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a b s t r a c t

We present a virtual laboratory to investigate the anisotropic yield behavior of poly-

crystalline materials by using high resolution crystal plasticity simulations. Employing a

fast spectral method solver enables us to conduct a large number of full-field virtual ex-

periments with different stress states to accurately identify the yield surface of the probed

materials. Based on the simulated yield stress points, the parameters for many commonly

used yield functions are acquired simultaneously with a nonlinear least square fitting

procedure. Exemplarily, the parameters of four yield functions frequently used in sheet

metal forming, namely Yld91, Yld2000-2D, Yld2004-18p, and Yld2004-27p are adjusted to

accurately describe the yield behavior of an AA3014 aluminum alloy at two material states,

namely with a recrystallization texture and a cold rolling texture. The comparison to

experimental results proves that the methodology presented, combining accuracy with

efficiency, is a promising micromechanics-based tool for probing the mechanical anisot-

ropy of polycrystalline metals and for identifying the parameters of advanced yield

functions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their complex thermo-mechanical treatments, polycrystalline metals are generally crystallographically

textured, and therefore their mechanical properties are anisotropic. The directionality of the mechanical properties must be

taken into account when modeling metal forming operations. The anisotropy induced by plastic strain during forming op-

erations is small compared to that induced by the thermo-mechanical treatment and negligible for most applications (Yoon

et al., 2006). Crystal plasticity (CP) models which use the crystallographic texture and the intrinsic single crystalline

anisotropy as input can accurately describe the anisotropic behavior of polycrystalline materials and naturally consider the

stress and strain partitioning among different phases, grains, and subgrains (Roters et al., 2010). However, the long

computation times required to integrate the underlying constitutive equations render their use infeasible for engineering

simulations of large scale components. Due to their high efficiency and straightforward implementation, analytical yield

functions are thus used instead of full-field CP simulations at the engineering scale to describe the anisotropy of materials.
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Starting with the first anisotropic yield function proposed by von Mises (1928), various yield functions have been

established to describe the flow behavior of different material classes. The quadratic anisotropic yield function developed by

Hill (1948) was validated by numerous experiments and is well suited for body centered cubic (bcc) materials, especially for

steels (Hill, 1990). However, it can not accurately describe the yield behavior of face centered cubic (fcc) metals, e.g., aluminum

alloys (Hosford, 1988), as only higher order ansatz functions are capable of predicting the rather angular form of yield surfaces

and the so-called “anomalous behavior” (Darrieulat and Piot, 1996), i.e., the experimental observation that the equi-biaxial

yield stress is higher than the uniaxial yield stress while the r-value is below 1.0 (Woodthorpe and Pearce, 1970). To over-

come these limitations, Hill (1979) and Hosford (1985) proposed non-quadratic anisotropic yield functions. Later, Barlat and

Lian (1989), Barlat et al. (1991, 1997, 2003, 2005), Karafillis and Boyce (1993), Banabic et al. (2003), Bron and Besson (2004)

introduced further improved formulations, where linear transformations of the stress tensor are used to describe the

anisotropy (Barlat et al., 2007).

For material models used in a commercial context, it is preferable that only a small set of simple and low-cost tests, e.g.,

uniaxial tensile tests, are necessary for calibration (Lademo et al., 1999). The ability of advanced yield functions to describe the

mechanical anisotropy of various material classes, however, comes at the price of requiring many parameters. Improved

flexibility and accuracy therefore makes the parameter identification process more challenging as more experimental results

are needed. These experiments are expensive, time consuming, and sometimes very difficult to perform, e.g., when out-of-

plane properties of sheet metals are required. Additionally, since no standards are defined for most of these experiments,

evaluation of a parameter set requires an in-depth knowledge about the details of the fitting procedure that was employed to

retrieve it.

Besides considering experimental results, numerical models are frequently used to examine the mechanical response of

polycrystalline materials. Micromechanical models based on CP theory play a significant role in understanding yielding and

anisotropy of metals, as well as in evaluating yield surface models. The earliest of such approaches, proposed by Sachs (1929),

uses an iso-stress approach and assumes the same resolved stress on the slip systemswith the highest resolved shear stress in

all grains within the polycrystalline aggregate. In contrast, the full-constraint (FC) model developed by Taylor (1938) is based

on the iso-strain assumption, i.e., all grains within an aggregate experience the same state of deformation. The FC TAYLORmodel

was elaborated further by Bishop and Hill (1951), and was used as the TAYLOReBISHOPeHILL (TBH) model bymany researchers to

validate yield functions (Hosford, 1972; Barlat and Lian, 1989; Barlat et al., 1997) or to generate the analytical expressions for

plastic potentials and yield surfaces of anisotropic polycrystalline materials (Gambin, 1991; Van Houtte, 1994, 2001; Li et al.,

2003; Van Houtte and Van Bael, 2004; Kowalczyk and Gambin, 2004; Van Houtte et al., 2009). It should be noted that the

SACHSmodel satisfies the stress equilibrium condition across the grains but violates the compatibility condition between them,

while, in contrast, the TBH model violates the stress equilibrium condition but satisfies the compatibility condition among

differently oriented grains (Kocks, 1958). The deformation behavior of real polycrystals, where both, compatibility and

equilibrium are fulfilled, is in-between these two extremes (Sachtleber et al., 2002). The former model therefore sets the

lower bound and the latter is the upper bound of the observed behavior.

Although the TAYLORmodel shows good performance in the prediction of deformation textures, it is not fully realistic due to

the violation of stress equilibrium. Various relaxed-constraint (RC) TAYLOR models were developed relieving the rigid defor-

mation constraint in TAYLOR's iso-strain hypothesis (Honneff and Mecking, 1981; Kocks and Chandra, 1982; Raphanel and Van

Houtte, 1985; H€olscher et al., 1991, 1994; Raabe, 1995c). Also, a number of grain cluster models were introduced such as the

LAMEL model, the advanced LAMEL (ALAMEL) model (Van Houtte et al., 1999, 2002, 2005), the grain interaction (GIA) model

(Raabe,1995a,b; Raabe et al., 2002b; Crumbach et al., 2006), and the relaxed grain cluster (RGC) model (Tjahjanto et al., 2010).

Another important class of homogenization schemes is based on the self consistent (SC) approach which was originally

proposed by Kr€oner (1958) for the elastic case and later extended to the elastoplastic (Hill, 1965) and viscoplastic (Hutchinson,

1976) cases. In the SC theory, each grain within a polycrystalline aggregate is considered to be an ellipsoidal inclusion

embedded in the surrounding homogeneous equivalent medium (HEM). Such models satisfy the stress equilibrium and the

deformation compatibility simultaneously as they allow for different deformation responses in each grain depending on the

relative stiffness between the grain and the HEM. Among the various SCmodels, the visco-plastic self consistent (VPSC)model

developed by Molinari et al. (1987) and extended by Lebensohn and Tom!e (1993, 1994) has been widely used to simulate

plastic behavior and texture evolution of polycrystalline materials (Lebensohn et al., 1996, 1998; Segurado et al., 2012;

Knezevic et al., 2013). Although the SC models relieve the drawbacks associated with the TAYLOR type models, further

microstructural aspects of the deformation, such as local grain interaction and intra-grain inhomogeneities of the micro-

mechanical fields, are not accessible to these models (Zhao et al., 2007; Lebensohn et al., 2012).

Recently, full-field CP models, which are capable of incorporating additional morphological information beyond crystal-

lographic texture, either employing the finite element method (FEM, CPFEM) (Raabe et al., 2001; Raabe and Roters, 2004;

Dawson et al., 2005; Zhao et al., 2008; Kanjarla et al., 2010; Roters et al., 2010; Van Houtte et al., 2011; Zhang et al., 2015a)

or a spectral method using fast FOURIER transformation (FFT) (Lebensohn et al., 2012; Kanjarla et al., 2012; Eisenlohr et al., 2013;

Tasan et al., 2014a; Shanthraj et al., 2015) based solvers have become computationally feasible for the simulation of repre-

sentative volume elements (RVEs). The merits of such full-field approaches include: (i) fulfillment of both, stress equilibrium

and strain compatibility at grain boundaries; (ii) representation of a real grain morphology as long as the discretisation is fine

enough; (iii) consideration of the local grain interactions and intra-grain inhomogeneities associated with plastic deforma-

tion. Themain drawback of the full-field CPFEM is the computational cost associatedwith the large number of material points

needed for the simulation of a sufficiently highly resolved polycrystalline RVE. Compared with their FEM counterparts,
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spectral methods using FFT showmuch higher efficiency in solving boundary value problems (BVPs) (Prakash and Lebensohn,

2009; Lebensohn et al., 2012; Eisenlohr et al., 2013), at the cost of being limited to periodic boundary conditions (BCs). The

spectral method was successfully used in simulating crystallographic texture evolution (Liu et al., 2010), modeling micro-

mechanical response of two-phase materials (Lee et al., 2011), predicting internal lattice strain distributions in stainless steel

(Kanjarla et al., 2012), the local stress partitioning of dual-phase steel (Tasan et al., 2014b).

Virtual laboratory approaches, using fine-scale full-field modeling, e.g., CP models for the calibration of yield loci and the

identification routines required for acquiring the parameters of advanced phenomenological yield functions, enable us to

combine advantages of both methods, i.e., the accuracy of CP models and the computational efficiency of analytic yield

functions (Raabe, 2000; Kraska et al., 2009; Van Houtte et al., 2009; Lademo et al., 2009; Helm et al., 2011). In such a scheme,

virtual tests are performed using a CP model to provide yield stress points for the parameter identification of yield functions.

