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Concepts for Integrating Plastic
Anisotropy intoMetal Forming
Simulations
ByDierk Raabe,* Peter Klose, Bernhard Engl,Klaus-Peter Imlau, Frank Friedel, and
Franz Roters

1. Introduction

The advance of modern well-tailored and optimized

materials nowadays provides a huge and steadily-growing

application spectrum to customers of formed products. Well

established examples are the introduction of high-strength

multi-phase steels or 6xxx series aluminum alloys for the

automotive industry. The high demands with respect to

mechanical properties and surface appearance faced by these

materials in the course of metal forming increasingly requires

adequate quantitative characterization measures to build a

bridge between producers and product designers.

Modern approaches for conducting simulations of plastic

deformation are usually based on solving large sets of differ-

ential equations associated with a well posed forming prob-

lem by use of non-linear finite element methods. Primary

objectives of such simulations are the prediction of the mate-

rial shape after forming, in particular the thickness distribu-

tion; the minimization of material failure in conjunction with

the optimization of material flow during forming; and the cal-
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Modern metal forming and crash simulations are usually based on the finite element method. Aims of
such simulations are typically the prediction of the material shape, failure, and mechanical properties
during deformation. Further goals lie in the computer assisted lay-out of manufacturing tools used for
intricate processing steps. Any such simulation requires that the material under investigation is speci-
fied in terms of its respective constitutive behavior. Modern finite element simulations typically use
three sets of material input data, covering hardening, forming limits, and anisotropy. The current
article is about the latter aspect. It reviews different empirical and physically based concepts for the
integration of the elastic-plastic anisotropy into metal forming finite element simulations. Particular
pronunciation is placed on the discussion of the crystallographic anisotropy of polycrystalline material
rather than on aspects associated with topological or morphological microstructure anisotropy. The
reviewed anisotropy concepts are empirical yield surface approximations, yield surface formulations
based on crystallographic homogenization theory, combinations of finite element and homogenization
approaches, the crystal plasticity finite element method, and the recently introduced texture component
crystal plasticity finite element method. The paper presents the basic physical approaches behind the
different methods and discusses engineering aspects such as scalability, flexibility, and texture update
in the course of a forming simulation.
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the formed sample. Further related essential

applications are in the fields of optimizing

tool designs, predicting pressing forces, and

simulating the final surface appearance of

the part. The latter aspect involves both,

macroscopic (e.g., wrinkling) as well as

microstructural (e.g., ridging, orange peel)

mechanisms for changes in surface quality

during forming.

Rendering continuum-type metal forming

simulations scientifically sound, predictive

at the microstructure scale, in good accord

with experiment, and at the same time eco-

nomically rewarding requires that the

involved materials are properly specified in

terms of their respective constitutive behav-

ior. For this purpose modern finite element

simulations typically employ three sets of

material input data, covering hardening,

forming limits, and anisotropy (Fig. 1). The

current article deals with the latter aspect. It

reviews both, empirical and physically based

concepts for the integration of the elastic-plastic anisotropy

into metal forming finite element simulations. Particular pro-

nunciation is placed on the discussion of the crystallographic

anisotropy of polycrystalline material rather than on aspects

associated with topological or morphological microstructure

anisotropy. The various anisotropy concepts which will be

reviewed in the following are empirical yield surface approxi-

mations, yield surface formulations based on crystallographic

homogenization theory, combinations of finite element and

homogenization approaches, the crystal plasticity finite ele-

ment method, and the recently introduced texture component

crystal plasticity finite element method.

By providing a survey on the advantages and disadvan-

tages of the various anisotropy concepts the article takes an

effort to present both, the present state of the art in the indus-

trial practice as well as advanced approaches which allow the

user to include more of the physics associated with crystalline

anisotropy. The present state in anisotropy engineering is

naturally different between industrial applications and basic

science. The use of empirical or semi-empirical polynomials

for yield surface approximations is the standard procedure in

the industrial practice whereas the various crystal plasticity

finite element methods gradually become a standard in the

basic materials sciences. The importance of empirical ap-

proaches in the industrial practice is due to the fact that they

provide short computation times, allow for simple mechani-

cal input data, and are flexible with respect to additional fit

points obtained by texture information. An important weak-

ness of empirical approaches lies in the absence of texture up-

date. The prevalence of the crystal plasticity finite element

method in basic research is due to its physical basis and the

incorporation of texture changes. The major drawback of the

crystal plasticity approaches are the long calculation times

which presently exceed those obtained by use of the yield

surface by a factor of 50±100. An improvement in speed of the

crystal plasticity methods is attained by the recent introduc-

tion of the texture component crystal plasticity finite element

method which exceeds the computation times of yield surface

calculations only by a factor of 15±25.

The paper has the following plan: First, we give a brief in-

troduction to the physical origin of elastic-plastic crystallo-

graphic anisotropy. Second, we present the basic approaches

behind the different anisotropy concepts and discuss aspects

such as scalability, flexibility, and texture update in the

course of forming simulation.

