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Abstract. Magnesium–yttrium alloys show significantly improved room
temperature ductility when compared with pure Mg. We study this interesting
phenomenon theoretically at the atomic scale employing quantum-mechanical
(so-called ab initio) and atomistic modeling methods. Specifically, we have
calculated generalized stacking fault energies for five slip systems in both
elemental magnesium (Mg) and Mg–Y alloys using (i) density functional theory
and (ii) a set of embedded-atom-method (EAM) potentials. These calculations
predict that the addition of yttrium results in a reduction in the unstable stacking
fault energy of basal slip systems. Specifically in the case of an I2 stacking
fault, the predicted reduction of the stacking fault energy due to Y atoms was
verified by experimental measurements. We find a similar reduction for the stable
stacking fault energy of the {112̄2}〈112̄3〉 non-basal slip system. On the other
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hand, other energies along this particular γ -surface profile increase with the
addition of Y. In parallel to our quantum-mechanical calculations, we have also
developed a new EAM Mg–Y potential and thoroughly tested its performance.
The comparison of quantum-mechanical and atomistic results indicates that the
new potential is suitable for future large-scale atomistic simulations.

Contents

1. Introduction 2
2. Methodology 4

2.1. γ -surface simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Parameters of ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Development of Mg–Y embedded atom method potential . . . . . . . . . . . . 5

3. Results and discussion 6
3.1. Basal-plane generalized stacking fault calculations . . . . . . . . . . . . . . . 7
3.2. Non-basal plane generalized stacking fault energies . . . . . . . . . . . . . . . 13
3.3. Non-basal plane γ -surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. Conclusions 16
Acknowledgments 17
References 17

1. Introduction

Magnesium alloys are promising candidate materials for lightweight industrial applications
[1, 2]. Unfortunately, a wider use of magnesium and many Mg-based alloys is impeded by their
poor room-temperature ductility, which is caused by basal-type texturing and limited available
deformation mechanisms. It is known [3] that addition of Y and/or rare-earth elements increases
the ductility by texture weakening and higher activity of non-basal slip systems. Specifically,
shear deformations with a component along the 〈0001〉 axis, including twinning and 〈c + a〉

slip systems, were shown (e.g. in [4]) to determine the mechanical behavior of hcp metals
(figure 1). The limitation to mainly basal 〈a〉 slip and tensile twinning in pure Mg and most
commercial wrought Mg alloys causes strain localization in a few shear bands and early fracture
of the materials along these shear bands. It has been shown experimentally [5] that alloying
Y leads to higher activation of non-basal deformation modes, i.e. non-basal dislocation slip
and compression twinning, and consequently to much enhanced ductility at room temperature.
Nucleation and mobility energies of dislocations, both perfect and dissociated dislocations,
are related to the stable and unstable stacking fault energies which are available via atomistic
calculations.

Different slip mechanisms in Mg have been intensively studied both experimentally [5–8]
and theoretically [4, 9–11]. Theoretical studies generally focused on calculating so-called
generalized stacking fault energy (GSFE) profiles obtained by sliding one half of a crystal over
the second half across a given glide plane. As shown by Vitek [12], these energy profiles are
closely connected with the motion of dislocations and the plasticity of materials in general.
GSFEs of important planes along different slip directions were calculated employing both
density functional theory (DFT) and the embedded atom method (EAM) for pure Mg [13–17].
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Figure 1. Schematic drawing showing possible slip systems in hcp metals.
Specifically the (0001)[01–10] is considered here for studying the I2 stacking
fault.

It was shown, for example, that maxima occurring along GSFE profiles, so-called unstable
stacking fault energies (USFEs), determine the behavior of slip modes and thus the ductility
in fcc metals [18].

Our study is motivated by the fact that rather little is known about GSFEs in Mg–Y alloys,
especially in the case of non-basal deformation modes (see e.g. table 1). Therefore, we study
and compare the influence of Y additions on the behavior of both basal and non-basal slip
systems. Our aim was to provide results that will contribute to the understanding of enhanced
room temperature ductility of Mg–Y alloys [5] and to the design of ductile Mg-based materials
in the future.

Due to the fact that it is experimentally very difficult to obtain a deeper insight into various
mechanisms that are simultaneously active in Mg alloys at atomic scale, we employ theoretical
methods as these allow for decomposing this complexity into individual processes and studying
them separately. Unfortunately, even theoretical modeling is limited by available computer
resources, especially in the case of state-of-the-art quantum-mechanical calculations. The
predictive power and reliability of these calculations can nowadays be applied only to problems
involving a few hundreds of atoms. As processes related to the plasticity of materials typically
span over much larger scales, methods based on inter-atomic potentials are often used instead.
For these simulations, well-tested and reliable potentials are necessary. Therefore, we have not
only employed quantum-mechanical calculations but, in a complementary manner, we have
also developed a new Mg–Y EAM potential. We first carefully validated our potential and only
after this then used it to simulate processes involving so many atoms that quantum-mechanical
calculations would be prohibitively long. In order to verify our theoretical predictions, an
experimental TEM analysis of the I2 stacking fault was performed and confirmed our theoretical
findings.
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Table 1. Independent deformation modes in hcp crystals.