Unlike mechanical experiments, which are limited to certain accessible deformation modes, the virtual CP tests are able to

provide data for any deformationmodes, which renders the approach especially attractive for identifying for instance the out-

of-plane mechanical response of sheet metal materials. Barlat and Chung (2005) adopted the TBHmodel to generate the flow

surfaces based on crystallographic texture measurements. Barlat et al. (2005) used the flow stress curves predicted by a VPSC

model under different applied BCs to evaluate the out-of-plane properties of a 2090-T3 AleLi alloy sheet, where the complete

parameter set of the Yld2004-18p yield function was identified by a combination of results from experiments and VPSC

simulations. Plunkett et al. (2006) used the VPSCmodel to identify the parameters of yield function developed by Cazacu et al.

(2006) and simulated the change of anisotropy parameters associated with the twinning induced texture evolution in zir-

conium. Grytten et al. (2008) evaluated different parameter identification methods for the Yld2004-18p yield function, i.e.,

different combinations of mechanical experimental data and virtual test data obtained by using the FC TAYLOR model. Even

though both, mechanical and virtual test results could be satisfactorily reproduced by the adjusted yield function, the authors

suggested thatmore advanced CPmodels are needed because the FC TAYLORmodel lacks the ability to quantitatively reproduce

the mechanical experiments. Rabahallah et al. (2009) adopted a texture based procedure to identify the parameters of the

plastic strain rate potential Srp2004-18p. More recently, Zhang et al. (2015b) investigated the anisotropy of an AA1050

aluminum sheet by using different CP models, including the FC TAYLORmodel, the ALAMEL model, the ALAMEL Type III model,

the VPSC model, and a CPFEM approach. Employing various calibration methods corresponding to different combinations of

uniaxial tensile data and virtual yield stress points, the authors identified the parameters of the Yld2004-18p yield function

and concluded that the FC-TAYLOR, VPSC, and ALAMELmodels are not capable of capturing the plastic anisotropy of the AA1050

aluminum sheet. These CP models were also employed to predict the plastic anisotropy of AA3103 sheets in the cold-rolled

and fully annealed conditions (Zhang et al., 2014). Gawad et al. (2015) adopted a ALAMEL CP model as the basic constituent of

the virtual laboratory to calculate the data for the identification of the BBC2008 yield function parameters.

Due to the crucial role of the initial crystallographic texture, the success of a virtual laboratory approach critically depends

on the accurate and representative characterization and representation of the underlying microstructure. Full-field CPFEM

models are able to use arbitrary complex microstructures and they do account for grain-to-grain interactions and intra-

granular field variations (Beaudoin et al., 1995, 1996; Raabe et al., 2003). However, the large number of degrees of freedom

and elements required by CPFEM simulations to properly account for all relevant fine-scale microstructure features with a

sufficient level of fidelity renders the calculation times often unaffordable. Its high numerical efficiency as compared to

CPFEM makes the spectral integration method in conjunction with CP constitutive equations thus a promising alternative

candidate, since it combines accuracy of the CPFEM approach with affordable computation times. This especially holds as the

required periodic BCs are applicable to the case of RVE simulations. Therefore, the use of spectral solvers in conjunction with

CP constitutive models provides quantitative microscopic mechanical insights on the plastic anisotropy of metallic poly-

crystals at affordable computational costs.

This work aims to introduce a full-field CP based virtual laboratory which is able to probe the anisotropic properties of

metals and further relieve the parameter identification of advanced yield functions. An efficient spectral solver in conjunction

with a CP model (Roters et al., 2012; DAMASK, 2014) is used to perform full-field virtual experiments on highly resolved1

microstructures. The anisotropic behavior of an AA3104 aluminum alloy with two different initial crystallographic textures

and grain morphologies is investigated and the parameters of four widely used yield functions, namely, Yld91 (Barlat et al.,

1991), Yld2000-2D (Barlat et al., 2003), Yld2004-18p (Barlat et al., 2005), and Yld2004-27p (Aretz et al., 2010) are determined.

The methodology includes: mapping of the microstructure obtained from material characterization of the desired materials

to a high resolution RVE; applying a large number of arbitrary BCs on the RVE to obtain yield stress points; and identifying the

parameters of the yield functions using these stress probing points.

The presented work is structured as follows: Section 2 provides a concise background of the CP model and of the spectral

method. In Section 3, we discuss the micromechanical meaning of the yield surface and present empirical yield functions that

allow for an analytical description of plastic yielding. Section 4 introduces the set-up of the virtual laboratory. The details of

the set-up for investigating the model systems are given in Section 5. The results are discussed and analysed in Section 6. The

study ends with a conclusion and an outlook for further work in Section 7.

1 With the term “highly resolved” we refer to an approach here where a set of integration points (Fourier points in the case of the spectral method) is

used to represent grain morphologies in a RVE that substantially exceeds the number of crystals.
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2. Crystal plasticity constitutive model and the spectral integration method

2.1. Finite strain crystal plasticity constitutive model

First we define a deformation map cðxÞ : x2B 0/y2B , which projects material points x in the reference configuration

B 0 to points y in the current configuration B . The deformation gradient, given by F ¼ vc=vx, is then multiplicatively

decomposed into elastic and plastic components as

F ¼ FeFp (1)

where Fp denotes the inelastic shear deformation in crystalline slip planes and slip directions, and Fe contains the rotation and

elastic distortion of the lattice. The plastic part of the velocity gradient, Lp, is due to crystallographic slip on N slip systems and

is expressed as

Lp ¼ _FpF
$1
p ¼

XN

a

_gaSa0; Sa0 ¼ sa05na
0 (2)

where _ga is the slip rate of slip system a, sa0 and na
0 are unit vectors defined in the crystal coordinate system representing the

slip direction and the slip plane normal, respectively, constituting the SCHMID tensor Sa0.

Plastic flow results from dislocation movement under an applied resolved shear stress (RSS) ta. In this work, a rate

dependent flow law is used to describe the plastic flow as

_ga ¼ _g0

!!!!
ta

ga

!!!
1=m

sgnðtaÞ; (3)

where _g0 is the reference slip rate, m determines the rate sensitivity of slip and ga is the slip resistance, which evolves

asymptotically from g0 towards g∞ (Brown et al., 1989). The evolution equation of ga has the following form:

_ga ¼
XN

b

hab _gb (4)

with the instantaneous strain hardening matrix, hab, which can be described phenomenologically by a saturation-type law as

hab ¼ h0
"
qþ ð1$ qÞdab

#!!1$ gb
$
g∞
!!asgn

%
1$ gb

$
g∞
&
; (5)

where h0, g∞, and a are material parameters, representing the reference self-hardening coefficient, the saturation values of

the slip resistance and the hardening exponent, respectively. The latent hardening parameter, q, is set to q ¼ 1.0 for coplanar

slip systems and q ¼ 1.4 for non-coplanar slip systems (Peirce et al., 1982).

The RSS ta in Eq. (3) can be related to the externally imposed stress tensor as

ta ¼ s :
'
FeS

a
0F
$1
e

(
¼
'
FTeFeS

(
: Sa0; (6)

where s and S are the CAUCHY stress tensor and the 2nd PIOLA-KIRCHHOFF stress tensor, respectively. With the assumption of small

elastic strains, S can be calculated by using the elastic GREEN strain tensor Ee as

S ¼ ℂ : Ee; Ee ¼
'
FTeFe $ I

(.
2; (7)

where C is the fourth order anisotropic elastic tensor. For cubic crystals, it can be specified in terms of three elastic constants

C11, C12, and C44.

2.2. Spectral method for integrating CP constitutive equations using FFT

The spectral method provides a solution of the governing equations such that the final equilibrated stress and compatible

strain fields fulfil the required constitutive law at eachmaterial point. It usually exceeds the results obtained by corresponding

FEM simulations in terms of the solution fidelity because its ansatz functions are trigonometric polynomials. Moreover, since

it operates in FOURIER space, the use of FFT allows for a very time- and memory-efficient iterative solution algorithm. The

spectral method presented here, which is based on a direct variational formulation, was firstly introduced by Moulinec and

Suquet (1994) to calculate the micromechanical response of elastic composite materials and was later generalised to rigid-

viscoplastic (Lebensohn, 2001) and elasto-viscoplastic (Lebensohn et al., 2012) materials. Eisenlohr et al. (2013) developed

a further extension to the case of finite strain and general constitutive descriptions.
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However, simulation of heterogenous materials is limited by the slow convergence of the original fixpoint iterative

method when applied to materials with a large contrast in local stiffness (Michel et al., 2001). Several approaches have been

proposed to overcome this limitation. Eyre and Milton (1999) and Monchiet and Bonnet (2012) introduced accelerated

schemes for materials with large property contrast. Michel et al. (2001) suggested a method based on augmented LAGRANGIANS

for materials with infinite property contrasts. Improved convergence can also be obtained via the use of advanced solution

methods compared to the original approach (Zeman et al., 2010; Brisard and Dormieux, 2010). In Shanthraj et al. (2015), we

recently benchmarked direct and mixed formulations in combination with various non-linear solution methods in a finite

strain CP framework. The solution approach which shows the best performance is used within this work and is briefly

recapitulated in the following.

2.2.1. Kinematics

The deformation map c(x) introduced in Section 2.1, is expressed as a sum of a homogeneous deformation, characterized

by a constant deformation gradient F, and a superimposed displacement fluctuation field ~w,

cðxÞ ¼ Fx þ ~wðxÞ; (8)

for which the periodicity conditions hold, i.e., ~w$ ¼ ~wþ on corresponding surfaces vB $ and vB
þ. Eq. (8) allows to write the

deformation gradient F as the sum of the spatially homogeneous part, F, and the locally fluctuating part, ~F(¼ v ~w=vx), i.e.,

F ¼ Fþ ~F:

Thematerial response is governed by a constitutive law, e.g., finite strain CPmodel, which relates the deformation gradient

to the first PIOLAeKIRCHHOFF stress at every material point, P, through a strain energy density functional, W :

PðxÞ ¼
dW

dFðxÞ
¼ fðx; F; x;…Þ (9)

with x representing a set of internal state variables.