2. From Scalar to Tensorial Materials Engineering

The yield surface represents the generalization of the yield

point from uniaxial tensile testing to general stress states.

Expanding the yield point into a closed yield surface is only

required if the material under inspection shows elastic-plastic

anisotropy, i.e., if it deforms differently in different direc-

tions. However, such behavior is the rule and not the excep-

tion in real materials. Polycrystals with random and thus qua-

si-isotropic behavior do practically not occur in sheet metal

forming operations. Strong crystalline anisotropy is typically

encountered in many engineering materials such as alloys

based on iron, aluminum, copper, magnesium and titanium.

The physical nature of elastic-plastic anisotropy in metals

is the crystalline arrangement of the atoms. Metallic matter

usually occurs in polycrystalline form where each grain has a

different crystallographic orientation, shape and volume frac-
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Fig. 1. Modern finite element approaches which aim at simulating realistic metal forming operations typically
require three sets of material input data, namely, the strain hardening curve, a forming limit diagram, and
information about the crystallographic (and morphological) anisotropy. The article focuses on concepts for inte-
grating elastic-plastic anisotropy.
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tion. The distribution of the orientations in a polycrystalline

aggregate is referred to as crystallographic texture. The aniso-

tropy of the elastic tensor and the discrete nature of crystallo-

graphic slip along densely packed lattice directions on pre-

ferred crystal planes also entails a highly anisotropic integral

response of such polycrystalline specimens during mechani-

cal loading. While the elastic-plastic deformation of a single

crystal and bicrystals as a function of their orientation can

nowadays be well predicted, plasticity of polycrystalline mat-

ter is less well understood. This is essentially due to the intri-

cate elastic-plastic interactions occurring during co-deforma-

tion among the highly anisotropic individual crystals. This

interaction leads to strong heterogeneity in terms of strain,

stress, and crystal orientation. Another difficulty in tackling

the anisotropy of polycrystalline matter lies in the fact that

the crystals rotate during forming, owing to the skew sym-

metric portion of the displacement gradients created by crys-

tal slip. This means that texture and anisotropy gradually

change during forming, even under constant strain path con-

ditions. In this context it must be underlined that crystallo-

graphic orientation changes are principally non-reversible

owing to the orientation sensitivity of strain path changes

and the orientation dependence of strain hardening (Not only

the beginning of plastic yield but also further strain harden-

ing is a tensorial, i.e., highly anisotropic orientation depen-

dent problem.) This means that - even in the case of very

simple strain paths - mechanics and texture should wherever

possible be integrated into the simulation concept due to the

strong non-linearity of the problem. Artificial separation of

the two aspects (continuum mechanics, crystal plasticity

mechanics) may entail severe misinterpretations, particularly

in the case of strain path changes.

These various aspects which show the complexity of tex-

ture and anisotropy and their evolution during forming un-

derline that for an engineering purpose one major aim of

polycrystal research must lie in identifying adequate mea-

sures for mapping crystallographic anisotropy into classical

mathematical methods for predicting large strain plastic

deformation. The second even more challenging aim lies in

developing methods for predicting also the change of crystal

anisotropy during forming on a sound physical basis.

3. The Physical Origin of Crystalline Elastic-Plastic
Anisotropy

3.1. Elastic Anisotropy

The elastic anisotropy of crystalline matter departs from

the directionality of the electronic bond and the resulting

crystal lattice structure. For small deviations of the atoms

from their equilibrium positions the reversible elastic re-

sponse to loads can be approximated by a linear relationship

which is referred to as Hooke�s law. In this framework the lin-

ear elastic constants can be derived as the components of the

second derivative of the electronic potential. The elastic

constants can be written in the form of a fourth-rank elastic

stiffness tensor Cijkl or in the form of a fourth-rank elastic

compliance tensor Sijkl According to

  
(1)

Symmetry relations and thermodynamic considerations

reduce the 81 elastic constants to a set of 3 independent num-

bers (C1111, C1122, C2323) (Corresponding to (C11, C12, C44) in

reduced matrix notation)in the case of cubic crystal symmetry

(e.g., Al, Fe, Cu) and to a set of five independent numbers

(C1111, C1122, C1133, C3333, C2323) (Corresponding to (C11, C12,

C13, C33, C44) in reduced matrix notation) in the case of hexag-

onal crystal symmetry (e.g., Ti, Mg, Zn). The deviation from

elastic isotropy can for cubic crystals be quantified by the so

called Zener anisotropy ratio

(2)

While aluminum has a relatively low elastic anisotropy

with A = 1.215, iron has a larger Zener ratio of A = 2.346. Of

all cubic metals tungsten has the lowest deviation from iso-

tropy with a Zener ratio of A » 1 and lithium the largest with

A = 9.34.