Slip systems Direction Plane Independent deformation modes

{0001}〈112̄0〉 〈a〉 Basal 2
{101̄0}〈112̄0〉 〈a〉 Prismatic 2
{101̄l}〈112̄0〉 〈a〉 Pyramidal 4
{hki0}〈0001〉 〈c〉 Prismatic –
{hkil}〈112̄3〉 〈a + c〉 Pyramidal 5

Table 2. Different stoichiometries with corresponding supercell sizes and slip
systems in EAM calculations.

Slip systems Supercell size No. of atoms

{0001}〈112̄0〉 2 × 2 × 6 48
{101̄0}〈112̄0〉 2 × 2 × 7 56
{0001}〈101̄0〉 4 × 4 × 6 192
{101̄1}〈112̄0〉 4 × 4 × 3 192
{112̄2}〈112̄3〉 12 × 6 × 2 1728

2. Methodology

2.1. γ -surface simulations

Employing theoretical methods, slip deformation modes can be studied by calculating
generalized stacking fault energies, known as γ -surfaces [12]. Key properties of slip
deformation modes such as the Peierls barrier as well as stacking fault energies can be deduced
from the γ -surfaces. We determine the generalized stacking fault energies by incrementally
shifting the upper half crystal along the slip direction and calculating the total energy of the
system as a function of the applied shift vector. In order to facilitate the consideration of a
single stacking fault, and so allow us to reduce the required system dimensions, we added the
applied shift vector to the lattice vector along the glide plane normal (in our case the glide plane
normal is denoted as the z-direction). For the minimization after each incremental shift, atomic
positions are constrained along the lateral dimensions of the glide plane, but atoms can reduce
the total energy of the system by relaxing in the direction perpendicular to the studied glide
plane.

In order to eliminate any spurious interactions between the interface (i.e. the glide plane)
and its periodic images, the supercell size must be sufficiently large. We therefore converged
the GSFE with respect to the number of atomic planes parallel to the fault plane. For example,
in order to determine an optimum number of atomic planes for the {0001}〈112̄0〉 slip system,
supercells with 2, 4, 6, 8 and 12 layers along the 〈112̄0〉 direction, the z-direction (parallel to the
plane normal), were used to calculate GSFEs. The GSFE difference between 6-layer (2 × 2 × 6,
24 atoms) and 12-layer (2 × 2 × 12, 48 atoms) supercells is less than 1%. Therefore, supercells
with more than six layers are considered large enough. In our case, a 48-atom supercell was
employed to obtain a realistically low Y concentration. Converged supercell sizes of all the
other slip systems considered were determined similarly (see table 2). In calculations of Mg–Y
alloys, one Mg atom is replaced by a Y atom on the first plane (with the smallest value of the
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Table 3. DFT-computed lattice parameters for pure Mg and Mg–Y alloys with
different stoichiometries with corresponding supercell sizes and slip systems.

Stoichiometry a (Å) c/a Supercell size Atom no. Slip systems

Mg 3.1886 1.6261 2 × 2 × 2 16 All slip systems
Mg55Y 3.2004 1.6253 2 × 2 × 14 56 {101̄0}〈112̄0〉

Mg47Y 3.2064 1.6215 2 × 2 × 12 48 {0001}〈112̄0〉, {0001}〈101̄0〉,
{101̄1}〈112̄0〉, {112̄2}〈112̄3〉

z-axis in the coordinate system). Therefore, in Mg55Y the concentration of Y is 1.82 at.% and
2.08 at.% for Mg47Y in all the other considered slip systems.

In the case of the γ -surface for the {112̄2} plane, two perpendicular vectors (1
3 [112̄3] and

[101̄0]) are selected on the plane. All displacements in the slip plane can be obtained by a
combination of these two vectors. Suppose x and y are fractional displacements along the two
directions; the GSF vector Ef may be written as Ef = x 1

3 [112̄3] + y [101̄0], where 06 x 6 1 and
06 y 6 1. More details about the calculation of the γ -surface can be found in [19].