2.2.2. Direct variational formulation

The equilibrium deformation field is obtained by minimising W over all deformation fields fulfilling Eq. (8) for an

externally prescribed average deformation. Static equilibrium expressed in real and FOURIER2 space follows as:

min
c

W 0DivPðxÞ ¼ F
$1½PðkÞi k& ¼ 0; (10)

which is equivalent to finding the root of the residual body force field

F ½cðkÞ& :¼ PðkÞi k ¼ 0: (11)

The differential Eq. (11) in FOURIER space is numerically difficult to solve as it is ill-conditioned. A linear homogeneous

referencematerial with stiffnessD (i.e., PðxÞ ¼ DFðxÞ) allows to reformulate it to an equivalent problemwith better numerical

properties (Mura, 1987). For a given deformation map c, equilibrium in this reference material is fulfilled if the residual body

force field vanishes

P ½cðkÞ& :¼ D½cðkÞ5i k&i k ¼ AðkÞcðkÞ ¼ 0: (12)

The acoustic tensor A(k) is defined as AðkÞaðkÞ ¼ D½aðkÞ5 i k&i k for any vector field a(k). It corresponds to an operator on

a deformationmap producing the body forces resulting in the referencematerial. This deformationmap vanishes if and only if

the body force field vanishes, i.e.,, in static equilibrium, since A(k) is non-zero for positive-definite stiffness D and for ∀ ks0.

Next, an operator which results in the deformation map causing the same body force field in the reference material as a given

deformation map in the original material is defined. This corresponds to a preconditioning operation of P $1 on the non-

linear operator F . P is straightforward to invert since it is local in k, with P
$1 ¼ AðkÞ$1. The preconditioned system

thus reads as

P
$1

F ½cðkÞ& ¼ AðkÞ$1PðkÞi k ¼ 0; ∀ ks0 (13)

The deformation gradient field corresponding to this deformation map is obtained from the gradient in real space of Eq.

(13)

2 Quantities in real space and FOURIER space are distinguished by notation Q(x) and Q(k), respectively, with x the position in real space, k the frequency

vector in FOURIER space, and i2 ¼ $1. F $1½,& denotes inverse Fourier transformation.
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P
$1

F ½cðkÞ&5i k ¼
h
AðkÞ$1PðkÞi k

i
5i k ¼ 0; ∀ ks0 (14)

This is equivalent to Eq. (13) except for a constant residual field, i.e., at k ¼ 0 where the prescribed average deformation

gradient is known to hold anyway. Expressed in terms of the deformation gradient field, Eq. (14) can be expressed in FOURIER

space as

F direct½FðkÞ& :¼ GðkÞ PðkÞ ¼ 0; ∀ ks0 (15)

where the Gamma operator G is defined such that GðkÞTðkÞ ¼ ½AðkÞ$1TðkÞi k&5i k for a tensor field T(k) (Mura, 1987).

2.2.3. Numerical solution

A collocation-based approach at the regular grid points (FOURIER points) in real space is used to discretize Eq. (15), referred

to as basic scheme, which results in the system of equations

F basic

,
FðxÞ

-
:¼ F

$1

,.
GðkÞPðkÞ if ks0
DFBC if k ¼ 0

-
: (16)

The desired deformation BCs FBC of the volume element are conveniently prescribed by setting DFBC ¼ F$ FBC. Adjusting

FBC as outlined by Eisenlohr et al. (2013) allows additionally to prescribe stress BCs component-wise.

The PETSc library (Balay et al., 2013) of non-linear solution methods is utilized to solve the resulting Eq. (16). The residual

at an iteration is assembled by evaluating Eq. (16) at the FOURIER points, where the convolution operation is performed in the

discrete FOURIER space associated with the grid used by the FFT. Shanthraj et al. (2015) compared three solution methods

implemented in PETSc: the non-linear RICHARDSONmethod, the non-linear generalised minimum residual (non-linear GMRES)

method, and the inexact NEWTON-GMRESmethod. In thesemethods, an existing solution {F(x)}N (with f,gN ¼: fFðxÞgN in the

following) at iteration N is improved until the prescribed convergence criteria are fulfilled. Since the non-linear GMRES shows

the best performance, it is used here. In thismethod, an updated solution, f,gNþ1, is found as the linear combination of theM

previous solutions spanning a KRYLOV subspace K K ¼ spanff,gN;…; f,gN$Mþ1g for which the norm of the linearised re-

sidual is minimal

min
f,gNþ12K N

!!!!

!!!!
vF

vf,gN
½f,gNþ1 $ f,gN & þ F f,gN

!!!!

!!!!
2

(17)

When applied to Eq. (15), compatibility of the deformation gradient field follows from the condition that the updated

deformation gradient field is a linear combination of compatible fields.

3. Phenomenological yield functions

In this work, four yield functions, i.e., Yld91, Yld2000-2D, Yld2004-18p, and Yld2007-27p (Barlat et al., 1991, 2003, 2005;

Aretz et al., 2010) are investigated. Yld2000-2D is limited to the plane stress state and the other three yield functions are

formulated for any general stress states. F and f are used to represent the specific yield function and the corresponding

equivalent stress, respectively.

3.1. Yld91 yield function

The Yld91 yield function (Barlat et al., 1991) is written as:

F ¼ ð3I2Þ
n=2

.!!!!2cos
/
2qþ p

6

0!!!!
n

þ

!!!!2cos
/
2qþ 3p

6

0!!!!
n

þ

!!!!2cos
/
2qþ 5p

6

0!!!!
n1
¼ 2sny with q ¼ arccos

'
I3

.
I
3=2
2

(

(18)

and the equivalent stress is f ¼ ðF=2Þ1=n. sy is the yield stress, which is assumed as the yield stress of uniaxial tension along

the rolling direction (RD). I2 and I3 are the second and third invariants of the stress tensor, respectively, which can be

expressed for the general (anisotropic) case as:

I2 ¼
ðfFÞ2 þ ðgGÞ2 þ ðhHÞ2

3
þ
ðaA$ cCÞ2 þ ðcC $ bBÞ2 þ ðbB$ aAÞ2

54
(19)
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I3 ¼
ðcC $ bBÞðaA$ cCÞðbB$ aAÞ

54
þ ðfFÞðgGÞðhHÞ $

ðcC $ bBÞðfFÞ2 þ ðaA$ cCÞðgGÞ2 þ ðbB$ aAÞðhHÞ2

6
(20)

where A¼ s22$ s33, B¼ s33$ s11, C¼ s11$ s22, F¼ s23, G¼ s31, and H¼ s12. The Yld91 yield function contains six anisotropy

parameters (a, b, c, f, g, h), of which a, b, c, h describe the in-plane properties of the sheet. For n ¼ 2, the Yld91 yield function

reduces to the Hill, 1948 yield function.

3.2. Yld2000-2D yield function

The Yld2000-2D yield function (Barlat et al., 2003) is defined as:

F ¼
!!!~S
0

1 $
~S
0

2

!!!
n
þ
!!!2~S

00

2 þ
~S
00

1

!!n þ
!!!2~S

00

1 þ
~S
00

2

!!n ¼ 2sny (21)

and the equivalent stress is f ¼ ðF=2Þ1=n. ~S
0

i and
~S
00

i (i ¼ 1,2) are the principal values of tensors ~s
0
and ~s

00

respectively, which are

defined in matrix form for a plane stress case and orthotropic symmetry as:
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where s11, s22, and s12 are the deviatoric stress components. The Yld2000-2D yield function contains eight anisotropy pa-

rameters (ai, i ¼ 1…8), all are related to the in-plane properties of the sheet.

3.3. Yld2004-18p yield function

The definition of the Yld2004-18p yield function (Barlat et al., 2005) read as:

F ¼
!!!~S
0

1 $
~S
00

1

!!n þ
!!!~S
0

1 $
~S
00

2

!!n þ
!!!~S
0

1 $
~S
00

3

!!n þ
!!!~S
0

2 $
~S
00

1

!!n þ
!!!~S
0

2 $
~S
00

2

!!n þ
!!!~S
0

2 $
~S
00

3

!!n þ
!!!~S
0

3 $
~S
00

1

!!n þ
!!!~S
0

3 $
~S
00

2

!!n þ
!!!~S
0

3 $
~S
00

3

!!n

¼ 4sny ;

(23)

with the equivalent stress f ¼ ðF=4Þ1=n. ~S
0

i and
~S
00

i ði ¼ 1;2;3Þ are the principal values of tensors ~s
0
and ~s

00

, which are defined by

two linear transformations of the deviatoric part of the corotational CAUCHY stress bs:

~s
0
¼ C : bs; ~s

00

¼ D : bs (24)

The fourth-order tensors C and D characterize the anisotropy of the material, each contains nine material parameters.

Expressed in VOIGT notation they read:

C ¼

2

6666664

0 $c12 $c13 0 0 0
$c21 0 $c23 0 0 0
$c31 $c32 0 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

3

7777775
; D ¼

2

6666664

0 $d12 $d13 0 0 0
$d21 0 $d23 0 0 0
$d31 $d32 0 0 0 0
0 0 0 d44 0 0
0 0 0 0 d55 0
0 0 0 0 0 d66

3

7777775
(25)

The Yld2004-18p contains 18 anisotropy parameters, of which c55, c66, d55, and d66 describe the out-of-plane properties

and the other 14 parameters in the matrices C and D in Eq. (25) describe the in-plane properties of the sheet. It has been

proven to be an accurate and flexible yield function capable of predicting six or eight “ears” in deep drawing of aluminum

sheets (Yoon et al., 2006a,b). Note that when C ¼ D, i.e., the function accounts for only one transformation, the function

reduces to the Yld91 yield function (Barlat et al., 2005).

