due to relatively
high efforts associated with the EBSD–FIB measurement, it cannot be expected that a specific microstructure
can be measured which shows exactly representative properties. Consequently, the first natural concept to fix
this, is a suitable modification of the geometrical representation of the inclusion morphology. For instance,
the inclusion morphology may be modified such that the martensite phase fraction of the 3D microstructure
matches closely the reference. This is, however, not a trivial step for reproducing the real microstructures
due to their complex geometrical morphology. On that account we decide to construct statistically similar
volume elements (SSVEs) based on the three-dimensional microstructures, which are characterized by a lower
complexity compared to the real microstructures but which represent the overall material behavior well. These
SSVEs may then serve as microstructures which may be more conveniently modified. Additionally, one aim
of this paper is to achieve an RVE for efficient two-scale finite element simulations. In general the num-
ber of degrees of freedom of such SSVEs, which leads to a more efficient scheme, see [9], is significantly
lower.

2 3-matic®is a registered trademark of the Materialise HQ, Belgium
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Table 3 Results of the SSVE construction process based on volume fraction, spectral density and lineal-path function—values
of objective function E , and individual least-square functionals, number of tetrahedral elements nele and mechanical errors r̃ in
% for the individual SSVEs shown in Fig. 12a, b

E/ 10−2 LV/ 10−4 LSD/ 10−3 LLP/ 10−4 nele r̃x r̃z r̃xy r̃yx r̃∅

SSVE 1 0.53 3.37 3.3 0.017 15,714 0.2 2.4 1.2 1.1 1.45
SSVE 2 0.86 21.4 2.28 0.042 16,000 3.49 3.67 0.63 0.76 2.58

Table 4 Basic parameters computed for the Largescan and the SSVEs constructed from the Slicescan 1 and Slicescan 2

Largescan SSVE 1 SSVE 2

Value Std.dev. (%) Value Error (%) Value Error (%)

P∗
V 0.144 ±34.38 PV 0.097 −32.64 0.092 −36.11

P∗
S 0.713 ±20.34 PS 0.622 −12.76 0.839 17.67

P∗
M 0.831 ±20.70 PM 0.731 −12.03 1.325 59.45

5.1 Construction of SSVEs

The construction method was originally introduced for two-dimensional microstructures, cf. [6], and referred
to as statistically similar representative volume element (SSRVE). In Sect. 4.3.2 it is shown, that the recon-
structed real microstructure turned out to be not necessarily representative with respect to the reference, i.e.,
experimental data of the DP steel. Based on that a similar behavior is expected for the constructed and non-
modified SSVEs. Consequently, we omit representative in the notation of these volume elements as well as the
R in the corresponding abbreviation. Here, we briefly summarize the method and give several references for
detail studies. For the construction of three-dimensional SSVEs representing the reconstructions of Slicescan 1
and Slicescan 2 we follow the strategy presented by [9]. They propose the usage of phase fraction, spectral
density, and lineal-path function as suitable statistical measures for the characterization of the microstructure
morphology. The spectral density is related to the periodicity eventually hidden in the microstructure. The
lineal-path function characterizes the geometrical shape of inclusions. The differences of these statistical mea-
sures calculated for the real microstructure and the SSVE are used to define suitable least-square functionals.
These functionals build an objective function, which is minimized during the construction process. Since in
[9] it turns out that an inclusion morphology of the SSVEs assembled by three ellipsoids obtains good results
for DP steel microstructures, we choose this parametrization of the SSVE. Consequently, the size, position and
orientation of the ellipsoids represent the degrees of freedom for the optimization problem. It should be also
mentioned that the assembly of the ellipsoids is done such that periodic structures are achieved. Consequently,
in the numerical simulation periodic boundary conditions can be applied. Further studies and information
regarding the construction of SSRVE can be also found for the two-dimensional case in, e.g., [4,7,8]. On the
construction of three-dimensional SSRVEs using Minkowski Functionals as statistical descriptors we refer to
[73].

