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Abstract

We present a physics-based constitutive model of dislocation glide in metals that explicitly accounts for the redistribution of disloca-
tions due to their motion. The model parameterizes the complex microstructure by dislocation densities of edge and screw character,
which either occur with monopolar properties, i.e. a single dislocation with positive or negative line sense, or with dipolar properties,
i.e. two dislocations of opposite line sense combined. The advantage of the model lies in the description of the dislocation density evo-
lution, which comprises the usual rate equations for dislocation multiplication and annihilation, and formation and dissociation of dis-
location dipoles. Additionally, the spatial redistribution of dislocations by slip is explicitly accounted for. This is achieved by introducing
an advection term for the dislocation density that turns the evolution equations for the dislocation density from ordinary into partial
differential equations. The associated spatial gradients of the dislocation slip render the model nonlocal. The model is applied to wedge
indentation in single-crystalline nickel. The simulation results are compared to published experiments (Kysar et al., 2010) in terms of the
spatial distribution of lattice rotations and geometrically necessary dislocations. In agreement with experiment, the predicted dislocation
fluxes lead to accumulation of geometrically necessary dislocations around a vertical geometrical border with a high orientation gradient
below the indenter that is decisive for the overall plastic response. A local model variant without dislocation transport is not able to
predict the influence of this geometrical transition zone correctly and is shown to behave markedly softer.
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords.: Crystal plasticity; Microstructure; Dislocations; Geometrically necessary dislocations; Indentation

1. Introduction thorough understanding of the underlying substructure

evolution associated with indentation is of great

The indentation of metals is widely used for material
characterization and the derivation of mechanical proper-
ties [1-7]. Although the actual deformation process is sim-
ple, the boundary conditions and kinematics involved are
complex. Accordingly, structure formation below indents
is complex too, rendering the derivation of the correspond-
ing structure—property relationship challenging. Hence, a
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importance.

One reason for the complexity of the deformation state
is its strong variation both in space and time. Since the load
of the indenter is locally applied, high gradients in the
stress, strain and rotation fields naturally arise. As demon-
strated by using 2-D and 3-D electron backscatter diffrac-
tion (EBSD) methods for a sphero-conical indenter, the
loading of the material under the indenter changes with
increasing indentation depth and induces a rapid change
in the activated slip systems in space and time [8—14].
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Variations in the plastic deformation also lead to a het-
erogeneous distribution of dislocations: regions of high
plastic slip activity naturally contain more dislocations
than weakly deformed regions. This relation between slip
and the statistically stored dislocation (SSD) density can
be described well by a local dislocation-based constitutive
model [15-17]. If all dislocation loops are statistically
equally distributed within and among the slip systems, then
on average the signed character of the single dislocation
segments mutually compensate and the ensemble of dislo-
cations is neutral in the sense that no net Burgers vector
(or plastic incompatibility) arises. A gradient in plastic slip,
however, gives rise to an imbalance of dislocation segments
of positive and negative sign, thus building up an excess of
signed dislocations, also referred to as geometrically neces-
sary dislocation (GND) density [18-25]. It is these GNDs
that accommodate gradients in the lattice rotation field.
However, they cannot confidently be predicted by a local
constitutive law, since their origin—namely the redistribu-
tion of dislocations—is inherently nonlocal [26-30].

Initiated by the work of Walgraef and Aifantis[31], a new
simulation approach has emerged in recent years; the so-
called continuum density-based dislocation dynamics
(CDDD) models treat dislocations as continuously defined
dislocation density that evolves in time but also proceeds
in space [32-35]. While similar in spirit, they differ in the
degree of detail for the description of the dislocation density.
A very detailed description is achieved when dislocations are
represented by a higher-order dislocation density tensor that
retains information about the line direction and the curva-
ture [36]. With this description it is possible to formulate
evolution laws for the dislocation density based only on
the motion and balance equations of dislocations. When
supplemented by a kinetic law, this formulation captures
the kinematics of crystal plasticity in fine detail [37]. In order
to reduce the substantial computational effort associated
with such approaches, various simplifications were sug-
gested to reduce this large configuration space: the restric-
tion to two excess densities of edge and screw character
plus their mean curvature and the total dislocation content
[34], a single, but spatially variable line direction plus its
mean curvature [35], the use of four density measures of
straight edge and screw dislocations of opposite signs
[31,33], or one excess density and the total dislocation den-
sity when restricting the model to two dimensions [38].