3.4. Yld2004-27p yield function

The definition of the Yld2004-27p yield function (Aretz et al., 2010) reads as:
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with the equivalent stress f ¼ ðF=6Þ1=n. ~S
0

i,
~S
00

i , and
~S
000

i (i¼ 1,2,3) are the principal values of the tensors ~s
0
, ~s

00

, and ~s
000
. ~s
0
and ~s

00

are

defined the same as that of Yld2004-18p yield function, and ~s
00 0
¼ E : bs. Analogous to C and D, the fourth-order tensor E

contains nine material parameters.

4. Architecture of the virtual laboratory

Fig.1 shows a schematic presentation of the present virtual laboratory based on DAMASK (Roters et al., 2012). DAMASK is a

flexible and hierarchically structured approach for modeling a material point behavior and solving of elastoplastic BVPs along

with further multiphysics effects. It contains two BVPs solvers, i.e., a spectral method in conjunctionwith FFT and an in-house

developed FEM solver. Also, it provides interfaces to general commercial FEM solvers, e.g.,MSC.Marc, ABAQUS/Standard, and

ABAQUS/Explicit. The constitutive models implemented into DAMASK range from the phenomenological material model

introduced in Section 2.1 to more advanced physically based material models (Ma and Roters, 2004; Roters et al., 2010;

Alankar et al., 2011; Cereceda et al., 2016). The various constitutive models render DAMASK a very versatile constitutive

and multiphysics modeling approach enabling to simulate materials with different crystal structures (e.g., fcc, bcc, and hcp),

different deformation mechanisms (e.g., phase transformation and twinning) and different deformation and microstructure

histories.

The virtual laboratory is conveniently implemented as a part of DAMASK in form of an automated script. This script

launches virtual tests with automatically generated load cases for the considered RVEs, post-processes the results and finally

performs the parameter identification for all selected yield functions until the desired fitting quality is achieved.

The fast and efficient spectral method allows to perform multiple simulations in an affordable time, e.g., the computation

time using one Intel Xeon E5-2687W core for an uniaxial tensile simulation (grid size ¼ 120 * 60 * 60, maximum true

strain ¼ 0.113) is 450min. This capability is exploited by loading the RVE (see Section 5 for the example used in this study) in

many deformation modes which are generated automatically based on a random number generator. After each simulation, in

Fig. 1. Yield surface fitting by DAMASK, a multiscale and multiphysics CP modeling framework. The figure shows the various conceptual ingredients with

different deformation mechanisms, phases, orientations and homogenization schemes that can be assigned to the same integration/FOURIER point.

H. Zhang et al. / International Journal of Plasticity 80 (2016) 111e138118



a post processing step, the stress tensor for each loading case at the desired level of plastic work per unit volume is deter-

mined and used as a yield stress point. Fitting to the yield functions is possible only, if the number of simulations is equal to or

larger than the number of parameters of the yield functions. The required fitting procedure can be generally realized by using

a nonlinear least square method (NLSM). Here, the LEVENBERG-MARQUARDT NLSM optimization algorithm (Levenberg, 1944;

Marquardt, 1963) is employed to find the optimal fitting parameter set and is briefly presented in the following.

Let sI (I¼ 1,2,…,N) be a set of stress tensors corresponding to the virtual experimental results (i.e., the yield stress points at

the same plastic work per unit volume), fI ¼ f(sI,b) be the equivalent stress of the specific yield function, and b ¼ b1,b2,…,bM
be the set of corresponding parameters needed to be identified. The next step then consists in identifying the optimal set of

parameters b which minimizes the objective function O(b) defined as

OðbÞ ¼
XN

I¼1

 
f
%
sI ;b

&

sy
$ 1

!2

(27)

Eq. (27) indicates that all stress points get the same weight assigned in this study. However, generally assigning different

weights to rely stronger on certain stress states is possible as well. It should be pointed out that the selection of the data points

used in the parameter identification depends substantially on the technical feasibility of performing relevant mechanical

tests. For example, many possible combinations exist, r-values, normalized yield stresses, and virtual test data with different

weights that could potentially yield adequate fitting fidelity (Grytten et al., 2008; Rabahallah et al., 2009; Aretz and Barlat,

2013; Zhang et al., 2015a; Gawad et al., 2015). Since the virtual laboratory approach provides a large number of yield

stress points for any kind of stress or strain modes, in this work, only the yield stress points obtained from the full-field virtual

tests were used to identify the required parameters for the considered yield functions. Nevertheless, the prediction of the

directionality of the planar anisotropy properties is compared with the data of mechanical tests and virtual tests.

To accelerate and stabilize the solving of the objective function of Eq. (27), the analytical form of the Jacobian matrix is

recommended, which is written as:

JIJ ¼
1

sy

vf
%
sI ;b

&

vbJ
with 1⩽I⩽N and 1⩽J⩽M (28)

For fitting more complex yield functions, e.g., Yld2004-18p, the chain rule needs to be employed to calculate the derivative

of Eq. (28).

The quality of the determined parameter set bb for b is measure as the root mean square deviation (RMSD) of the residual:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
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vuuut : (29)

For an converging RMSD value, i.e., if additional stress points do not significantly further affect the RMSD value the

identification process is stopped. Otherwise, a new simulation is launched until either a predefined maximum number Nmax

of stress points is reached or the RMSD value is converged. To reduce computation time, a predefined number of simulations

can be run in parallel.

Additionally, virtual uniaxial tensile experiments were performed in different directions from the RD to the transverse

direction (TD). As illustrated in Fig. 2(a), q denotes the uniaxial tensile direction, which is measured between the longitudinal

Fig. 2. (a) Illustration of the reference frame set-up for conducting simulated tensile tests in arbitrary loading directions and the corresponding texture rotation in

the virtual uniaxial tensile experiments, and (b) the deformed shapes of the corresponding RVE under the uniaxial tensile simulations with different loading

directions, i.e., q ¼ 0+ (RD), q ¼ 45+ , and q ¼ 90+ (TD).
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axis of the specimen and the RD. In DAMASK, it is convenient to apply periodic BCs on the RVE for uniaxial tensions in

different directions. However, if the loading direction is not placed along the RD (q ¼ 0+) or the TD (q ¼ 90+), the deformed

shape of the RVE in the RD-TD planewill not assume a rectangular shape, e.g., a diamond shapewill be obtained for the case of

q¼ 45+, as shown in Fig. 2(b). Such non-rectangular shapesmake it inconvenient to calculate the r-values.We therefore use an

equivalent approach to perform uniaxial tensile tests. For example, if the uniaxial tensile direction is aligned along the angle q,

we simply rotate the sample coordinate system [XYZ]([RD-TD-ND], with ND denoting normal direction) to a new system

[X
0

Y0Z0] where X
0

and Z
0

coincide with the loading direction and the ND, respectively. Then the orientation of the grains in the

new reference system becomes {41 $ q, F, 42} as outlined in Appendix A. As a result, the loading directions of all the virtual

uniaxial tensile experiments are the same as those of the uniaxial tension tests conducted along the RD.

The subsequent rotation intervals of q from the RD towards the TD are 7.5+, i.e., 13 virtual uniaxial tensile tests were

conducted for each case. The advantage of such transformation is that the deformed shapes of RVE always follow the uniaxial

tension, which is favorable for calculating r-values.

5. Model generation from experimental microstructures

5.1. Material characterization

The anisotropy of the commercial AA3104 aluminum alloy in sheet metal forming is investigated as a model system in this

study. This material is especially designed for beverage can production and is processed in a way to finally produce small

“ears” in the cup-drawing operation (Raabe et al., 2003; Engler et al., 2011). Two different material states, corresponding to

two different textures are used: (i) The hot-band (as-received) sample is the annealed AA3104 aluminum alloy after hot

rolling, i.e., in the fully recrystalized state. (ii) The cold-rolled sample is produced from this state by rolling it under near-plane

strain conditions until the thickness is reduced to 50%. The crystallographic textures of both samples weremeasured by an FEI

Nova 400 field emission scanning electron microscope (FE-SEM) equipped with an electron backscatter diffraction (EBSD)

system. The size of the EBSD mapping area is 0.6 mm * 0.6 mm with a step size of 2 mm for the hot-band sample, and

0.12 mm * 0.12 mm with a step size of 0.4 mm for the cold-rolled sample. Owing to the orthotropic symmetry of the rolled

sheet and the cubic crystal symmetry (Bunge, 1982), 41, F, 42 vary in the reduced EULER space between 0
+ and 90+. The EBSD

maps and orientation distribution functions (ODFs) of the hot-rolled and cold-rolled samples are shown in Figs. 3, 4(a), and

5(a).

The micro-texture mapped by SEM-EBSD contains in the present case a large number of grains and orientations, hence

sufficient statistics is given. The hybrid integer approximation method introduced by Eisenlohr and Roters (2008) is adopted

to reconstruct the ODFs derived from these EBSD data sets using a limited set of discrete orientations from the experimentally

obtained ODFs. Figs. 4(b) and 5(b) show the reconstructed ODFs using 500 discrete orientations for both material states. The

root mean squared deviations (RMSD) (Eisenlohr and Roters, 2008) between the reconstructed ODFs and the experimental

ODFs are 4.482% and 4.458% for the hot-band case and the cold-rolled case, respectively, which indicate a good reproduction

fidelity of the reconstructed ODFs.