In Table 3 results of the SSVE construction process are summarized giving the final value of the minimized
objective function E , the least-square functionals of the statisticalmeasures and themechanical error obtained in
four virtual experiments. The objective function and the least-square functionalsL are formulated following [9]
which are based on the martensite volume fraction (LV), the spectral density (LSD) and the lineal-path function
(LLP). The least-square functionals take into account the deviation of the statistical measure computed from
the constructed SSVE and the statistical measure characterizing the real microstructure, for details see [8,9].
The overall mechanical error r̃∅ is computed as average of the four virtual experiments, i.e., uniaxial tension
in horizontal and vertical direction in the RD–TD plane with free lateral conditions (r̃x and r̃z , respectively)
and two simple shear tests where the RD-ND plane is shifted in RD-direction and ND-direction (r̃xy and r̃yx ,
respectively). From the values of the objective function and the mechanical errors, it can be seen that the
SSVE 1 is statistically as well as mechanically more similar to its target structure Slicescan 1 than SSVE 2 to
its target structure Slicescan 2. But due to the larger numerical effort characterized by the larger number of
finite elements needed for the discretizations of the real microstructures (up to 38 times more finite elements
than the SSVEs), the obtained representation by SSVEs is considered as sufficiently accurate.
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Fig. 12 a SSVE 1 associated with Slicescan 1 and b SSVE 2 associated with Slicescan 2

Table 5 Values of objective functionE , and individual least-square functionals and number of tetrahedral elements nele determined
for the SSMVEs

E/ 10−2 LV/ 10−4 LSD/ 10−3 LLP/ 10−4 nele

SSMVE 1 115.2 2088.2 3.3 9.39 24,749
SSMVE 2 127.33 2422.6 2.09 10.29 31,491

Table 6 Basic parameters computed for the Largescan and SSMVEs

Largescan SSMVE 1 SSMVE 2

Value Std.dev. (%) Value Error (%) Value Error (%)

P∗
V 0.144 ±34.38 PV 0.144 0.0 0.144 0.0

P∗
S 0.713 ±20.34 PS 0.788 10.52 0.958 34.36

P∗
M 0.831 ±20.70 PM 0.726 −12.64 0.600 −27.80

In Fig. 12, the constructed SSVE 1 and SSVE 2 associated with the reconstruction of Slicescan 1 and
Slicescan 2 respectively, are visualized. The discretization of the SSVEs are also used to simulate the uniaxial
tension tests in RD- and TD-directions according to the available experimental results. In Table 4 the basic
parameters of the SSVEs are compared with the reference values obtained from the Largescan. As expected
the error is comparable with the real 3D microstructures Slicescan 1 and Slicescan 2.

5.2 Modification of the phase fraction

For the modification of the martensite phase fraction in the SSVEs, we take advantage of their parametrization
used for the construction. Therein the size of the ellipsoids is characterized by the radii of the three semi-axes.
Consequently, we scale all the radii up in an iterative manner until the phase fraction of the reference, i.e.,
14.4%, is reached, cf. Table 2. The resulting statistically similar modified volume elements are referred to as
SSMVE 1 and SSMVE 2, where the factors applied to the original radii are 1.14 and 1.13, respectively.

The values of the objective function are given in Table 5. Since just the size of the inclusions, not their
shape, is modified, the similarity of statistical measures apart from the phase fraction is reduced, as can be
seen by comparing E in Table 5 with the ones given in Table 3 for the SSVEs.

To make sure, that the modifications do not change the statistical properties of the SSVE with respect to
the reference, we also calculate the basic parameters of the SSMVEs, see Table 6. For the allowed deviation
of the values, we use again the standard deviation obtained from the statistical analysis of the Largescan given
in Table 2.

The effective mechanical responses in the uniaxial loading situations are plotted in Fig. 13. As expected
an increase of both stress levels of the SSMVEs due to the modification can be observed. Although the phase
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Fig. 13 Overall mechanical response, i.e., first Piola– Kirchhoff stresses versus relative elongation, from uniaxial tension tests of
the consideredDP steel, the original SSVEs and the volume-modified SSMVEs. aRD-direction (Px vs.�lx/lx,0), bTD-direction
(Pz vs. �lz/lz,0). The experimental curves are provided by ThyssenKrupp Steel Europe

Fig. 14 a An illustration of characteristic nanoindentation measurement positions and b normalized hardness parameter (normal-
ized with respect to the value in the ferrite at a far distance from the martensite inclusions) versus distance d from the inclusions
obtained by nanoindentation tests performed at ThyssenKrupp Steel Europe (Taken from [77])

fraction is an essential aspect in the framework of RVE construction the resulting stress–strain response is still
far away from the experimental results. Consequently, some physics at the microscale are not captured by the
numerical approach so far.