In our current approach, we develop a model that
includes dislocation transport in a fashion similar to
Arsenlis and Parks [33]. We apply this model to an existing
microindentation experiment in single-crystalline Ni that
was performed by Kysar et al. [39]. This experimental
reference is chosen since the deformed volume in the exper-
iment is, on the one hand, large enough so that statistical
effects such as dislocation source sampling can be
neglected; on the other hand, it is small enough so that
dislocation transport is expected to play a significant role.
We will analyze the effect of the dislocation transport in
the simulations by means of a comparison with a local

model variant without dislocation transport. The compar-
ison to the experimentally obtained results then enables us
to evaluate the generation of GNDs and their role in the
mechanical response of the material.

The paper is organized as follows. In the next section we
present the constitutive model with a description of the dis-
location evolution equations, the dislocation kinetics and
the integration into a finite strain framework. In Section 3
we introduce the setup of the experiment [39] and describe
the implementation in the simulation. Section 4 presents
the results both of the experiment and the simulations. A
comparison of these results and a discussion follows in Sec-
tion 5 with conclusions given in Section 6.

2. Constitutive model
2.1. Continuum mechanical framework of deformation

The description of the kinematics follows the established
continuum mechanical framework of finite strain, as out-
lined, for instance, by Roters et al. [40]. The multiplicative
decomposition of the deformation gradient

F=F.F, (1)

splits the deformation into a purely inelastic (or plastic)
part, Fj,, and a remaining “elastic” part, F., which accounts
for elastic distortions of the crystal lattice and rigid body
rotations [41]. Based on the right Cauchy—Green deforma-
tion tensor, an elastic strain measure is given by the Green—
Lagrange strain tensor E.:

1
E.=—(F.'"F. - 1), 2
g ) @
with I the identity tensor. The second Piola—Kirchhoff
stress S is related to this elastic strain tensor as its work-

conjugate stress measure through:
S =detF, F,'eF." =C: E, (3)

with C being the fourth-order elasticity tensor and & the
Cauchy stress.

Plastic deformation is driven by § and in the present
case is assumed to be mediated exclusively by dislocation
glide on slip systems defined by two unit vectors n and s
as the slip plane normal and slip direction with the latter
being parallel to the respective Burgers vector b of length
b. The shear rates j° resulting from corresponding changes

in slipped area on systems £ =1,..., N contribute addi-
tively to the plastic velocity gradient L, [42]:
L =Y ¥ senr, (4)

<

which in turn results in an evolution of the plastic deforma-
tion gradient at the rate:

F, = L,F,. (5)

The driving force for dislocation motion is provided by the
resolved shear stress 7¢:
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=8 (s°®n), (6)

which is the second Piola—Kirchhoff stress S projected onto
the slip system.

2.2. The microstructure and its evolution: crystal orientation

The model is based on two main microstructural prop-
erties that describe the state of the material, namely orien-
tations and dislocations. The first microstructural property
is the crystal lattice and its orientation.

During deformation the orientation of the crystal lattice
changes. The rotation that translates the initial crystal
orientation O, into the current crystal orientation O is
referred to as crystal rotation R.

0 = RO, (7)

The current crystal orientation O rotates the laboratory
coordinate system into the lattice coordinate system. It
can be obtained by splitting the elastic deformation gradi-
ent F. into a rotation part and a stretch U by means of a
polar decomposition.

F.=0"U=(RO,)"'U (8)
Hence, the rotation tensor R is obtained by:

R=U"F!0;. 9)

2.3. The microstructure and its evolution: dislocation
structure

The second microstructure parameter in the current
model is the dislocation structure. Here, it is approximated
by a set of densities ¢¢ pertaining to the slip systems
E=1,...,N. A distinction between the different densities
on a specific slip system is made via the:

e dislocation character ¢: edge (subscript “e”) or screw
(subscript “s”)

e dislocation polarity: monopolar density of positive or
negative sign (subscript + or —), or unsigned dipolar
density (subscript +).