Fig. 4 shows that the texture of the hot-band sample mainly consists of a strong Cube component and a weak Goss

component. Fig. 5 shows that the texture of the cold-rolled sample contains a strong S components, a moderate Brass

component and a weak Copper components. The strong Cube component of the hot-band sample has almost disappeared. It

Fig. 3. EBSD maps of AA3104 aluminum alloy sheets, (a) as-received after hot rolling; (b) cold-rolled to 50% thickness reduction.
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Fig. 4. Orientation density maps obtained from the ODFs as sections through the reduced EULER space for cubic-orthorhombic symmetry of the hot-band AA3104

aluminum alloy sheet (constant 42 sections, 0
+ to 90+ in 5+ steps, EULER angles in BUNGE's convention), (a) experiment; (b) reconstructed using 500 discrete

orientations.

Fig. 5. Orientation density maps obtained from the ODFs as sections through the reduced EULER space for cubic-orthorhombic symmetry of an AA3104 aluminum

alloy sheet after cold-rolling to 50% thickness reduction (constant 42 sections, 0
+ to 90+ in 5+ steps, EULER angles in BUNGE's convention), (a) experiment; (b)

reconstructed using 500 discrete orientations.
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should be noted that the reconstructed ODFs are less sharp than the experimentally obtained ODFs, i.e., some quantitative

differences can be observed: The Cube component is weakened while the Goss component is strengthened for the hot-band

sample, the S component is weakened while the Brass and Copper components are slightly strengthened for the case of the

cold-rolled sample. The textures shown in Figs. 4(b) and 5(b) are used as texture input data for the subsequent virtual lab-

oratory simulations.

5.2. Material constants

The constitutive parameters used in the current CP model are adjusted to experimental data of Wu et al. (2003), i.e., to a

cold-rolled AA3104 aluminum alloy. The usedmaterial constants are listed in Table 1, and the computed stressestrain curve is

given together with the experimental one in Fig. 6. The same set of material constants given in Table 1 is used for both, the

hot-band and the cold-rolled sample in this work. Even though the cold-rolled sample is harder than the hot-band sample,

this does not introduce a bias to the results as only normalized yield stress values are of interest. Moreover, only the initial

yielding is investigated and all slip systems in the fcc lattice belong to the {110}〈111〉 family and, hence, show the same strain

hardening characteristics. Therefore, the influence of the difference in flow stress between the two material states on the

anisotropy should be negligible compared to that of the crystallographic textures.

5.3. Representative volume elements

As stated above, the virtual laboratory was applied to generate random yield stress points for the identification of various

yield functions and to perform the virtual uniaxial tensile tests to obtain the planar anisotropic properties, i.e., the r-values

and the normalized yield stresses. For the former one, i.e., to generate randomyield stress points, a cubic RVE, labelled as RVE1

(Fig. 7(a)), was used for the virtual tests of both, the hot-band and the cold-rolled samples. It was discretized by 64 * 64 * 64

FOURIER points, and applied a large number of periodic BCs corresponding to arbitrary deformation modes. For the uniaxial

tensile test simulations, RVE2 (Fig. 7(b)) with equiaxed crystal structures was adopted for the hot-band case. As the tensile

deformation in the x axis is significantly larger than the compressive deformations in the y and z axes, RVE2was discretized by

120 * 60 * 60 FOURIER points.

Although the crystallographic texture plays a predominant role in affecting the mechanical anisotropy, the average grain

shape could also contribute to a modification of the directional response of rolled materials (Haouaoui et al., 2006; Delannay

and Barnett, 2012). For example, Choi et al. (2000) applied the VPSC model to investigate the influence of grain morphology

on macroscopic anisotropy of cold-rolled AA5019 sheet. The authors found that simulations with the ellipsoidal grain shape

show better reproduction of experimental data than those with spherical grain shape when predicting the deformation

anisotropy. Delannay et al. (2009) investigated the planar anisotropy of two cold-rolled steel sheets by using CPFEM, VPSC,

and LAMEL model formulations, and found that the grain shape effect is less important than the texture effect, but it is not

Table 1

Material parameters of AA3104 aluminum alloy according to the experimental data ofWu et al. (1998, 2003), the unit of, C11, C12 and C44 is GPa, g0, g∞ and h0 is

MPa, and _g0 is s
$1.

C11 C12 C44 g0 g
∞

h0 _g0 m a

206 118 54 88 118 2483 10$3 0.02 2

Fig. 6. Experimentally obtained and simulated stressestrain curves of the cold-rolled AA3104 aluminum alloy. Experimental data is taken from Wu et al. (2003).
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negligible. Consequently, thirteen RVEs (referred to RVE3) with the directional cold-rolled grain morphologies were used for

the uniaxial tensile tests and plane strain tensile tests of the cold-rolled sample, as exampled in Fig. 7(c). RVE3was discretized

by using 160 * 80 * 40 FOURIER points.

All the RVEs in Fig. 7 contain 500 randomly distributed grains, and the representative polycrystalline aggregates were

generated by a standard VORONOI tesselation. Therefore, RVE1, RVE2, and RVE3 have about 524, 864 and 1024 FOURIER points per

grain, respectively, and hence represent the microstructure of the considered material with a high resolution as shown in

Fig. 7. The 500 discrete orientations shown in Fig. 4(b) (for the hot-band case) and Fig. 5(b) (for the cold-rolled case) were

assigned randomly to the polycrystalline aggregates.

6. Results and discussion

In total, 125 randomly generated load cases were used for RVE1 with hot-band and cold-rolled textures to fit the yield

surface functions. The yield stresses at a plastic work per unit volume of 1 MPa were used to identify the parameters of the

considered yield functions. The identified parameters are documented in Tables 2e4, where “2D” indicates that all stress

points belong to a plane stress state, while “3D” denotes an arbitrary general stress state, i.e., including stress components

along thickness direction. Besides the parameters of the respective yield functions, the exponent n is also an undetermined

parameter in this work. Tables 2e4 show that, the exponents n of the Yld91 and Yld2000-2D yield functions are determined

as less than six, while the exponents n of the Yld2004-18p and Yld2004-27 yield function are determined to lay in a range

between 6.46 and 7.34. This is different from the recommendations of Hosford (1972), who suggested a value of n ¼ 8 for

isotropic fcc materials and n ¼ 6 only for bcc metals. However, it should be noted that these recommendations are based on

the yield surfaces calculated by the TBHmodel (which gives, as outlined in Section 1, the upper bound) for randomly oriented

polycrystals and other values of nmay apply for materials with a strong initial texture. In this work, n¼ 6 seems preferable for

Fig. 7. RVEs with 500 randomly distributed grains, (a) RVE1 used for the parameter identification, size ¼ 643; (b) RVE2 used for the virtual uniaxial tensile tests,

size ¼ 120 * 60 * 60; (c) examples of RVE3 with the directional cold-rolled grain morphologies used for the uniaxial tensile tests, size ¼ 160 * 80 * 40. x is the

loading direction, z is the (sheet) normal direction.

H. Zhang et al. / International Journal of Plasticity 80 (2016) 111e138 123



an AA3014 aluminum alloy for both, the recrystallized state and the cold-rolled state. The determined parameters of the

considered yield functions can be used to derive the in-plane normalized yield stresses, r-values, and the yield surfaces in the

xy plane. All the ensuing results and discussions are based on these identified parameters, and limited to the plane stress

state.

Fig. 8 shows the RMSD of the yield functions (see Eq. (29)) versus the number of input stress points N. Except for the Yld91

yield function, all other three yield functions show a relatively small (less or about 1.0%) and close RMSD at the end of

identification with all curves being converged to a stationary value. This indicates that the fitting capacity of the Yld91 yield

function is limited in comparison to the other formulations considered, of which the Yld2004-18p and Yld2004-27p yield

functions show the best performance. The observations can be explained by the number of parameters: the Yld2004-27p

yield function is the most flexible function, as it has 27 parameters for the 3D case and 21 parameters for the 2D case,

while the Yld91 yield function has a lower number of anisotropy parameters, namely, six for the 3D and four for the 2D case.

Even for the Yld91 yield function, however, the RMSD value reached at the end of the identification protocol is below 1.8% for

the hot-band sample and below 1.6% for the cold-rolled sample. This result reveals that all the identified yield functions show

Table 2

Parameters identified for fitting the Yld91 yield function (Barlat et al., 1991) determined for the hot-band and cold-rolled AA3104 aluminum alloy.

a b c f g h n

Hot-band 2D 1.0061 1.0736 0.9989 e e 0.9539 5.7917

Hot-band 3D 0.9976 1.0615 1.0315 0.9759 0.9525 0.9627 5.3041

Cold-rolled 2D 0.9933 1.0822 0.9567 e e 0.9940 5.5410

Cold-rolled 3D 0.9632 1.0904 1.0058 $1.0407 0.9652 0.9984 5.2524

Table 3

Parameters identified for fitting the Yld2000-2D (Barlat et al., 2003) yield function determined for the hot-band and cold-rolled AA3104 aluminum alloy.

a1 a2 a7 a3 a4 a5 a6 a8 n

Hot-band 0.9349 1.0671 0.9097 0.9690 0.9861 1.0452 0.9999 1.0805 5.9992

Cold-rolled 0.8734 1.0760 0.9594 0.9820 0.9597 1.0600 1.0294 1.0490 5.9630

Table 4

Parameters identified for fitting the Yld2004-18p and Yld2004-27p yield functions (Barlat et al., 2005; Aretz et al., 2010) determined for the hot-band and

cold-rolled AA3104 aluminum alloy.