5.3 Initial volumetric strain approach

During the production process of DP steels, the martensite inclusions arise from a transformation of austenite
to martensite induced by rapid cooling. The difference in the specific volumes of austenite and martensite
leads to a volume expansion of approximately 4 % of the inclusion phase relative to the surrounding ferrite
matrix, cf. [57,61,71]. This mechanism induces an initial pre-straining and hence some degree of hardening
at the microscale, especially on DP steels see [38].

In order to obtain information regarding such distributed zones of initial hardening, nanoindentation tests
were performed at ThyssenKrupp Steel Europe at different microscopic positions, see [77], cf. also Fig. 14a.
The hardness is measured and plotted versus the distance from the martensite inclusions in Fig. 14b. It can be
clearly seen that the associated regression curve shows an exponential-type decrease of hardness in the ferrite
phase with an increasing distance from the inclusions. The hardness is approximately 1.6 times higher close to
the inclusion than in the ferrite far away from the inclusion. These distributed properties are expected to result
fromcarbon diffusion aswell as an accumulation of dislocationswhich are in turn due to the austenitemartensite
phase transformation. Since the hardness correlates with the initial yield stress the typical assumption of a
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homogeneous material behavior in the ferrite matrix appears not to be valid, see e.g., [67]. It is rather required
to consider a distributed yield behavior in the ferrite.

On that account we apply a two-step approach, cf. first ideas in [77]. The first step includes an application
of an initial volumetric strain by a virtual temperature expansion in the martensite phase, which is also applied
by [64]. This step is motivated by the volume change during the production process which yields the initial
hardening as well as associated microscopic eigenstresses. Afterward a locally distributed modification of
the ferrite yield law correlated with the arising equivalent plastic strain distribution is done. Thereby, it is
assumed that the microscopic distribution of ferrite yield properties is qualitatively similar to the plastic strains
associated with the initial hardening. Motivated by the different yield behavior in the neighborhood of the
martensite inclusions, [76] proposed an interzone around these inclusions with modified yield criteria. Also
[38] modeled distributed mechanical properties by several layers with varying material parameters around the
martensite inclusions.

5.3.1 Application of initial volumetric strains (IVS)

It is to be expected that the initial hardening zones are caused by the volumetric jump in the inclusions when
transforming from austenite to martensite. Thus, it is reasonable to apply numerically volumetric strains in the
inclusions in order to account for distributed hardening in the externally unloaded situation. In the following the
procedure for incorporating such volumetric strains in close association with a virtual temperature expansion
is explained.

Let us consider the thermoelastic potential in terms of the elastic left Cauchy–Green tensor be = FeFeT

and the temperature change ϑ

ψ = ψvol(Je) + ψ iso(be) + H(ϑ) , (11)

where the volumetric and isochoric elastic potentials are denoted by ψvol and ψ iso, respectively, and H
is a thermal part. Following the Duhamel–Neumann hypothesis for isothermal expansion, we consider the
multiplicative decomposition of the determinant of F

J = det F, J = Je Jϑ with Jϑ = e3αT ϑ . (12)

Herein, Je and Jϑ denote the elastic and thermal part of the volumetric deformation. For the constitutive
assumption of the thermal part Jϑ see [51] with the temperature expansion coefficient αT . Note, that αT
should not be confused with α representing the equivalent plastic strains in the elastoplasticity formulation,
cf. Eq. (10). With view to finite plasticity, the spectral decomposition of the left Cauchy–Green tensor plays
an important role, therefore, let us now consider

be =
3∑

A=1

(λeA)2nA ⊗ nA , (13)

cf. [80], with the eigenvalues λeA and eigenvectors nA of be. With respect to the incorporation of initial
volumetric strainswenowconsider the principle stresses in termsof the logarithmic principle strains εeA = ln λeA
with A = 1, 2, 3. For the volumetric isochoric split we obtain