2.2. Parameters of ab initio calculations

In our work, we calculate GSFE profiles using both DFT [20, 21] and the EAM [22] (using
the LAMMPS [23] package.). Our DFT calculations were carried out using the projector
augmented wave method [39] and the electronic exchange–correlation effects were described by
the generalized gradient approximation [40] as implemented in the Vienna Ab initio Simulation
Package (VASP) [41, 42]. A plane wave energy cut-off of 350 eV is used for both pure Mg
and the Mg–Y alloys. The Brillouin zone was sampled using dense Monkhorst–Pack [43]
k-point meshes that were chosen to ensure a convergence of the total energy to within 1 meV
per atom. Atomic relaxations were performed until the energy and forces converged to 10−7 eV
and 10−3 eV Å−1, respectively. To test our computational parameters, we have calculated the
lattice parameters of pure Mg. The results, a = 3.1886 Å and c/a = 1.6261 (table 3), are in
good agreement with experimental data suggesting a = 3.21 Å and c/a = 1.624 [44].

2.3. Development of Mg–Y embedded atom method potential

Empirical potentials provide a means of exploring the physics of systems of atoms on length-
and time-scales currently inaccessible to more computationally expensive ab initio techniques.
Such potentials seek to approximate the energy of a system of atoms, and the forces between
those atoms, as a classical function of the relative positions of the atoms treated as point
particles. The key attributes of such potentials are: (i) the level of physics they aim to capture,
i.e. whether they are simple pair potentials or attempt to capture many-atom effects and whether
they are functions only of atomic separations or also of bond angles; (ii) the nature of the
functions used in the fitted potential, which is to say, the extent to which those functions
have a (perhaps physically motivated) prescribed form versus being, say, piecewise spline
fitted; and (iii) the data to which those functions are fitted, which may be energies and elastic
properties from experiment and ab initio calculations or individual atomic forces from ab initio
calculations for a set of atomic configurations. The key issue for empirical potentials, especially
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when they are to be used to explore systems beyond the reach of ab initio, is their transferability:
it is one thing to correctly reproduce the properties to which a potential is fitted and quite another
to provide accurate predictions of ‘unseen’ data. As no existing potential (e.g. [45]) has been
developed specifically for GSFE calculations, we provide a new one.

In this study, an EAM interatomic potential was developed to describe the Mg–Y system,
which has the following formalism [22, 24]: Etot = 6i, jφ(ri j) + 6i F(ni), where n = 6 jρ(ri j)

and φ(r), ρ(r) and F(ni) are the pair, density and embedding functions. In this work, the three
functions φ(r), ρ(r) and F(ni) are represented with quintic spine interpolations [25]. We used
15 equidistant spline knots for both the pair and the density functions (in the fitting range of
0.5–6.5 Å), and 6 spline knots for the embedding function. For the Mg–Y binary system, a total
number of 83 parameters was fitted.

The EAM potential was developed based on the force-matching method [25, 26] as
implemented in the POTFIT package [27]. To this end, a first-principles database was first
established to provide a coarse-grained potential energy surface (PES) of the Mg–Y system.
The database was constructed to encompass a wide range of atomic configurations, including
all crystalline phases in this alloy system, as well as their derivative structures such as defects,
crystal equations of state, deformation paths, melting and cooling trajectories, etc. In addition
to six crystal structures of Mg and Y (i.e. hcp, bcc, fcc, 9R, diamond and sc structures), three
crystallographic types of Mg–Y intermetallic compounds [28] are considered in this work,
including Mg24Y5 (I 4̄3m), Mg2Y (P63/mmc) and MgY (Pm3m).

Ab initio molecular dynamics (MD) simulation [29] was conducted to obtain liquid struc-
tures as well as their trajectories along the heating and cooling processes. Altogether, around
700 configurations (with each configuration typically containing 100 atoms) were selected and
subjected to DFT calculations using the pseudopotential and plane-wave method implemented
in the VASP [41, 42]. The derived PES (the potential energy and stress tensors of each
configuration, forces on each atom and elastic constants of two reference structures) was further
modified to match the experimental values of the lattice parameter and cohesive energy of Mg
and Y, and was then utilized to parameterize the EAM potential for the Mg–Y system. A similar
practice can be found in [25]. During potential fitting, ad hoc EAM potentials were employed in
classical MD to probe deeper potential basins on the PES, with new configurations added to the
previously built potential database for a new round of EAM parameterization. Several iterations
were performed until self-consistency between ab initio and EAM calculations was reached.

To demonstrate the overall performance of the as-developed EAM potential, we compare
the present EAM model with previous models for Mg and Y in terms of the accuracy of
predicting a set of material properties, as shown in tables 4 and 5. The performance of the
EAM potential for Mg–Y alloys can be seen from figure 2, where the equations of state of the
crystalline phases derived from the EAM model and the ab initio treatment are provided.
The cohesive energies of the intermetallic compounds, with tabulated lattice parameters,
are listed in table 6 for comparison. The general agreement between EAM and ab
initio calculations is satisfactory. The as-developed EAM potential is available from
https://sites.google.com/site/eampotentials/Home/MgY.