Monopolar dislocation density. A positive or negative
sign reflects the monopolar nature of a single dislocation’s
stress field. Fig. 1 illustrates the convention adopted in this
work for the sign of edge and screw dislocations on a slip
plane. The signed character of these dislocations entails a
directionality of their motion under a given resolved shear
stress. According to Fig. 1, for a positive shear increment,
i.e. increase in the slipped area by loop expansion, these
directions of motion m follow as:

m;, =s° (10a)
m. = —s° (10b)
m:, =n" xs° (10c)
m. = —n° xs°. (10d)

Fig. 1. Schematic dislocation loop (dark shade) on its slip plane with
normal »¢ and slip direction s°. Arrows along the loop periphery indicate
positive line direction giving rise to the convention for signed dislocation
characters as shown. The small (dashed) interior cube illustrates the crystal
unit cell orientation. A displacement step by b° occurs when passing from
below to above the shaded slip plane, i.e. along its normal n°.

Accordingly, the plastic shear rate can be split into four
parts for the four types p € {e +,e —,s+,s—} of mono-
polar dislocation populations.

’=D 0= g b (11)
p P

Dipole dislocation density. The presence of stable dipoles

enables dislocation annihilation and is hence explicitly
accounted for in the present parameterization. Stable
dipoles contain two monopolar dislocations of the same
character but opposite sign. Hence two dipole densities,
05, and @, per slip system are tracked and sum up to
the overall dipole density on slip system ¢&:
0% = 0t + i (12)
These densities quantify the length per volume contributed
by both constituents, thus dislocations changing between
monopolar and dipolar state do not alter the total of both
densities.

A dipole will be stable against dissociation under the
resolved shear stress 7 if the mutual elastic interaction
between the two constituents is strong enough, i.e. if the
distance between the glide planes of the two dislocations
does not exceed:

5 ub 1
_ 1 1
© T 8n(1—v) || (13a)
joprbl
Y 4 |1 (13b)

with u the shear modulus and v Poisson’s ratio.

Total and excess dislocation densities. The polar nature
of dislocation densities allows to discriminate between the
accumulated (total) measures according to:

Y (142
—_—

0 =05, +o5 +o5 (14b)

0= 05, + 05+ o (14c)
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and the (either positive or negative) excess densities of edge
and screw character

(14d)
(14e)

Qhe = 05 — 05
Qgs = Q;— - ng—

Forest dislocation density. Following Ma and Roters
[43], the density on any particular system { can be projected
with respect to system ¢ into a corresponding forest den-

sity. By summation of the contribution of each slip system
{, the overall forest density on system ¢ results as:

() |+

(15)

The mean spacing between forest dislocations piercing
through slip system & can be derived from the forest dislo-
cation density:

K= (ef) " (16)

¢ _ ¢ 4
Qf*Qe’n !

2.3.1. Dislocation transport within a single crystal

The state of dislocation in a crystal lattice can be
constructed from superposition of the contributions of all
dislocation segments present in a given volume (including
the case of multiple slip) as [/ ® b do, where I denotes a
unit vector along the dislocation line direction. This state
of dislocation corresponds to the Kroner—Nye tensor «
[19,18], which in turn is equivalent to the negative
curl (incompatibility) of the plastic distortion B,. The
contribution per individual slip system to this state reads:

ZQ;I; b=a" = —curlf;. (17)

Since segments of opposite line direction cancel out in
above sum, only the excess density contributes to
incompatibility.

E:QACIL.Jr ®@b=a=—curl(y n®s), (18)

where superscripts & for the slip system were dropped (like-
wise in what follows). To arrive at the rate of change of the
dislocation content, Eq. (18) is differentiated with respect
to time ¢.

8t(QAele+ + QAslS+) ® b= _Curl(,}.}/b n) ® b (19)

Without loss of generality, we choose our coordinate sys-
tem as shown in Fig. 1 to transform Eq. (19) into:

Oas 0 —grad, /b
O —0pe | =—curl] 0 | = grad,y/b |, (20)
0 7/b 0

which reflects the increase of (positive) excess density
resulting from a (negative) gradient in the slip rate along
the (positive) direction of dislocation motion:

grad (se+ve+ + Qe Ve- + Qs+v5+ + Qs—vS—)

*grads(ge+ve+ + Qe Ve + 05 Vst + Qs—vsf)a

atQAs -
atQAe =

where Eq. (11) was substituted for the shear rate.