τ = κ tr εe1 + 2μ dev εe. (14)

In order to incorporate initial (temperature) strains we need to modify the principle strains

εeA ⇐ εeA − αTϑ , (15)

where αTϑ represents the virtual temperature strains.
The remaining question is to identify the value of the virtual temperature strains such that a given volumetric

strain is obtained. For the case of an initial (virtual) temperature strain in an unconstrained homogeneous
specimen the volumetric stresses have to vanish (τ = 0). Exploiting Eq. (14) this means that the elastic strains
have to vanish (εe = 0) and thus Je = 1. Introducing the volume expansion ε0 we obtain from Eq. (12)

1 + ε0 := J = Jϑ = e3αT ϑ → αTϑ = 1

3
ln(1 + ε0). (16)
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Note, that for the numerical implementation of the volume expansion in the used constitutive law, seeSect. 4.3.1,
the two preceding equations play a central role. The modification of the principal strains due to the virtual
temperature follows Eq. 15, wherein the virtual temperature strains αTϑ are calculated by Eq. 16 with a
prescribed volume expansion ε0.

5.3.2 Locally distributed modification of ferritic yield law

As a result of the computation of initial volumetric strains in the martensite inclusions the distribution of
equivalent plastic strains αI V S(X) as a function of the position X in the microstructure is obtained. This
is assumed to be associated with the eigenstrain state as a result of the production process when austenite
transforms to martensite. We assume that these eigenstrains are correlated with the distribution of the hardness
measure observed in the nanoindentation tests. Therefore, a shifted yield curve of the ferrite matrix phase
is considered which is correlated with the distribution of the plastic eigenstrains αI V S(X). This shift can be
realized by increasing the material parameters y0 and y∞, i.e.,

y0(X) ⇐ γ (X) y0 and y∞(X) ⇐ γ (X) y∞, (17)

with the definition for the modification factor

γ (X) := 1 + γ
α̃I V S(X)

〈αI V S〉 . (18)

Herein, 〈αI V S〉 denotes the volumetric average of αI V S(X) over the RVE and γ is a parameter for the DP
steel that has to be determined by adjusting to experiments. In order to erase numerical singularities from
the hardening modification, which are caused by singular values in the stress approximation insecurities at
integration points, we introduce the expression

α̃I V S(X) :=
{ 〈αI V S〉 if αI V S(X) > 〈α(I V S)〉

αI V S(X) else. (19)

The modification of the hardening parameters y0 and y∞ is not only motivated by the existence of eigenstrain
states, but also by the existence of areas of increased dislocation density and carbon content. In the hardness
measurements shown in Fig. 14, the hardness close to the inclusions exceeds the hardness in the bulk by a
maximal factor of approximately 1.6. Therefore, the modification parameter γ should be maximally 1.6, too,
which leads to γ = 0.6.

It should be mentioned that no grain size depending correction effecting the yielding of the ferritic phase
according to Hall–Petch is explicitly considered in our approach. Finally, the internal modification parameter
can therefore be interpreted as a combination of both effects, the hardness distribution as well as the Hall–Petch
effect, that shifts the overall hardening curve of the DP steel.

5.3.3 Application of IVS to the SSMVEs

Now, we apply the previously described IVS approach to the volume-modified SSMVEs to assign a locally
distributed yielding in the ferrite phase around the martensite inclusions. For that we apply volumetric strains
as described in Sect. 5.3.1 to imply a volume expansion ε0 = 4%, which is associated with a virtual thermal
loading by αTϑ ≈ 0.01307, cf. Eq. (16). Based on these results the initial yield strength and the asymptotic
parameter are modified by the factor γ according to Eqs. (17) and (18). Note that motivated by the experimental
results of the nano-indentation, cf. Fig. 14, the modification factor γ is bounded above by 1.6. Afterward we
run the two uniaxial tensions tests in x- and z-direction, RD- and TD-direction, respectively, and compare the
results with the experiments provided by ThyssenKrupp Steel Europe.