3.2. Plastic Anisotropy

The plastic anisotropy of crystalline matter also departs

from the directionality of the electronic bond and the result-

ing crystal lattice structure. Both aspects determine which slip

planes and which translation vectors (Burgers vectors) serve

for the motion of lattice dislocations or the activation of plas-

tically relevant athermal transformations. The main conse-

quence of this anisotropy in the present context is that metals

are deformed in a discrete rather than in a continuum fashion

rendering plasticity an intrinsically anisotropic property of

metals. Assuming that the normalized Burgers vectors bj and

the normalized slip plane normals ni of the s different slip

systems available in a particular crystal lattice are known,

their orientation factors mij can be readily formulated as dya-

dic products according to

(3)

with its symmetric portion being

(4)

when given in crystal coordinates. One must note that all slip

vectors used in the equations are normalized. Transforming

the latter equation into the sample coordinate system (Fig. 2)

leads to

( )siki

s

jlj

s

jlj

s

iki

s

kl banabanam +=
2

1,sym
(sample coordinates) (5)
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where aki and alj are the transformation matrices between the

crystal coordinate system and the sample coordinate system.

Using these s different orientation factors msym,s
kl of the s

different available slip systems for the transformation of an

external load into the slip geometry provides a simple kine-

matic formulation for the yield surface of a single crystal.

active,

,crit

,sym

active,

,crit

,sym

s

kl

s

kl

s

kl

s

kl

m

m

-

+

=

=

ts

ts
(6)

for the active slip systems, and

sym , , nonact ive

crit,

sym , , nonact ive

crit,

s s

k l k l

s s

k l k l

m

m

s t

s t

+

-

<

<
(7)

for the non-active slip systems (Fig. 3). One must note that the

Einstein summation rule applies in all equations in case not

stated otherwise. While the slip dyads of cubic systems typi-

cally contain <111> and <110> vectors (fcc, bcc) as well as

<111> and <112> vectors (bcc), hexagonal materials deform

by slip on basal, prismatic, and pyramidal systems depend-

ing on their cell aspect ratio.

Most points on the single crystal yield surface describe sin-

gle-slip conditions. In the graphical representation of the

yield surface single-slip generally takes place when the stress

tensor (in vector transformation notation, using the tensor-

vector transformation rule see Equation 8)

(8)

points at a hyperplane rather than a hyperconus (Fig. 4). Note

that the cubes placed in Figure 4 indicate the changing orien-

tation of the external reference system, i.e., of the stress state.

Polyslip conditions, as usually required for polycrystal defor-

mation owing to the satisfaction of strain rate compatibility

among the grains, are characterized by hyperconus coordi-

nates of the stress state (Fig. 5). The conus positions for the

stress can be calculated using a conventional homogenization

approach, for instance Taylor-Bishop-Hill theory (indicated

by d
TBH in Figure 5). The corresponding multislip positions of

the stress tensor, satisfying an externally imposed strain rate,

are then denoted as Taylor positions. It must be noted in this

context that the Taylor factor generally takes the form of a

stress shape tensor for the crystal yield surface rather than

that of a factor owing to its dependence on the strain rate ten-

sor. Its magnitude for a given strain rate determines the kine-

matic size of the yield surface in the corresponding stress

direction characterizing the correct polyslip hyperconus and

thus the kinematic portion of the corresponding stress state.

The symbols Ds=1 and Ds=2 in Figure 5 indicate the single slip

strain states from slip systems 1 and 2. Using these two slip

172 ADVANCED ENGINEERINGMATERIALS 2002, 4, No. 4

Fig. 2. The plastic anisotropy of crystalline matter departs from the directionality of the
electronic bond and the resulting crystal lattice structure. Both aspects determine the
slip planes and translation vectors (Burgers vectors) on which lattice dislocations move
during plastic deformation. The diagram shows the different coordinate system and the
resulting geometrical transformation operations one has to consider in this context.

Fig. 3. A simple Schmid-type formulation considering the different orientation factors
of all available slip systems which essentially transforms an external load into shear
stresses acting on the slip systems provides a kinematic formulation for the yield sur-
face of a single crystal. The yield surface shown in the upper figure (a) was derived
using the 12 {110}<111> slip systems. The yield surface shown in the lower figure (b)
was derived using the 12 {110}<111>, 12 {112}<111>, and 24 {123}<111> slip systems
(body centered cubic). The figure indicates that body centered cubic alloys therefore be-
have plastically principally different from face centered cubic alloys.
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systems allows one to realize any strain rate state in the re-

spective conus by a linear combination of Ds=1 and Ds=2. For

cubic crystals the yield surface reveals 4 classes of Taylor

states for polyslip and one for single slip. These yield states

are referred to as

5

4

3

penta slip state (5 active slip systems) : (fcc, bcc (reduced): 56)

tet ra slip (4 act ive slip systems): (fcc, bcc (reduced): 108)

t r i slip (3 act ive slip systems): (fcc, bcc (

i

pq

j

pq

k

pq

M i =

M j =

M

2

2

reduced): 135)

bi slip (2 act ive slip systems): (fcc, bcc (reduced): 66)

single slip (1 act ive slip system): (fcc, bcc (reduced): 24)

l

pq

n

pq

k=

M l =

M n =

(9)

where fcc denotes face centered cubic and bcc denotes body cen-

tered cubic crystal structure. The term reduced indicates that

only the first 12 {111}<110> bcc slip systems have been con-

sidered here. The number at the end of each row gives the

number of different conus cases (and single slip cases) for the

respective Taylor state. The total Taylor stress state for a poly-

crystalline aggregate can for a given external strain rate state

then be integrated as a volume weighted sum of all Taylor

tensors derived separately for each grain for this boundary

condition (Fig. 6).