3. Results and discussion

Our quantum-mechanical and atomistic calculations of GSFE profiles include five slip systems
for both pure Mg and Mg–Y. Specifically, we consider the three 〈a〉-type slip systems
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Table 4. Physical properties of Mg predicted by the present EAM model and
other EAM models. Ec is the cohesive energy, E f

ν is the relaxed vacancy
formation energy, Em

ν is the migration energy of the vacancy.

Experiment/theory Present model Suna Liub

a (Å) 3.21c 3.21 (300 K) 3.206 3.206
c/a ratio 1.623c 1.610 1.623 1.623
Ec (eV atom−1) 1.510d 1.510 1.516 1.516
C11 (GPa) 59.5e 59.5 69.6 61.8
C12 (GPa) 26.1e 25.7 25.3 25.9
C13 (GPa) 21.8e 20.9 16 21.9
C33 (GPa) 61.6e 62.7 69.5 67.5
C44 (GPa) 16.4e 15.8 12.8 18.2
E f

ν (eV) 0.59 ≈ 0.89b 0.62 0.88 0.87
Em

ν (eV) 0.39b 0.47 0.64
Esurface (mJ m−2) 680f 480g 495
Efcc−hcp (eV) 0.011b, 0.007h 0.006 0.012 0.015
Ebcc−hcp (eV) 0.028b 0.024 0.014 0.018
Tm (K) (hcp) 923i 850

a Sun et al [30].
b Liu et al [31].
c Barrett and Massalski [34].
d Kittel [35].
e Simons and Wang [36].
f de Boer [37]
g Average of basal plane and prism plane surface energies.
h First-principles results as a part of this work.
i Campbell [38].

({0001}〈112̄0〉, {101̄0}〈112̄0〉 and {101̄1}〈112̄0〉), and the second pyramidal slip system ({112̄2}

〈112̄3〉), which contributes to shear deformation out of the basal plane, as well as the
{0001}〈101̄0〉 slip system, which is related to the intrinsic stacking fault I2 (I2 SF). The I2

stacking fault is formed when the [0001]-vector is altered by addition of 1
3〈101̄0〉. If we assign

letters A, B and C to three possible stacking configurations of (0001) planes (in analogy to
the stacking order of (111) planes in face-centered cubic lattices), the normal alternating hcp-
stacking (. . . ABABABAB . . . ) is locally changed to an (. . . ABABCACA . . . ) stacking. Thus
the influence of Y on the energetics of the I2 stacking fault can be studied by GSFE calculations.
This part of our study represents a continuation of our previous experimental and theoretical
study on the intrinsic stacking fault, I1 (see [46] for details).

3.1. Basal-plane generalized stacking fault calculations

3.1.1. Basal-plane slip systems. The computed GSFEs of {0001} along 〈112̄0〉 are plotted as
a function of the shift vector for pure Mg and the Mg–Y alloy in figure 3. The USFEs based
on DFT calculations for pure Mg and the Mg–Y alloy (Mg47Y, 2.08 at.% Y) are 0.276 and
0.214 J m−2, respectively. The USFEs are thus predicted to be reduced by 22.5% due to the
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Table 5. Physical properties of Y predicted by the present EAM model and other
EAM models. Ec is the cohesive energy, E f

ν is the relaxed vacancy formation
energy, Em

ν is the migration energy of the vacancy.

Experiment/theory Present model Hua Baskesb

a (Å) 3.65c 3.65 (300 K) 3.65 3.65
c/a ratio 1.57c 1.57 1.57 1.57
Ec (eV atom−1) 4.37d 4.37 4.37
C11 (GPa) 77.9e 78.3
C12 (GPa) 28.5e 26.8
C13 (GPa) 21.0e 21.9
C33 (GPa) 76.9e 77.2
C44 (GPa) 24.3e 21.7
E f

ν (eV) 1.50f 1.70 1.22 1.25
Em

ν (eV) 0.66 0.59
Esurface (mJ m−2) 1125g 830 868 625
Efcc−hcp (eV) −0.03
Ebcc−hcp (eV) 0.022g 0.020
Tm (K) (hcp) 1796h 1810

a Hu et al [32].
b Baskes and Johnson [33].
c Barrett and Massalski [34].
d Kittel [35].
e Simons and Wang [36].
f Boer et al [37].
g First-principles results as a part of this work.
h Campbell [38].

Figure 2. Comparison of ab initio and EAM calculations of the cohesive energies
of Mg–Y alloys at different volumes.
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Table 6. Cohesive energies of Mg–Y intermetallic compounds predicted by EAM
and ab initio calculations. The lattice parameters are taken from [28].