Yld2004-18p Yld2004-27p

Hot-band Cold-rolled Hot-band Cold-rolled

2D 3D 2D 3D 2D 3D 2D 3D

c12 0.8841 1.1533 1.0799 1.6544 1.1237 0.6983 1.1966 0.4116

c21 1.1456 1.6206 1.0552 1.0574 0.9623 1.9106 0.7589 $0.1486

c23 1.1845 0.9688 0.7840 0.3627 0.4378 1.0230 0.8237 0.9442

c32 0.7411 0.6850 0.7378 0.9463 0.9356 1.3343 0.8413 0.8021

c31 0.9972 0.9189 0.6443 0.6858 1.0118 1.0041 1.1270 0.0023

c13 1.1305 1.4709 0.8626 1.5519 0.8256 $0.0410 0.7199 $0.7082

c44 1.1222 1.4253 1.0518 1.3350 0.6181 $0.7932 0.7872 0.8973

c55 $ 0.7399 $ 0.9551 $ 0.4726 $ 0.5934

c66 $ 1.1367 $ 0.9857 $ 0.3504 $ 0.6497

d12 0.9294 $0.3329 0.4223 0.0167 0.8762 $0.5786 1.0040 0.0286

d21 0.9506 1.0360 1.0096 0.4957 1.0380 0.4470 1.0264 $1.6150

d23 0.6239 1.4072 1.0345 1.0638 1.1692 0.7778 0.9299 $0.5154

d32 0.9561 0.7698 1.1961 1.2335 1.0969 0.4226 0.8219 0.0761

d31 1.0975 0.8263 1.3817 0.7865 1.0874 0.0314 0.6162 1.0769

d13 0.7071 0.4204 1.1467 0.5736 1.2099 0.0313 1.3520 $0.7057

d44 0.6966 0.2457 0.8549 0.5363 1.1455 0.8730 1.1826 1.0061

d55 $ 1.1198 $ 1.0686 $ 1.0774 $ 1.3723

d66 $ $0.6515 $ 0.8454 $ 1.2673 $ 0.7815

e12 $ $ $ $ 0.8981 0.9298 $0.0037 1.0561

e21 $ $ $ $ 0.8667 0.8665 0.5699 1.1506

e23 $ $ $ $ 0.9640 0.7021 1.1133 1.0310

e32 $ $ $ $ 0.9936 0.770 0.9759 1.0506

e31 $ $ $ $ 0.9087 1.0442 0.6743 1.1716

e13 $ $ $ $ 0.9339 1.3839 0.5781 0.8645

e44 $ $ $ $ 0.9512 1.0962 0.9267 0.9650

e55 $ $ $ $ $1.7468 1.0939 $1.9112 0.9859

e66 $ $ $ $ $1.8016 0.9461 $1.9983 1.0845

n 7.0125 6.6847 7.3438 6.6047 7.2143 6.4637 6.8089 7.0129
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a good capability in representing the computed yield stress points. Furthermore, the Yld2000-2D yield function which re-

quires less parameters compared with the Yld2004-18p and Yld2004-27p yield functions is sufficient to fit the large number

of yield stress points of both samples.

6.1. Deformation and strength anisotropy

Figs. 9e13 show a comparison of the deformation anisotropy (r-value) and strength anisotropy (normalized yield stresses,

Yq) predicted by the considered yield functions with those of the virtual uniaxial tensile tests (see Section 4) and mechanical

experiments. The r-value and Yq are calculated at a plastic work per unit volume of 1, 2.5, 7.5, and 15 MPa, respectively. The

comparison reveals that the influence of plastic deformation on both, deformation anisotropy and strength anisotropy is low,

in other words, the change of texture and, hence, anisotropy induced by the deformation is negligible.

Fig. 9 shows the predicted r-values of the hot-band sample versus q for the identified yield functions in comparison to the

r-values obtained from the virtual uniaxial tensile tests. The highest r-value is in the TD while the lowest value is in the

direction of q ¼ 45+. It is found that the results of the yield functions, i.e., Yld2000-2D, Yld2004-18p, and Yld2004-27p match

well with that of the virtual tensile tests, while Yld91 overestimates the r-values in most directions. Fig. 10 shows a com-

parison between the predicted Yq of the yield functions with that of the virtual tests. The Yq in the TD is higher than that in the

Fig. 8. RMSD of the yield functions versus the number of input yield stress points N, (a) for the hot-band AA3104 aluminum alloy; (b) for the cold-rolled AA3104

aluminum alloy. Yld91, Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al. (1991, 2003, 2005). Yld2004-27p

is the yield function proposed by Aretz et al. (2010).

Fig. 9. r-value versus q of the hot-band AA3104 aluminum alloy. The solid lines are the predictions of the identified yield functions. The open symbols are the

results obtained from the virtual laboratory simulations (B, , D, V correspond to a plastic work per unit volume of 1, 2.5, 7.5, and 15 MPa, respectively). Yld91,

Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al. (1991, 2003, 2005). Yld2004-27p is the yield function

proposed by Aretz et al. (2010).
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RD. The virtual uniaxial tensile results indicate that the deep drawing cup of the hot-band AA3104 aluminum alloy will

produce four “ears” near q ¼ 15+, 105+,195+, and 285+. It is found again that the Yld2000-2D, Yld2004-18p, and Yld2004-27p

yield functions match the virtual tests results obtained from the full-field simulations better than the Yld91 yield function.

According to Barlat et al. (1997), it is not possible for the Yld91 yield function to represent the anisotropy of a strong

recrystallization texture dominated by the Cube and Goss texture components. The virtual uniaxial tension tests show that

the r-values vary in the range of 0.45e1.2 while the Yq varies in the range of 0.997e1.033, i.e., the hot-band AA3104 aluminum

alloy shows strong deformation anisotropy but weak strength anisotropy.

No experimental tensile data are considered for the hot-band sample, however, as discussed above, the main texture

components of the hot-band case are a strong Cube component and a weak Goss component. The anisotropic properties of

materials with the common ideal texture components can be found in the work of Arminjon and Bacroix (1991) and

Darrieulat and Piot (1996). Comparing Figs. 9 and 10 with the results from Arminjon and Bacroix (1991) and Darrieulat and

Piot (1996), it can be observed that the r-values and Yq obtained from the virtual uniaxial tensions are clearly affected by the

presence of the Cube and Goss orientations. For the r-values, a valley appears near q ¼ 45+, and this position is correctly

captured by both, the virtual tensile tests and the yield surface predictions. In contrast, the peak of Yq shown in Fig. 10 appears

Fig. 10. Normalized yield stress Yq versus q of the hot-band AA3104 aluminum alloy. The solid lines are the predictions of the identified yield functions. The open

symbols are the results obtained from the virtual laboratory simulations (B, , D, V correspond to a plastic work per unit volume of 1, 2.5, 7.5, and 15 MPa,

respectively). Yld91, Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al. (1991, 2003, 2005). Yld2004-27p is

the yield function proposed by Aretz et al. (2010).

Fig. 11. r-value versus q (a) and normalized yield stress Yq versus q (b) of the cold-rolled AA3104 aluminum alloy. The open symbols are the results obtained from

the virtual laboratory simulations (B, , D, V correspond to a plastic work per unit volume of 1, 2.5, 7.5, and 15 MPa, respectively). The solid symbols are

experimental data from Wu et al. (2003) (Exp. data 1), Aretz et al. (2010) (Exp. data 2), and Aretz et al. (2010) (Exp. data 3). The purple open symbols in (a)

represent the normalized plane strain yield stress obtained from virtual tests, while data 3 refers to the corresponding experimental results.
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near q ¼ 52.5+ for the yield functions and q ¼ 60+ for the virtual tests. Obviously, these positions result from the combined

contributions of the Cube and Goss orientations, and since the Cube orientation is stronger than the Goss orientation, its peak

value is smaller than the one produced by the Goss orientation.

For the cold-rolled case, the experimental results of Wu et al. (2003), Aretz and Barlat (2013), and Aretz et al. (2010) are

adopted for comparison, as shown in Fig.11. It can be seen that, in spite of some scatter in the experimental data, the results of

the virtual tensile tests obtained by the full-field simulation show good agreement with these experimental results. It in-

dicates that the virtual laboratory presented could be a substitute for the elaborated mechanical tests of plastic anisotropy.

The comparison between the plane strain tensile stresses obtained by the virtual laboratory and the mechanical tests from

Aretz et al. (2010) is also superposed in Fig. 11(a). The yield stresses of plane-strain tensile tests along the RD and TD match

well with the experimental results, while the yield stress of test along the direction with q ¼ 45+ show some deviation with

the corresponding experimental result. Fig. 11 also implies that, the planar anisotropy of the cold-rolled sample is more

complex than that of the hot-band sample, and the deep drawing cup of the cold-rolled AA3104 aluminum alloy will produce

eight small “ears”.

Fig. 13. Normalized yield stress Yq versus q of the cold-rolled AA3104 aluminum alloy. The solid lines are the predicted results of the identified yield functions.

The meaning of the symbols is the same as that in Fig. 11. Yld91, Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by

Barlat et al. (1991, 2003, 2005). Yld2004-27p is the yield function proposed by Aretz et al. (2010).

Fig. 12. r-value versus q of the cold-rolled AA3104 aluminum alloy. The solid lines are the predicted results of the identified yield functions. The meaning of the

symbols is the same as that in Fig. 11. Yld91, Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al. (1991, 2003,

2005). Yld2004-27p is the yield function proposed by Aretz et al. (2010).

H. Zhang et al. / International Journal of Plasticity 80 (2016) 111e138 127



Fig. 11 is shown again together with the predicted values of the yield functions in Figs. 12 and 13. Fig. 12 reveals that the

predicted r-values increase monotonically with respect to q, i.e., they are lowest at q¼ 0+ and highest at q¼ 90+. Except for the

Yld91 yield function, all yield functions yield quantitatively correct r-values and capture the shape of r-values versus q.