4. Empirical Approximations of the Yield Surface

The first empirical mathematical description of an aniso-

tropic plastic yield surface was suggested in 1928 by von

Mises in the form of a quadratic function.[1] This approach

which was originally designed to empirically approximate

the plastic anisotropy of single crystals was in 1948 rendered

by Hill[2] into a generalized form using the Huber-Mises-

Hencky approach (Fig. 7a). In Hill�s form the yield surface

amounts to

(( ) ( ) ( )

)

2 2 2

22 33 33 11 11 22

1
2 2 2 2

23 13 12

( )

2 2 2

ijf F G H

L M N

s s s s s s s

s s s

= - + - + -

+ + +

(10)

where F, G, H, L, M, and N are the anisotropy coefficients.

The above equation can be rewritten as

( ) ( ) ( )

)

2 2 2

11 22 33

11 22

1

2

2 2 2

11 33 22 33 23

13 12

( )

2 2 2 2

2 2

ijf S G H S F H S F G S

H S S G S S F S S L S

M S N S

= + + + + +

- - - +

+ +

(11)

where Sij are the deviatoric stress components. The shape

coefficients of Hill's quadratic yield function can be fitted

from experimentally obtained mechanical data such as the
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Fig. 4. Most points on the single crystal yield surface describe single-slip conditions. In
the graphical representation of the yield surface single-slip generally takes place when
the stress state (here given in vector notation) points at a hyperplane rather than a
hyperconus. The strain rate tensor is indicated by D and m is the Schmid factor, i.e.,
the dyadic product of the slip elements. The small cubes placed in the figure indicate the
changing relative orientation between the external reference system and the crystal
coordinate system.

Fig. 5. Polycrystal deformation requires polyslip conditions in order to satisfy strain
rate compatibility among the grains. Polyslip states are crystallographically charac-
terized by hyperconus coordinates of the stress state. The conus positions for the
stress can be calculated using a conventional homogenization approach, for instance
Taylor-Bishop-Hill theory (indicated by dTBH). The symbols Ds=1 and Ds=2 indicate
the single slip strain states from slip systems 1 and 2. Using these two slip systems
allows one to realize any strain rate state in the respective conus by a linear combi-
nation of Ds=1 and Ds=2.

Fig. 6. The Taylor stress state for a polycrystalline aggregate can for a given external
strain rate state be integrated as a volume weighted sum of all Taylor factors derived
separately for each grain for the respective boundary condition. In this figure M is the
Taylor tensor, D the strain rate and w the volume fraction. The counter k sums over all
crystals in the aggregate.
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Lankfort values taken in different directions of a specimen.

Scaling can be provided by the yield stress obtained from uni-

axial tensile testing. While the Lankfort coefficients and the

yield stress can be determined from tensile testing, the direct

measurement of mechanical response under complex loads is

an intricate task. Although Hill-based anisotropy simulations

(referring to the Hill 1948 model) provide decent approxima-

tions at least of the initial plastic anisotropy in case of certain

iron textures and a number of textures in interstitial free

steels, they typically fail to predict the yield shape of high

strength steels, austenitic steels, most aluminum alloys, cop-

per, or hexagonal materials. Typical examples where the Hill

1948 yield criterion is not applicable are cup drawing opera-

tions of aluminum or copper crystals with six-fold slip sym-

metry, i.e., with a crystal {111} plane parallel to the sheet sur-

face (see paper by Roters and Zhao in this volume). In this

case six slip systems have identical Schmid factor relative to

the surface which cannot be modeled by the Hill polynomial

owing to its quadratic form.

Due to this principle shortcoming a number of optimized

empirical anisotropic yield surface concepts with higher or-

der polynomial forms have been proposed in the last dec-

ades, such as those introduced later by Hill[3] and by Barlat[4]

which are better suited for face centered cubic alloys and

many body centered cubic steels. In the last years various

authors have presented improved empirical yield surface ap-

proaches where the yield function can be fitted using both

mechanically obtained and even texture-based data.

The chief advantage of using an empirical anisotropic

yield surface function as a constitutive law in metal forming

finite element simulations is time efficiency and the simple

mechanical methods with which it can be derived. The domi-

nant disadvantage of empirical yield surface functions is that

the anisotropy of polycrystalline matter generally changes

during forming owing to the change of texture. This evolu-

tion of anisotropy is not mapped by a corresponding change

of the shape of the yield surface. In other words, the same

yield surface shape is used throughout one finite element

simulation without making a physically meaningful update

of its steadily changing shape. Although empirical constitu-

tive laws can be used to gradually change the yield surface

shape during forming, their capability is typically constrained

by a lack of physical information about the actual develop-

ment of the crystallographic texture during forming.