Compound Lattice Cohesive energy Cohesive energy
parameter ab initio (eV atom−1) EAM (eV atom−1)

MgY (Pm3m) a = 3.790 Å 3.06 3.05
Mg2Y (P63/mmc) a = 6.037 Å 2.55 2.64

c = 752 Å
Mg24Y5 (I 4̄3m) a = 3.790 Å 2.05 2.07

Figure 3. GSFE profiles calculated for Mg and Mg–Y alloys as a function of
crystal displacement along the 〈112̄0〉 direction in the basal plane. The total
displacement (corresponding to 1.0 at the horizontal axis in the figure) is the
respective lattice parameter a of either elemental Mg or the Mg47Y alloy. The
unstable stacking fault corresponds to the displacement of 0.5a.

addition of Y. This finding is in agreement with previous DFT results [13] (0.288 J m−2 in Mg is
reduced to 0.248 J m−2 in Mg–Y alloys). When studying the same GSFE employing atomistic
EAM potentials, the trend is qualitatively the same but the reduction (from 0.233 J m−2 in Mg
to 0.190 J m−2 in Mg47Y) is slightly smaller, 18.5%. The GSFE curves obtained by DFT and
EAM calculations are similar with variations in the USFE ranging between 12% and 15% for
Mg and the Mg–Y alloy. We can therefore conclude that both methods consistently predict the
GSFE barriers to be reduced upon Y additions.

3.1.2. Prismatic {101̄0}〈112̄0〉 slip system. The GSFE curves of the prismatic 〈a〉 slip system
{101̄0}〈112̄0〉 for pure Mg and the Mg–Y alloy (Mg55Y, 1.82 at.% Y) are shown in figure 4. In
the four GSFE curves, there is only one global maximum corresponding to the unstable stacking
fault energy (USFE) of the studied slip system. Based on our DFT calculations, the USFE is
44% lower in the Mg–Y alloy (0.128 J m−2) than in pure Mg (0.231 J m−2). The latter value
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 Mg56-DFT
 Mg55Y-DFT

Figure 4. Same as in figure 3 but for the 〈112̄0〉 direction in the prismatic plane.
The total displacement is equal to the corresponding lattice parameter a of either
pure Mg or Mg–Y alloy (Mg55Y).

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.09

0.18

0.27

0.36
{10-11}<11-20> 
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J/

m
2 )

 Mg192-EAM
 Mg188Y4-EAM
 Mg48-DFT
 Mg47Y-DFT

Figure 5. Same as in figures 3 and 4 but along the 〈112̄0〉 direction in the
pyramidal plane.

for elemental Mg is in good agreement with previous DFT studies for pure Mg that reported
0.218 J m−2 [16] and 0.225 J m−2 [17]. The corresponding EAM results are qualitatively very
similar but the predicted reduction is lower. Therefore, despite the fact that the actual energy
barriers obtained by DFT and EAM calculations differ, the changes induced by Y alloying are
qualitatively very similar and thus independent of our selected computational method.

3.1.3. Pyramidal {101̄1}〈112̄0〉 slip system. The GSFE results computed for the {101̄1}〈112̄0〉

pyramidal slip system are visualized in figure 5. The GSFE curves of the Mg–Y alloy
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Figure 6. Same as in figures 3–5 but along the 〈101̄0〉 direction in the basal
plane. The total displacement is

√
3

3 a, with a being the lattice parameter of either
pure Mg or Mg–Y alloy (Mg47Y). The stable stacking fault energy and that of
the unstable one correspond to displacements 1

3a and 2
3a, respectively.

calculated by DFT and EAM methods match very well. As in the case of the {0001}〈112̄0〉

and {101̄0}〈112̄0〉 slip systems, the GSFEs predicted for pure Mg differ slightly. However,
irrespective of the computational method used, GSFE values are lower in Mg–Y than those
determined for pure Mg. Hence the DFT-calculated USFEs in Mg–Y alloys are reduced by 9%
(from 0.343 J m−2 calculated for pure Mg). The corresponding EAM values indicate a reduction
by 4% (from 0.323 J m−2 in pure Mg). The DFT-based USFE of pure Mg is in very good
agreement with previous DFT results [14, 17].

3.1.4. The {0001}〈101̄0〉 slip system. The computed GSFE curves for the {0001}〈101̄0〉 slip
system of pure Mg and Mg47Y (2.08 at.%) are plotted as a function of the applied shift vector
in figure 6. The four curves show similar characteristics, e.g. a local minimum corresponding to
the displacement of ≈

1
3 and a global maximum at a shift of about 2

3 of the perfect lattice vector.
The local minimum corresponds to the local stacking configuration (. . . ABABCACACA . . . ),
which is the I2 SFE. The I2 SFEs in pure Mg and Mg47Y calculated by DFT are 0.037 and
0.030 J m−2, respectively, and so they exhibit a reduction by 0.007 J m−2 due to the Y atoms.
The EAM values differ slightly but are qualitatively similar, with an I2 SFE of 0.017 J m−2 (in
pure Mg) being reduced by 0.009 to 0.008 J m−2 (in the Mg47Y alloy).