Moreover, small “waves” can be observed in the curve predicted by the Yld2004-27p yield function, this is because Yld2004-

27 is the most flexible one which is able to represent even more complex shapes. Fig. 13 shows that the maximum strength

anisotropy of the cold-rolled sample appears in the TD, i.e., about 1.038. Though the strength anisotropy of the cold-rolled

sample is slightly larger than that of the hot-band sample, it is still comparably small. It is not surprising as the consid-

ered material has been designed to produce very small “ear” in beverage can fabrication (Aretz and Barlat, 2013). As Yq varies

only in the range of 0.992e1.038, such small fluctuation may render it especially challenging to capture the complex shape of

Yq versus q for the case of the cold-rolled sample. However, the identified yield functions Yld2004-18p and Yld2004-27p

successfully predict the magnitudes and shape of Yq versus q, while the yield functions Yld91 and Yld2000-2D give a

reasonable prediction of the magnitudes.

It must be noted that both, the r-values and the normalized yield stresses obtained from the virtual uniaxial tensile tests

and the experiments, are not used in the identification process. All the identified yield functions, however, provide a high-

accuracy fitting of yield stress points, and still, the identified yield functions, except for Yld91, show good performance in

the prediction of the r-values and the normalized yield stresses. This means that the procedure used here for the parameter

identification using the virtual laboratory simulationmethod is reliable and thus applicable to awider range of corresponding

sheet metal forming problems involving plastic anisotropy.

6.2. Yield surfaces

Figs. 14 and 15 show the comparison between the predicted yield surfaces and the 2D (xy-plane) yield stress points

generated by the virtual laboratory at a plastic work per unit volume of 1 MPa, where s denotes the uniaxial tensile yield

stress along the RD obtained from the virtual tests. For the cold-rolled case, the experimental data of Wu et al. (2003) were

also added for comparison. It is seen that all the yield functions are able to fit these stress points well, and the experimental

stress points are adequately reproduced by the yield stress points of the virtual tests. For both, the hot-band and the cold-

rolled cases, the differences between yield surfaces of the identified four yield functions are relative small, and the yield

surfaces of Yld2004-18p and Yld2004-27 are almost completely identical. Only the yield surface obtained by using the Yld91

yield function shows a minor difference to the others being a little more smooth in the region around equibiaxial tension for

both cases. This is because the Yld91 yield function is less flexible than the others due to its smaller number of fitting

parameters.

Fig. 14. Yield surfaces (s12 ¼ 0) of the hot-band AA3104 aluminum alloy predicted by the identified yield functions. s denotes the uniaxial tensile yield stress

along the RD obtained from the virtual tests. The symbols “B” are the yield stress points provided by the virtual laboratory simulations. Yld91, Yld2000-2D (for

the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al. (1991, 2003, 2005). Yld2004-27p is the yield function proposed by Aretz

et al. (2010). The yield surfaces predicted by the identified Yld2000-2D, Yld2004-18p, and Yld2004-27p yield functions are almost the same, especially, the ones

predicted by the Yld2004-18p and Yld2004-27p yield functions overlap each other.
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Figs. 16e19 show the yield surfaces predicted by all considered yield functions at equal normalized shear stress s12=s.

Fig. 20 provides a direct comparison of the Yld2000-2D, Yld2004-18p, and Yld2004-27p yield functions. All the yield func-

tions predict a higher maximum value of s12=s for the hot-band case than for the cold-rolled case. This is consistent with the

fact that the yield surfaces of the Cube and Goss orientations have a higher maximum s12=s than the yield surfaces of the

Copper, S, and Brass orientations (Barlat and Richmond, 1987). In contrast to the remaining yield functions, the Yld91 yield

function overrates the effect of shear stress s12. Fig. 20 shows that the yield functions Yld2004-18p and Yld2004-27p predict a

Fig. 15. Yield surfaces (s12 ¼ 0) of the cold-rolled AA3104 aluminum alloy predicted by the identified yield functions. s denotes the uniaxial tensile yield stress

along the RD obtained from the virtual tests. The symbols “B” are the yield stress points obtained from the virtual laboratory simulations. The symbols “,” are

the experimental data from Wu et al. (2003). Yld91, Yld2000-2D (for the plain stress state), and Yld2004-18p are the yield functions proposed by Barlat et al.

(1991, 2003, 2005). Yld2004-27p is the yield function proposed by Aretz et al. (2010). The yield surfaces predicted by the identified Yld2004-18p, and

Yld2004-27p yield functions are almost the same.

Fig. 16. Tricomponent (s11-s22-s12) yield surfaces with constant s12/s contours of the hot-band (a) and the cold-rolled (b) samples predicted by the identified

Yld91 yield function (Barlat et al., 1991). s denotes the uniaxial tensile yield stress along the RD obtained from the virtual tests.
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perfectly consistent yield surface for both, the hot-band and the cold-rolled samples. While the prediction of the Yld2000-2D

yield function differs slightly from the one obtained by the Yld2004-18p and Yld2004-27p functions.

As mentioned before, the hot-band sample was cold-rolled to 50% thickness reduction to arrive at the cold-rolled sample

state.When themetal sheet is rolled, the grain re-orientation in the sheet induces orthotropy (Kowalczyk and Gambin, 2004),

and it can be assumed that the same RD-TD-ND coordinate system can be used to plot the yield surfaces of both, the hot-band

and the cold-rolled samples. During the rolling process, the yield surfaces will expand due to work hardening. As the same

material parameters for both cases are used in this work for the CP model, here the yield surface expansion is not considered,

and only the shape change of the yield surface from the hot-band sample to the cold-rolled sample can be discussed. Fig. 21

shows the comparison of yield surfaces predicted by the Yld2004-18p yield function for both, the hot-band and the cold-

rolled samples. It can be observed, that the increased value of uniaxial tensile yield stress in the TD (q ¼ 90+) is slightly

higher than that in the RD (q¼ 0+). Looking back at the Yq$ q curves in Fig. 10, Yq in the TD is slightly higher than 1.0, which is

consistent with Fig. 21.

Fig. 17. Tricomponent (s11-s22-s12) yield surfaces with constant s12/s contours of the hot-band (a) and the cold-rolled (b) samples predicted by the identified

Yld2000-2D yield function (Barlat et al., 2003). s denotes the uniaxial tensile yield stress along the RD obtained from the virtual tests.

Fig. 18. Tricomponent (s11-s22-s12) yield surfaces with constant s12/s contours of the hot-band (a) and the cold-rolled (b) samples predicted by the identified

Yld2004-18p yield function (Barlat et al., 2005). s denotes the uniaxial tensile yield stress along the RD obtained from the virtual tests.
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Advanced yield functions (Karafillis and Boyce, 1993; Barlat et al., 1997, 2005; Yoon et al., 2006, 2014) generally use both,

uniaxial tensile yield stresses and r-values, simultaneously as an input and, therefore, usually show good predictions of the r-

values and the normalized yield stresses. To some extent the predicted yield surfaces obtained by using different yield

functions show remarkably different performances (Lademo et al., 1999; Wu et al., 2003; Mattiasson and Sigvant, 2008;

Rabahallah et al., 2009; Aretz and Barlat, 2013). In addition, some yield functions identified using r-values provides a good

description of the r-values but a relatively poor reproduction of the yield stress anisotropy, and vice versa. The deformation

modes occurring during sheet metal forming are far more complex than those during uniaxial tension and usually also vary

during subsequent forming operations. It is therefore difficult to conclude, whether the yield functions identified by the

limited uniaxial tensile tests will also performwell in the complex deformation modes. With the virtual laboratory presented

here, a large number of supplementing deformationmodes can be used to identify parameters for advanced yield functions in

Fig. 19. Tricomponent (s11-s22-s12) yield surfaces with constant s12/s contours of the hot-band (a) and cold-rolled (b) samples predicted by the identified

Yld2004-27p yield function (Aretz et al., 2010). s denotes the uniaxial tensile yield stress along the RD obtained from the virtual tests.

Fig. 20. Tricomponent (s11-s22-s12) yield surfaces with constant s12/s contours of the hot-band (a) and the cold-rolled (b) AA3104 aluminum alloy predicted by

the identified Yld2000-2D (Barlat et al., 2003), Yld2004-18p (Barlat et al., 2005) and Yld2004-27p (Aretz et al., 2010) yield functions. s denotes the uniaxial tensile

yield stress along the RD obtained from the virtual tests. The predicted tricomponent yield surfaces are almost the same for both two cases of AA3104 aluminum

alloy, especially, the tricomponent yield surfaces predicted by the Yld2004-18p and Yld2004-27p yield functions for both cases are nearly exactly the same.
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order to identify appropriate sets of suited parameters that match all deformation modes. The identified yield functions,

except Yld91, all show good and actually almost the same performance in fitting yield surfaces, predicting the strength

anisotropy and the deformation anisotropy which are related to the gradients of yield surfaces.

6.3. Convexity of the yield surfaces predicted by the virtual laboratory

The convexity of yield surfaces or yield functions, which is required according to the DRUCKER's postulate, is a crucial

element for conducting nonlinear finite element analysis. Non-convexity of a yield function is likely to cause numerical

difficulties in terms of non-uniqueness or singularity. Also, single crystalline yield surfaces constructed of dislocation slip

systems are generally convex (Raabe et al., 2002a). Although in the current study most of the stress points are well enclosed

by the four identified yield functions, it is pertinent to note that a set of scattered probed stress points, derived from full-field

simulations, is located inside of the fitted convex yield surface hull, as shown in Figs. 14 and 15. In the biaxial tension loading

state of the cold-rolled case, for example, some of the stress points with deformation modes approximating a near plane

strain state, are apparently located inside the identified yield functions and deteriorate the convexity of the yield surfaces

predicted by the virtual tests. In the view of the materials' intrinsic properties, the true local shapes of yield surfaces are

governed by the crystallographic texture, grain morphology, slip anisotropy, self and latent hardening, dislocation patterns

and substructures, as well as the phase distributions to name but a few essential microstructure effects. We therefore assume

that the scatter of the stress points and the partial non-convexity of the yield surfaces result from the combined effects of the

numerical approximations, the representation and discretization of the polycrystalline microstructure in the underlying full-

field simulations, as well as the microscopic plastic deformation mechanisms adopted in the present CP model.