5. Crystallographic Approximations of Elastic-
Plastic Anisotropy

5.1. Crystallographic Approximations of Elastic Anisotropy

Derived by Homogenization Theory

A typical problem in the field of anisotropy engineering

is the approximation of the integral elastic response of a

polycrystalline sample under an external load. Although

various aspects can principally contribute to the anisotropy

of the overall elastic stiffness we concentrate in the follow-

ing on the influence of the crystallographic texture. The

macroscopic elastic properties of a textured polycrystal can

be calculated by formulating appropriate volume-weighted

means of the individual elastic single crystal tensor, rotated

parallel to the respective local coordinate system of each in-

dividual crystal. This average value of the integral elastic

tensor must therefore take into account all individual orien-

tations of the grains which are described by the orientation

distribution function.

An early homogenization approach for the elastic re-

sponse under an external load was suggested by Voigt, who

assumed that in the case of a macroscopically prescribed

strain rate state each material portion is in the same strain

rate state as the entire sample, irrespective of its spatial

position in the specimen. The strain rate would then be

homogeneous throughout the sample. However, in a poly-

crystalline sample, the elastic response typically varies from

grain to grain, due to the spatially changing crystal orienta-

tion. Since in the Voigt model the prescribed strain rate is

the same everywhere in the sample, the stress must vary.

The Voigt limit for the elastic response of a polycrystalline

sample can thus be calculated by weighting the tensor of

the elastic stiffness as a function of orientation with the ori-

entation distribution function. A different approach to treat-

ing the homogenization problem in an elastically loaded

polycrystalline sample was suggested by Reuss. He sug-

gested that in the case of a macroscopically prescribed stress

state each material portion is in the same stress state irre-

spective of its spatial position in the specimen. The stress

would then be homogeneous throughout the specimen. The

elastic response may then vary from grain to grain, in

accord with the local orientation of the crystal. Since in the

Reuss model the prescribed external stress is constant

throughout the specimen, the strain must vary according to

the local grain orientation. Consequently, the elastic Reuss

limit can be calculated for a polycrystal by weighting the

tensor of the elastic compliance as a function of orientation

174 ADVANCED ENGINEERINGMATERIALS 2002, 4, No. 4

Fig. 7. Schematical presentation of an empirical (a) and of a texture-based (b) yield sur-
face approach. It must be noted though that the actual incorporation of a crystallo-
graphic yield surface also requires a functional form.
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with the orientation distribution function. Since neither the

Voigt nor the Reuss method provides reliable approxima-

tions to the elastic modulus of a polycrystal, Hill defined an

average modulus which consists of the equally weighted

results of both above models.

5.2. Crystallographic Approximations of the Yield Surface

Derived by Homogenization Theory

Polycrystalline alloys subject to metal forming operations

typically develop or inherit morphological textures (e.g.,

elongated grains, chemical segregation, or second phases

with elongated topology entailing directional effects) as well

as crystallographic textures (orientation distribution of the

crystallites constituting polycrystalline matter). While the for-

mer are often less relevant in typical commercial sheet materi-

al, the latter strongly determine the overall anisotropy. In the

following we will hence concentrate on texture effects on

yield anisotropy. Orientation distributions can directly serve

as input data for the calculation of the crystallographically

determined portion of the yield surface shape using Taylor-

Bishop-Hill or self-consistent type approaches (Figs. 3, 7b).

This applies for a single crystal yield surface as well as for the

homogenization bounds of the polycrystal yield surface

(Fig. 8). The major spirit and advantage of the crystallo-

graphic yield surface over empirical concepts consists in the

fact that it reduces the individual anisotropic behavior of

large sets of individual grains comprising a polycrystalline

aggregate (104-1010 grains for a typical large scale forming

operation) to a simple crystallographic homogenized shape

function. It is thus an ideal example of a scale-bridging simu-

lation approach which reduces the tremendous complexity

inherent in real microstructures (Fig. 9) to a simple anisotrop-

ic function (Fig. 10).

Details about deriving the yield surface from the crystallo-

graphic texture of polycrystals are given in [5±11]. The required

experimental input textures can be determined using x-ray,

neutron, or electron diffraction experiments. Since texture-

based yield surface approximations use the complete crystal-

lographic anisotropy information of a specimen they are often

superior to empirical approaches which rely on a small set of

mechanical parameters. However, modern empirical ap-

proaches for the approximation of the yield surface typically

use Taylor-Bishop-Hill type crystal simulations on the basis

of experimental texture data to provide tangents for a better

fit of the yield surface functions. Figure 11 shows the aniso-

tropic effect of some isolated texture components in body

centered cubic steels. The {111}<112> and the {111}<110> tex-

ture components each reveal a six-fold symmetry of the shape

change with respect to the sheet surface, due to the symmetry

of the active Burgers vectors and slip planes. In case that a

complete fiber texture exists with a crystal <111> axis parallel

to the sheet surface common to all orientations in that sample

a very high r-value and a vanishing Dr-value are the conse-

quence. A texture component which is very detrimental to

the overall planar anisotropy for instance in ferritic steels is

the cube orientation rotated 45� about the normal direction,

{001}<110>. This texture component is often inherited from

ferritic hot rolling steps and further sharpened during subse-

quent cold rolling of many low-carbon steels, most transfor-

mer steels, nearly all ferritic stainless steels, and all body cen-

tered cubic refractory metals such as molybdenum, tantalum,

or niobium. Simulations of this kind would be essential for

methods of inverse anisotropy engineering, where one first

ADVANCED ENGINEERINGMATERIALS 2002, 4, No. 4 175

Fig. 8. Some examples of yield functions for different materials calculated by use of the
homogenization bounds for their respective polycrystal yield surface. Figure (a) shows
yield surface sections for aluminum, steel, and brass. Figure (b) shows yield surface sec-
tions for steel using different slip system combinations.