The global maximum of these GSFE curves corresponds to the stacking fault
(. . . ABABABBCBCBC . . . ), which is characterized by the on-top position of the two atomic
planes across the fault plane. The energy of this configuration in Mg and the Mg–Y alloy
was found to be 0.475 and 0.445 J m−2, respectively, using DFT. The EAM calculated energies
of these maxima are 0.444 and 0.413 J m−2, respectively, closely matching the corresponding
Y-induced reduction in the USF energy predicted by DFT. Here we can conclude that
irrespective of the material system (Mg or Mg–Y alloys), the GSFEs calculated by the EAM are
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Figure 7. Weak-beam dark field TEM micrographs of an I2 stacking fault
under different two-beam conditions. From the visibility of the bounding partial
dislocations under the different diffraction conditions, their Burgers vectors were
determined: b = 1/3 [ 101̄0] and b = 1/3 [ 011̄0].

apparently lower than those obtained using DFT. However, the trend of a Y-induced reduction
in the GSFE is the same. The DFT-calculated energies of local GSFE maxima and minima (I2

SFE) are in quantitative agreement with previous results [13, 16, 17].
In order to verify this theoretical prediction that Y additions lower the I2 stacking fault,

an experimental TEM study has been performed (for details related to TEM measurements, see
our previous paper [5]). These TEM observations on slightly pre-deformed (1.5%) pure Mg
and Mg–3Y (wt.%) were performed to measure the I2 SFE. In pure Mg no I2 stacking faults
were observed, which indicates a relatively high stacking fault energy, i.e. a low probability
to form these stacking faults or a dissociation width that is too small to be measured using
conventional TEM. In Mg–3Y, frequent formation of the I2 stacking fault was observed allowing
the measurement of the I2 SFE, figure 7. Here, the Burgers vectors (b) of the bounding partial
dislocations of the stacking faults were determined according to the g · b invisibility criterion,
figure 7. Both bounding partial dislocations are invisible under g = (0002), only one is visible
under g = (12̄10) and both are visible under g = (1̄010), (011̄1), (1̄101) and (112̄2̄), figure 7.
Therefore, it is concluded that one partial dislocation has the Burgers vector b = 1/3 [101̄0] and
the other has the Burgers vector b = 1/3 [011̄0] building an I2 stacking fault according to the
dissociation reaction: 1/3 [111̄0] → 1/3 [101̄0] + 1/3 [ 011̄0]. The corresponding stacking fault
energies are calculated based on the dissociation width of the partial dislocations according to
equation

γ =
Gb2

8πd

2 − ν

1 − ν

(
1 −

2ν

2 − ν
cos 2β

)
.

Here, γ is the stacking fault energy, G the shear modulus, ν the Poisson’s ratio, b the
Burgers vector of the partials, β the angle between the partials and d the splitting width of the
partials. Consequently, the I2 stacking fault energy of Mg–Y amounts to 1.5 ± 0.5 mJ m−2 with
an average dissociation width of about 20–30 nm.
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Figure 8. GSFE profiles calculated for the elemental Mg and Mg alloys as a
function of the shifted displacement along the 〈112̄3〉 direction in the non-basal
plane {112̄2}. The total displacement is the length of the Burgers vector 1

3〈112̄3〉.
The stable stacking fault energies, local unstable ones and global unstable ones
correspond to crystal displacements of about 0.4, 0.25 and 0.7 calculated by DFT,
and about 0.3, 0.22 and 0.7, respectively, by EAM.

3.2. Non-basal plane generalized stacking fault energies

As the {112̄2}〈112̄3〉 slip system is an important non-basal slip system, its GSFE was also
studied. The GSFE profiles of the slip system are calculated for pure Mg and Mg47Y (2.08 at.%)
using both DFT and EAM calculations (see figure 8). The GSFE curves share similar shapes,
with two maxima (one local and one global) and a local minimum along the shift vector. The
local minimum corresponds to a stable stacking fault energy. The stable stacking fault energy
predicted for Mg47Y by DFT (0.293 J m−2) is lower than that in pure Mg (0.318 J m−2). The
EAM results suggest a smaller reduction in the stable SFE of only 0.008 J m−2 by the addition
of Y. The energy difference corresponding to this reduction in the stable SFE is, however, very
small and, in fact, quite close to the error bar of our EAM calculations.