In Fig. 15 the distribution of the equivalent plastic strains and the von-Mises stresses after the application
of the volumetric strains are shown. Due to the volumetric expansion of the martensite phase, the plasticized
regions in the ferrite phase are mainly located around the inclusions and the plastic strains decrease with an
increasing distance to the inclusions. Also between inclusions which are close together, a band with higher
plastic strains can be observed. The distribution of the von-Mises stresses shows another effect, which will be
taken into account considering the volume jump of the martensite phase. The increase in the volume results
also to a locally nonzero stress state in the microstructure, which can be interpreted as residual stresses arising
from the expansion of the martensite volume. These distributions of the equivalent plastic strains are used to
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Fig. 15 Application of the IVS approach to (1) the SSMVE 1 and (2) the SSMVE 2: a distribution of the equivalent plastic
strains α and b the von-Mises stresses at the full application of volumetric strains. The bright yellow hulls represent the volume
of the martensite inclusions. The green contours characterize the edge of the interface between both the phases in the visualized
cross sections. (Colour figure online)
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Fig. 16 Overall mechanical response, i.e., first Piola Kirchhofff stresses versus relative elongation, from uniaxial tension tests
of the considered DP steel, volume-modified SSMVEs without and with IVS application, respectively. a RD-direction (Px vs.
�lx/lx,0), b TD-direction (Pz vs. �lz/lz,0). The experimental curves are provided by ThyssenKrupp Steel Europe
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locally modify the ferrite yield curve. Then the computational uniaxial tension tests are performed in x- and
z-directions associated with the RD- and TD-direction.

In Fig. 16 the result of the virtual experiments after the application of IVS are compared to the experimental
results and the overall mechanical response of the SSMVEs without the application of IVS. The consideration
of the IVS and the resulting local modification of the ferrite yield curve show good results with respect to the
experimental data. Finally, the obtained SSMVEconsidering themartensite volume jump during the production
process represent more suitable RVEs for two-scale simulations of DP steel applications.

Remark: An alternative to obtain SSVEs which may indeed be considered as representative is to directly
combine statistical information from the Largescan and the Slicescan when defining the objective function E .
Then least-square functionals based on a Largescan e.g., standard basic scalar-valued descriptors, and least-
square functionals based on a Slicescan, e.g., considering spectral density and/or lineal-path function, are
reasonably weighted to directly obtain a SSVE, which incorporates statistical information obtained from
different measurement techniques.

6 Conclusions

In this paper the construction of representative microstructures was analyzed for the application in two-scale
simulations of DP steels. The basis was the measurement of the microstructural information by 3D EBSD/FIB
and 2D EBSD large area scans. It turned out that the martensite phase fraction of the three-dimensional
reconstructions were significantly lower (≈9%), as the ensemble average of multiple small 2D area scans
(≈14.4%). Also the computational two-scale simulations using the discretization of the three-dimensional
structures shared large deviations to the results of mechanical experiments with the real material. In order to
achieve an improved computational efficiency in two-scale simulations compared to “standard” RVEs, which
are mostly a partial volume of the real material, we concentrated on statistically similar volume elements
(SSVEs). First SSVEs were constructed for the raw three-dimensional reconstruction. Then the martensite
phase fraction in these SSVEs was adjusted to the reference value to obtain volume-modified SSMVEs.
Thereby an additional advantage of the SSVEs became clear: due to the parametrization of their morphology
by three ellipsoids only their radii had to be sufficiently increased to adjust for the increase volume fraction.
This is rather simple compared to the large effort which would be necessary for the real geometrically complex
structure. Numerical tests showed a slight improvement and still a large gap to the experimental results.
Consequently, some physical effects at the microscale were not already captured by the numerical model.
Nanoindentation tests revealed that the assumption of constant material properties in the ferritic matrix is
not valid. It turned out that the hardness increases exponentially when approaching the martensitic inclusion.
Possible reasons were assumed to be accumulations of dislocations and locally different carbon content due
to the production process, where a volume expansion of the inclusions is induced by phase transformation.
To capture these distributed properties, a volumetric expansion in the inclusions was taken into account. The
arising equivalent plastic strain distribution in the ferrite phase provided the basis for a locally distributed
modification of the ferritic yield curve. The numerical simulations considering the distributed yield behavior
in the ferrite phase due to this approach showed good accordance with the experimental results.
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