Fig. 9. Real microstructures (here an IF steel) reveal
a tremendous complexity not only of the global but
also of the local textures. This example shows that the
incorporation of textures into finite element formula-
tions requires adequate homogenisation approaches.
The upper diagram shows a color scale which indi-
cates the crystal axis parallel to sheet normal direc-
tion. The lower graph shows the crystal axis parallel
to sheet rolling direction.
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identifies those texture components which are most beneficial

for a given forming operation (this is not always necessarily a

texture which creates a maximum r-value) and subsequently

develops processing methods to generate this particular

desired texture.

Besides its clear physical basis another advantage of crys-

tallographic yield surface approximations lies in its capability

to incorporate both, kinematical and kinetic plasticity effects.

In this context it must be considered that the crystallographic

texture only gives the respective anisotropic shape function

for a particular polycrystalline sample, but the texture depen-

dence of the internal stress and the individual hardness of the

different grains are typically ignored by the constitutive laws

employed in homogenisation approaches. However, it is

principally feasible to generalize the crystallographic yield

surface concept by enriching it with the individual strength

of each grain. This leads to a formulation of the following

kind

( ) ( )cr it

cr it

1

1
( ) , d

w
N

k k k

ij ij ij ij

ij

k

V

f S M D D V

M

V
t

t

=

=

» å

ò g, g

(12)

where f(Sij) is the yield surface, V the sample volume, Mij the

Taylor shape function obtained by homogenization theory as

a function of strain rate Dij and rotation matrix g, scrit the flow

stress of each individual grain, and w the volume fraction of

each grain. An example where kinetic information about the

local texture-dependent hardness of the various grains has

been used to approximate a yield surface is given in Fig-

ure 12.[12] The left diagram shows a portion of the planar

yield surface as it anisotropically shrinks during partial

recrystallization. The right hand side of Figure 12 shows

three subsequent time steps of a coupled crystal plasticity

FEM - cellular automaton simulation where the upper picture

gives the texture in terms of the magnitude of the Rodriguez

vector and the lower picture the strength in terms of the dis-

location density (black areas are recrystallized). The data

from this discrete simulation served as input to the kine-

matic-kinetic yield surface model.

Although texture-based yield surface approximations have

a crisp physical basis in that they incorporate crystal anisotro-

py in a genuine fashion, they have the shortcoming of ignor-

ing texture changes during forming. This means that ± as far

as texture update during forming is concerned ± there is basi-

cally little difference between the predictive capabilities of

empirical and texture-based yield surface approximations,

particularly if one considers that recent approaches use both,

mechanical and texture-related information to fit the yield

function. These methods could be referred to as hybrid aniso-

tropy yield criteria or semi-empirical yield criteria.
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Fig. 10. The overview diagram shows the basic spirit of reducing microstructure com-
plexity into a compact but at the same time physically based crystallographic yield for-
mulation for including anisotropic behavior in metal forming simulations.

Fig. 11. Anisotropy of some isolated texture components in body centered cubic matter.
The {111}<112> and the {111}<110> texture components each reveal a six-fold symme-
try of the shape change with respect to the sheet surface, due to the symmetry of the
active Burgers vectors and slip planes. In case of a complete <111> texture fiber with
respect to the sheet surface a very high r-value and a vanishing Dr-value is the conse-
quence. A very detrimental texture component is the cube orientation rotated 45� about
the normal axis, {001}<110>.
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6. Integration of Continuumand Crystal Plasticity
HomogenizationModels

Recent methods for the approximation of plastic aniso-

tropy aim at combining Taylor-based texture homogeniza-

tion models with isotropic non-linear finite element simu-

lations.[13,14] In this approach the deformation tensor after

each strain increment is used to prescribe the boundary

conditions for a corresponding Taylor simulation using a

full constraints or coupled full constraints/grain interac-

tion strain rate homogenization model. Each of the finite

elements contains its representative crystallographic tex-

ture information in the form of a discrete set of grain or-

ientations. The Taylor factor calculated from homogeniza-

tion is fed back into the finite element simulation as a

correction factor for the flow stress in the ensuing simula-

tion step.

The particular strength of this method lies in the realistic

simulation of texture changes under complex boundary

conditions. With respect to large scale engineering applica-

tions a shortcoming of the approach lies in the fact that a

large number of discrete orientations is required for a mathe-

matically correct representation of the texture. This entails

long computation times when simulating metal forming

operations with complete texture update.