The maximum of the GSFE (USFE) calculated by both DFT and EAM is higher in Mg47Y
than in pure Mg. The DFT results are again very close to previous DFT results [14]. Both DFT
and EAM data clearly indicate that the computed energies for Mg and Mg–Y crystals reverse
their mutual order with increasing displacement (see figure 8). Specifically, the generalized
stacking fault energies are first nearly equal for both Mg and Mg47Y for displacements
lower than 0.2, then Y additions result in a clear lowering of stacking fault energies up to a
displacement when GSFE curves of Mg and Mg47Y systems cross and the energies are beyond
this point in the system containing the Y atoms. The displacement corresponding to the crossing
point is ≈ 0.48 and 0.37 in the case of DFT and EAM results, respectively.

With regard to the local minima and maxima individual, the corresponding fractional
displacements are not exactly equal when calculated by DFT and EAM methods.
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Table 7. DFT- and EAM-calculated values of stable stacking fault energies S,
unstable stacking fault energies U , and their ratio, for pure Mg and Mg–Y alloys
for the five selected slip systems. Unstable stacking fault energy U1 is the local
maximum of the γ -surface, and U2 is the global maximum.

Supercell DFT EAM
S U1 U2 S/U1 S U1 U2 S/U1

1-Mg – 0.276, 0.288a – – – 0.233 – –
1-Mg–Y – 0.214, 0.248a – – – 0.190 – –
2-Mg 0.037, 0.036a, 0.091, 0.092a, 0.475 0.41, 0.39a, 0.017, 0.072, 0.444 0.24,

0.034b, 0.039c > 0.092b, 0.101c < 0.37b, 0.39c 0.044b 0.082b 0.54b

2-Mg–Y 0.030, 0.025a 0.083, 0.071a 0.445 0.36, 0.35a 0.008 0.061 0.413 0.13
3-Mg – 0.231, 0.473a, – – – 0.266, – –

0.218b, ∼ 0.225c 0.170b

3-Mg–Y – 0.128, 0.558a – – – 0.124 – –
4-Mg – 0.343, 0.310d – – – 0.323, – –

∼ 0.340c 0.226d

4-Mg–Y – 0.312 – – – 0.311 – –
5-Mg 0.298, 0.318, 0.559, 0.94, 0.270, 0.276, 0.602, 0.98,

0.236d 0.243d 0.485d 0.97d 0.198d 0.206d 0.505d 0.96d

5-Mg–Y 0.278 0.293 0.582 0.95 0.265 0.268 0.644 0.989

The energies in the table are in J m−2. The numbers before the names of material systems denote different slip
systems. 1—{0001}〈112̄0〉, 2—{0001}〈11̄00〉, 3—{101̄0}〈112̄0〉, 4—{101̄1}〈112̄0〉, 5—{112̄2}〈112̄3〉. The EAM
data from [16] are the results of Sun EAM. The data taken from [17] are the results of KSDFT/LDA/TM-NLPS.
a Muzyk et al [13].
b Yasi et al [16].
c Shin et al [17].
d Nogaret et al [14].

The DFT-calculated shallow minima (0.020 J m−2 for Mg and 0.015 J m−2 for Mg47Y) indicate
a dissociation of the perfect 1

3〈112̄3〉 dislocation family into partial dislocations according to the
following reaction:

1

3
〈112̄3〉 = λ

1

3
〈112̄3〉 + (1 − λ)

1

3
〈112̄3〉 (λ ' 0.4), (1)

where λ is a constant coefficient for the dissociation reaction. For λ = 0.4, the rows of atoms
in the adjacent two gliding planes seem to be more regular than in any other case (see [19],
figure 7, 0.6〈c + a〉).

A dissociation of perfect 〈c + a〉 dislocations was also found by other authors, but with
different λ values. In [14], based on DFT and EAM (Liu potential), values of λ = 0.33 and
0.25, respectively, were found for pure Mg. In [19], a λ value of 0.5 was reported using an
EAM potential taking in-plane relaxations of the atoms into account. The different λ values
are due to the different calculation methods and the specific conditions. Lower SFE and USFE
values indicate a tendency toward deformation mechanisms including partial dislocations when
compared with pure Mg.

Despite a few discrepancies between DFT and EAM results, it can be concluded that,
from a qualitative point of view, the EAM gives a rather accurate description of the GSFE in the
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Figure 9. Projection of the {112̄2} plane γ -surface with 0.040 J m−2 isolines
for the newly developed EAM potential. The 1

3〈112̄3〉 Burgers vector and the
minimum energy path are the same (line in red color). S1, S2 and S3 indicate
the three stable stacking faults, and U1, U2, U3 and U4 the unstable stacking
faults. The generalized stacking fault energies of U1, U2 and S1 are U1, U2

and stable stacking faults calculated using EAM potentials in table 7. For U3,
U4, S2 and S3, the corresponding GSF energies are (a) 1.218, 1.033, 0.889 and
0.807 J m−2 and (b) 1.226, 1.075, 0.930 and 0.888 J m−2.