An important feature of deformed polycrystals is that their plastic deformation field is highly inhomogeneous (Sachtleber

et al., 2002; Zhao et al., 2008). The crystallographic texture and the grain morphology result in a significant inter-granular and

intra-granular inhomogeneous distributions of stress and strain, as exampled in Fig. 22, which shows the cold-rolled sample

after uniaxial tension along the direction 45+ to the RD. High resolution CP simulations are capable of mapping such in-

homogeneities and hence provide a more authentic description of the micromechanics of polycrystalline matter as opposed

to conventional homogenization models (Sachtleber et al., 2002; Zhao et al., 2008; Tasan et al., 2014a,b). In cases of the

occurrence of such substantial local imhomogenities in the underlying full-field simulations, corresponding yield points may

deviate from prescribed fitting functions, leading to a local non-convexity (Hu et al., 2015). Furthermore, as the global me-

chanical response of the RVEs is determined from the average of the behavior of single grains, the obvious difference of the

mechanical response of these single grains may increase the numerical errors and then increase the scatter of the yield stress

points. Certainly, this statistical discrepancy can be reduced by increasing the number of grains (i.e., discrete orientations) in

the RVEs.

Generally, the non-convexity problem would occur for a sharp texture or a single component texture, and such non-

convexity is more significant for a rate insensitive model, as elaborated in the work of Savoie and MacEwen (1996). As a

Fig. 21. The shape change of the yield surfaces (s12 ¼ 0) from the hot-band sample to the cold-rolled sample. Both two yield surfaces are predicted by the

identified Yld2004-18p yield function (Barlat et al., 2005).
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rate sensitive plastic flow law which is able to smoothen the sharp corners of yield surfaces was used in the present work, no

sharp corners are observed in the yield surfaces of both, the hot-band and cold-rolled cases. The sharp textures shown in Figs.

4 and 5 have a significant effect on the scatter of stress points in the plane strain sections. Corresponding examples are the

yield loci in the s11 $ s22 plane of the typical cold-rolling texture components of aluminum alloys, i.e., the Cu, Brass, and S

orientations, which showa quite flat section near the plane strain state and a “nose” near the equi-biaxial tension state (Barlat

and Richmond, 1987). Such flat portions of the yield loci interfere with the convexity requirement of yield surfaces for

example in near-plane strain regions as shown in Fig. 15.

For the texture-based yield function identification approaches, Rabahallah et al. (2009) stated that the unrealistic

distortion of the yield surface can be prevented by using of numerous, evenly distributed, and equally weighted stress

reference points. Gawad et al. (2015) suggested that optimizing the distribution of the yield stress points is important for the

identification of yield functions like Yld2004-18p by using a least squares method. Hence, instead of using numerous arbi-

trarily selected stress points (Grytten et al., 2008; Rabahallah et al., 2009; Zhang et al., 2015a), Gawad et al. (2015) reduced the

number of virtual experiments by means of a targeted selection, and also yielded a good performance. Therefore, optimizing

the location of the yield stress points, especially in the region of biaxial tension, is expected to improve the yield surfaces

predicted by the present virtual laboratory.

Given the high sensitivity of the r-values on the gradient of the yield surface, the partial non-convexity of the yield surfaces

may lead to the possible local artificial variations of the r-values in dependence of the uniaxial tensile direction. As shown in

Fig. 12, the r-values obtained from the virtual laboratory decrease monotonically with the tensile direction q for q below 30+,

and there is a plateau in the range from q ¼ 52.5+ to q ¼ 60+. Although these features are not critical, they are a slightly

different from the experimental results.

However, we believe the above features do not represent a shortcoming of our current high resolution CP based virtual

laboratory approach, as these scattered yield stress points and the local non-convexity of yield surfaces are also frequently

observed in mechanical tests (Barlat et al., 1997; Wu et al., 2003; Yoon et al., 2004; Wang et al., 2009; Khan et al., 2010) and

virtual tests (Yoon et al., 2014; Kabirian and Khan, 2015) owing to the inherently inhomogeneous nature of the plastic

deformation of polycrystalline matter. Furthermore, as the yield functions studied in this work are always convex, it can be

figured out that the identified yield functions are reliable and robust to be used in simulations of sheet metal forming

processes. Nevertheless, when the partial non-convexity of the yield surfaces or, equivalently, the scatter of the yield stress

Fig. 22. Stress and strain field fluctuations of a cold-rolled sample after the uniaxial tension along the direction with 45+ to the RD. The average nominal strain is

0.35%, corresponding to a plastic work of about 1 MPa. The RVE used is the one labelled as q ¼ 45+ in Fig. 7(c). A significant inter-granular and intra-granular

inhomogeneous distribution of stress and strain is depicted by the high resolution CP simulation.
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points is too severe, it may deteriorate the convergence of the NLSM and render it challenging to identify adequate fitting

parameters. In the present work, however, the parameters fitting process is robust even for a large number of yield stress

points. This is attributed to the robustness of the LEVENBERG-MARQUARDT optimization algorithm adopted with the analytical

Jacobian matrix. The algorithm is well known for its capability of finding a solution in many cases even if it starts very far off

the final minimum.

In summary, the comparison with the full-field CP simulations which were referred here to as virtual tests and also with

existing experimental data, supports the conclusion that the virtual laboratory introduced in this work is capable of properly

describing, fitting, and reproducing the mechanical anisotropy of metals subjected to sheet metal forming operations. The

methodology presented here relieves the trade-off of engineering forming simulations between accuracy and fitting effort,

i.e., it is often more practical to use a yield function with less fitting parameters owing to the limited accessible mechanical

tests and the efforts associated with identifying those parameters. Moreover, as future extension, it is also possible to study

the influence of strain path changes on the determined yield loci. However, this might require to use one of the more

advanced CP constitutive models implemented in DAMASK which are capable of reproducing some of the mechanisms

associated with complex strain path changes such as the multi-axial BAUSCHINGER effect.

7. Conclusions

A virtual laboratory approach, based on simulating plastic deformation by using highly resolved full-field crystal plasticity

(CP) models with a spectral method is presented here, with the aim to predict the yield surface of polycrystalline materials.

The approach is based on determining the response of microstructure models under various loading conditions. Its inte-

gration into the DAMASK multiphysics modeling package allows to use various advanced CP constitutive formulations. We

apply this virtual laboratory concept to investigate the mechanical anisotropy of an AA3104 aluminum alloy with two

different initial textures, i.e., a recrystallization texture obtained from a commercially produced hot-band and a corresponding

cold-rolling texture. The parameters of four yield functions frequently used in sheet metal forming, e.g., Yld91, Yld2000-2D,

Yld2004-18p, and Yld2004-27p, were determined for both states of the AA3104 aluminum alloy.

A large number of virtual tests with randomly generated deformation modes were performed by using the virtual lab-

oratory. The predicted yield stress points were used to identify the parameters of the yield functions. In addition, uniaxial

tensile tests in different directions were also performed by using the virtual laboratory to obtain both, the deformation

anisotropy (r-values) and the strength anisotropy (normalized yield stresses, Yq). The results of virtual uniaxial tension

demonstrate that the virtual laboratory is capable of replacing themechanical tests that are typically required to extract the r-

values and Yq. Although only yield stresses but no r-value and Yq values were used to identify the parameters, the identified

yield functions, i.e., Yld2000-2D, Yld2004-18p, and Yld2004-27p show good performance in fitting the yield surfaces, r-

values, and Yq simultaneously. In contrast, the Yld91 yield function, due to a smaller number of required parameters, shows

good performance in fitting yield surfaces but relatively poor capability in the prediction of r-values and Yq. The virtual

laboratory simulations and the experimental results show that the presented approach, which combines both accuracy and

efficiency, is a promising micromechanical-based tool for the investigation of mechanical anisotropy of metals and for the

parameter identification of advanced yield functions.

The approach also shows that an efficient multiscale modeling connection can be established between full-field physically

based constitutive CP modeling on the one hand and engineering anisotropy simulations on the other hand by using the open

source DAMASK toolbox (http://damask.mpie.de/). This type of scale bridging simulation is important since sheetmetal forming

simulations that are based on yield surface functions must be designed in a way that allows users to fit them to the underlying

physics that governing plastic deformation of complex engineering materials. In this study we have shown that this type of

cross-scale simulation fulfills the requirement to fit arbitrary yield function parameters by using any kind of specific constitutive

CP models that considers complex textures and adequately reflects the underlying deformation mechanisms.
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Appendix A. Rotation of orientations

As shown in Fig. 2, the transformation form [XYZ] (i.e., [RD-TD-ND]) to [xyz] is written as [xyz] ¼ Q,[XYZ], and Q is the

transformation matrix, which can be expressed by the crystal orientation f41;F;42g using the BUNGE's convention (Bunge,

1982) of the EULER notation as:

Q ¼

2

4
cos f2 sin f2 0
$sin f2 cos f2 0

0 0 1

3

5

2

4
1 0 0
0 cos F sin F

0 $sin F cos F

3

5

2

4
cos 41 sin 41 0
$sin 41 cos 41 0

0 0 1

3

5 (A.1)

Similarly, the transformation matrix R between [XYZ] and [X
0

Y
0

Z
0

] is:
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½X0Y 0Z0& ¼ R$½XYZ&; with R ¼

2

4
cos q sin q 0
$sin q cos q 0
0 0 1

3

5 (A.2)

As a result, the transformation form [X
0

Y
0

Z
0

] to [xyz] is [xyz] ¼ Q,RT,[X
0

Y
0

Z
0

], then the orientation of grains in the new axes

[X
0

Y
0

Z
0

] is f41 $ q;F;42g.
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