7. Crystal Plasticity Finite Element Simulation

A direct integration of crystal plasticity phenomena into

non-linear variational formulations was first suggested by

Peirce, Needlemann and Asaro.[15,16] Based on these ap-

proaches implicit integration schemes which were for in-

stance developed by Becker[17] and Kalidindi[18] are de-

signed in a way which allows one to directly implement

them in the form of user-defined subroutines into commer-

cial finite element software packages. The current ap-

proaches in this domain provide a direct means for updat-

ing the local crystallographic and hardening state of the

material via integration of the evolution equations for the

crystal lattice orientation and the critical resolved shear

stress. The deformation behavior of the crystal volume ele-

ments are at each integration point governed by a crystal

plasticity model which accounts for discrete plastic defor-

mation by crystallographic slip and for the rotation of the

crystal lattice during deformation (Fig. 13). The crystal

plasticity finite element models typically use space and

time as independent variables and the crystal orientation

and the accumulated slip as dependent variable.

In the large-strain constitutive crystal model modified

for the present work one assumes the stress response at

each macroscopic continuum material point to be poten-
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Fig. 12. Coupled crystallographic-kinetic yield functions obtained by including both the texture and the texture dependent flow stress of
each individual grain weighted by it respective volume [12]. The left hand side of the diagram shows a portion of the planar yield surface
as it anisotropically shrinks during partial recrystallization. The right hand side shows three subsequent time steps of a coupled crystal
plasticity FEM - cellular automaton simulation where the upper picture gives the texture in terms of the magnitude of the Rodriguez
vector and the lower picture the strength in terms of the dislocation density.
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tially given by one crystal or by a volume-averaged re-

sponse of a set of grains comprising the respective material

point. In case of a multi-grain description the volume aver-

aged stress amounts to

( )å
=

=
N

k

kw
1

kTT (13)

where N is the number of grains at each integration point, wk

the volume fraction of each crystal, and Tk the Cauchy stress

in the kth crystal. The constitutive equation for the stress in

each grain is then expressed in terms of

=T* CE * (14)

where C is the fourth order elastic tensor and E* an elastic

strain measure obtained by polar decomposition,

(1

2
= T

E* F * F * -1 (15)

which leads to a stress measure which is the elastic work con-

jugate to the strain measure E*,

( ) -det T= -1
T* F * F * T F * (16)

where T is the symmetric Cauchy stress tensor in the grain,

and F* is a local elastic deformation gradient defined in terms

of the local total deformation gradient F and the local plastic

deformation gradient Fp. The relation between the elastic and

the plastic portion of F amounts to

1p p, det ( ) 0, det ( ) 1
-

= > =F* F F F* F (17)

The plastic deformation gradient is given by the flow rule

p p p=
.
F L F
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with its crystalline portion
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where mk are the k dyadic slip products introduced above, ck
the shear rates on these systems, and sk,crit the actual critical

shear stress on the kth system. For room temperature simula-

tions of aluminum plastic deformation is commonly assumed

to occur on the 12 slip systems with á110ñ slip directions and

{111} slip planes, i.e., the slip vectors bi = 1= ��

2
p �110� and

ni =
1= ��

3
p �111� are orthonormal. For room temperature simu-

lations of iron plastic deformation can be assumed to occur

on 12 b
i
= 1= ��

3
p �111�, ni =

1= ��

2
p �110� systems, 12 bi =

1= ��

3
p �111�,

ni =
1= ��

6
p �112�; systems, and 24 bi =

1= ��

3
p �111�, ni =

1= ����

14
p �123�

systems.

For many simulations in this field, the strengths of all slip

systems at a material point are taken to be equal, i.e., one

adopts the Taylor hardening assumption. The hardening as a

function of total slip can be assumed to follow experimentally

observed or theoretically achieved macroscopic strain hard-

ening behavior obtained from a uniaxial or biaxial test by fit-

ting the experimental data to a standard scalar constitutive

equation. The fit can be adjusted by the average Taylor factor

of the sample and its change during deformation to give the

slip system threshold stress as a function of the accumulated

shear. Most of the results presented in this work have been

achieved by accounting for latent hardening through the use

of an appropriate hardening matrix.

Crystal plasticity finite element models represent elegant

tools for detailed joint simulation studies of texture evolution

and strain distribution under realistic boundary conditions

(Fig. 14). Each integration point can represent one single ori-

entation or map even a larger set of crystals. Although the lat-

ter case is principally feasible, it entails long calculation times,

rendering the method less practicable for industry-scale ap-

plications.
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Fig. 13. Schematical presentation of a crystal plasticity finite element formulation for
considering and predicting texture-based plastic anisotropy on a grain-for-grain scale.