{112̄2}〈112̄3〉 glide system. In particular, the trend that alloying Y in Mg reduces stable stacking
fault energies is correctly captured. Further details related to the {112̄2}〈112̄3〉 stable stacking
faults will be described in the next subsection.

The calculated results obtained for the five studied slip systems are summarized in table 7
together with published data. The maxima along the GSFE profiles corresponding to the three
basal slip systems indicate that the highest unstable stacking fault energy is expected for
1
3〈112̄0〉 dislocations on the pyramidal plane and the lowest on the prismatic plane. The ratios
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between the stable and unstable stacking fault energies are calculated for the {0001}〈101̄0〉 and
{112̄2}〈112̄3〉 slip systems. The actual results are listed in table 7. Moreover, table 7 reveals that
the ratio between the stable and unstable stacking fault energies decreases in the {0001}〈101̄0〉

slip system upon alloying with Y, further supporting the conclusion that Y alloying lowers the
SFE. For the {112̄2}〈112̄3〉 slip system there is a more complex change of the positions and
ratio of the stable and unstable stacking fault energies, and so the influence of Y atoms is more
complex and a topic for future study.

3.3. Non-basal plane γ -surfaces

In order to deepen our understanding of 〈112̄3〉 non-basal slip processes and stable staking faults
on the {112̄2} plane, the GSFEs in pure Mg and Mg–Y alloys were calculated employing our
newly developed EAM potentials (see figure 9). There is no significant difference between the
γ -surfaces for pure Mg and Mg–Y. In both figures 9(a) and (b), the lowest-energy slip path is a
line section along y = 0, which is exactly the Burgers vector 1

3〈112̄3〉.
Another path connects two maxima (marked as U1 and U2) and one minimum (marked S1)

without consideration of the point where x = 0 and y = 0. This can be seen in figure 8. There
are also another two minima (S2 and S3) in the γ surface, but their energies are both much
higher than that of S1. So the S1 minimum is the most stable stacking fault on the {112̄2} plane.
The calculation of the γ -surface for pure Mg was performed in [19] (see figure 4 in [19]), and
quantitatively agrees with our results. Along [101̄0], there exists a curved minimum path across
the S3 point. The fact that the energy at the S3 point is even higher than that calculated for U2
shows that this minimum path is not energetically favorable.

4. Conclusions

Using DFT and newly developed EAM potentials, we present GSFE profiles for five selected
slip systems in both pure Mg and Mg–Y alloys. The results of the three 〈a〉 slip systems show
that the USFEs decrease upon Y additions in Mg. From the slip system {0001}〈101̄0〉 the I2

SFE values for pure Mg and Mg–Y are obtained, and the I2 SFE of Mg–Y alloy is again lower
than that computed for pure Mg. Importantly, the generalized stacking fault energies associated
with displacement along the 〈112̄3〉 direction in the non-basal plane {112̄2} are initially lower
but with increasing displacement become higher than those of Mg. This is in contrast to the
basal slip systems, for which the Mg–Y energies are consistently lower than for Mg. Lastly,
after careful testing of our newly developed EAM Mg–Y potential, the generalized stacking
fault energies for all glide systems within the {112̄2} plane are calculated using this potential
and the GSFE profiles are visualized as a two-dimensional γ -surface. Our theoretical study has
been complemented by an experimental TEM analysis that confirmed our theoretical prediction
that the I2 stacking fault energy is reduced due to Y additions.

To summarize, as a complement to previous experimental studies, we use theoretical
methods to decompose the complex interplay of various mechanisms acting in Mg alloys in
order to study some of them individually. Focusing solely on a few selected slip systems, we
conclude that the impact of Y additions on generalized stacking fault energies is rather complex.
On the one hand, the Y atoms reduce both stable and unstable stacking fault energies in the
case of studied 〈a〉 slip systems. On the other hand, this influence may not be generalized to
all slip systems as we predict also an increase of energies due to Y additions for most of the
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displacements along the 〈112̄3〉 direction in the non-basal plane {112̄2} and a shift in position
of stable SF. Due to the fact that previous studies of fcc materials linked the stable and unstable
stacking fault energies with the mobility and activity of dislocations, we speculate that our
findings can have similar consequences in the case of Mg alloys. As a verification of this
speculation will necessarily require further theoretical studies addressing the full complexity
of these materials, we have also developed and carefully tested a new EAM potential. The
comparison of first-principles and EAM results indicates that our EAM potential may be suitable
for future larger-scale atomistic simulations.
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