Fig. 14. Example where a grain-for-grain crystal plasticity finite element model was
applied for a joint simulation study of texture and strain under realistic boundary
conditions. The example shows the deformation of an aluminum bicrystal. The upper
diagram shows the shape change of the two grains and the experimentally determined
microtexture. The mid section shows the von Mises strain distribution and the micro-
texture predicted by a corresponding crystal plasticity finite element simulation. The
lower graph gives the experimentally determined strain distribution.
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8. Integrating Texture Components into the Crystal
Plasticity Finite ElementMethod

A novel physically based and highly time efficient ap-

proach for including and updating texture-based elastic-plas-

tic anisotropy during large-strain metal forming operations

lies in the integration of crystallographic texture components

into the crystal plasticity finite element method.[19,20] The ap-

proach is particularly designed for industrial use since it can

be assembled by integrating existing software solutions from

crystallography and variational mathematics. The approach

is based on directly feeding spherical crystallographic texture

components into a non-linear finite element model (Fig 15).

The method is used for performing fast simulations of indus-

try-scale metal forming operations of textured polycrystalline

materials including texture update. Instead of yield surface

concepts or large sets of discrete grain orientations it uses a

small set of discrete and mathematically compact Gaussian

texture components to map the orientation distribution dis-

cretely onto the integration points of a viscoplastic crystal

plasticity finite element model. This method drastically en-

hances the computing speed and precision compared to pre-

vious large scale - large strain crystal plasticity finite element

approaches.

The texture component method used for this approach is

based on the introduction of symmetrical spherical Gauss or

Bessel-Gauss functions for the approximation of the orienta-

tion distribution.[21,22] This method provides a small set of

compact texture components which are characterized by sim-

ple parameters of physical significance (three Euler angles,

full width at half maximum, volume fraction). Using this

method, only a few texture components are required for map-

ping the complete texture in a mathematical precise form. As

starting data one can use both, statistical textures taken from

neutron and x-ray measurements or microtextures deter-

mined via electron diffraction in the SEM or TEM (Fig. 15).

The advantages of this novel approach are at hand. First, one

can simulate metal forming operations with complete consid-

eration of elastic-plastic anisotropy and gradual local texture

update at the same time (Fig. 16). Second, one can within rea-

sonable computation times quantitatively investigate the tex-

ture changes that take place during metal forming (Fig. 17).

This information can help to better select which anisotropy

concept is appropriate for the different kinds of metal form-

ing boundary conditions and materials. For instance, in cases

where only small texture changes take place it can be useful -

due to simulation speed - to use one of the conventional yield

surface concepts which neglect texture update.

9.Quintessence

The article presented different empirical and physically

based concepts for the integration of the elastic-plastic aniso-

tropy of polycrystalline matter into both, small scale and

large scale metal forming finite element simulations. The re-

viewed anisotropy concepts were empirical yield surface ap-

proximations, texture-based yield surface formulations based

on crystallographic homogenization theory, combinations of

finite element and texture-based polycrystal homogenization

approaches, the crystal plasticity finite element method, and

the recently introduced texture component crystal plasticity

finite element method. The article presented the basic physi-

cal approaches behind the different methods and reviewed
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Fig. 15. Schematical presentation of a new physically based and time efficient approach for including and updating texture-based elas-
tic-plastic anisotropy during large-strain metal forming operations [19,20]. The method integrates crystallographic texture components
into the crystal plasticity finite element method and is hence referred to as texture component crystal plasticity finite element method
(TCCP-FEM). It can make use of both, microtextures or statistical texture information.



Raabe et al./Concepts for Integrating Plastic Anisotropy into Metal Forming Simulations

R
E
V
I
E
W

S

various engineering aspects such as scalability, flexibility,

and texture update in the course of a forming or crash simula-

tion. The present state of the art in anisotropy engineering is

naturally different between the day-to-day industry practice

and basic science. The use of empirical or semi-empirical

higher-order polynomial approximations of the yield surface

is a quasi standard operation with respect to industrial appli-

cations whereas the various crystal plasticity finite element

methods increasingly gain prevalence as a quasi standard in

the basic materials sciences. The dominance of empirical ap-

proaches in the industrial practice is due to the fact that they

provide short computation times, allow for simple mechani-

cal input data, and are flexible with respect to additional fit

points obtained by texture information. The major drawback

of empirical approaches is the absence of texture and aniso-

tropy update. The dominance of the crystal plasticity finite

element method in the basic sciences is due to its sound phys-

ical basis and the complete incorporation of texture and an-

isotropy update. The major disadvantage of these approaches

are the long calculation times which presently exceed those

obtained by use of the yield surface roughly by a factor of

50±100. An improvement in speed of the crystal plasticity for-

mulations is attained by the recent introduction of the texture

component crystal plasticity finite element method which dif-

fers from the speed of yield surface calculations only by a fac-

tor of 15±25.
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Fig. 16. Example of an isotropic and an anisotropic compression test simulation.

Fig. 17. The texture component crystal plasticity finite element method allows one to
quantitatively investigate within reasonable calculation times the texture changes that
take place during metal forming. This information is important to select which aniso-
tropy concept is appropriate for the different kinds of metal forming boundary condi-
tions and materials. For instance, in cases where only small texture changes take place
it can be useful - due to simulation speed - to use one of the conventional yield surface
concepts which neglect texture update.
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