To uncouple the equation system of all four dislocation
types we note that the dislocation densities of same charac-
ter but opposite sign evolve independently of each other:

0:0¢, + grad (e, ve) = —Kes grad,(oyvs) (22a)
010, — grad(g, ve) = (1 — Kes) grad,(o,vs) (22b)
and

0105, + grad, (Q5+vs) = —Kse gradr(@eve) (220)
0,0, — grad, (Qs vs) = (1 - Kse) gradt(@eve)7 (22d)

with k. and «k, denoting arbitrary fractions of 1. The right-
hand side terms in Eqs. (22a)—(22d) reflect the fact that a
gradient in slip caused by one character of dislocations re-
sults in changes in the other character (here, formation or
annihilation of kinks). In the present treatment, such effects
are considered to be of second order, which is tantamount
to the assumption of straight dislocations that are not
interconnected. Dropping these terms transforms the above
evolution equations for the dislocation densities into pure
transport equations.

8th+ + grads(ge+ve) =0 (233)
910 — grad,(g._ve) =0 (23b)
and

dios, + grad, (o, vs) =0 (23¢)
9o, — grad, (¢, v) =0 (23d)

In the following we denote the product of the dislocation
density and Velocity of type p on slip system ¢ as disloca-

tion flux f5 = g;v; with its scalar magnltude =00
We can then summarize Egs. (23a)-(23d) a
i, +div f; = 0. (24)

2.3.2. Dislocation generation

We regard multiple cross-slip of screw dislocations as
the most relevant mechanism for dislocation generation.
When identifying the obstacles that promote cross-slip with
the dislocation forest, the multiplication rate due to multi-
ple cross-slip of screws linearly depends on the inverse of
the forest dislocation spacing. With [js|/b as the rate of
slipped area per volume due to glide of screw dislocations,
one obtains the relationship:

|7s|

b’
In the following, any source or sink term for the dislocation
density will be denoted by @ and goes to the right-hand
side of Eq. (24).

Dislocations of edge type contribute to a minor extent to
the production of new dislocation line length by loop
expansion. Hence, we define an effective multiplication rate
mut @, for the total dislocation generation

_ ke + 3] (Rife +5)ver

mu ¢ = 5 26
t kab s ks (26)

(25)
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with 0 < k; <1 as a parameter that controls the edge
contribution to dislocation generation, and with a second
(phenomenological) scaling parameter 10 < k, < 100.

2.3.3. Formation and dissociation of dislocation dipoles
Dipole formation. A dipole is formed if a gliding disloca-
tion encounters a dislocation of opposite sign within a dis-
tance closer than d. Monopolar density can transform by
either actively moving towards an opposite dislocation,
or by passively having an opposite dislocation move
towards itself. These two configurations lead to a combined
transformation loss rate of monopolar dislocations of:

mo—»diq’sﬁ» = _2526(Qc_f6+ + Qc+fc—) (273)
mo~>di¢cf = 72dAC(Qc+J(‘C* + chfc+)' (27b)

Since the total dislocation content is not changed by such
transformations, the corresponding rate of change (pro-
duction) of dipolar density follows as the negative sum of
Egs. (27a) and (27b).

moadi¢c:t = 4dAc(Qc+f‘cf + Qc—f‘ﬁ») (270)

Dipole dissociation. Dipoles that were formed by gliding
monopolar dislocations can dissociate again when the
stress level increases. If we assume that the distribution
of dipole heights is uniform within the stability range, then
a reduction in the upper stability limit due to increasing
resolved shear stress will lead to a symmetric dissociation
of dipoles back into monopolar dislocation density.

min{@,a?c; 0}
iamo@c = Qe+~ < 28a
d + + d. —d. ( )
1
di~>modjcnL = diﬂmo(pcf = _Ediﬁmo@ci (28b)

2.3.4. Dislocation annihilation
Due to the low self-diffusivity of Ni at room tempera-
ture, we neglect thermally activated annihilation by climb

of edge dislocations. Hence, a decrease in the overall dislo-
cation density is considered a result of athermal annihila-
tion of close dipoles that have a glide plane separation
below d, [44]. The corresponding rate reads:

athAnn qjei = _4de(Qe+fef + QeffenL) - 236@&& (fé, +fe+)7 (29)

where the second term accounts for close encounters
of monopolar dislocations with one constituent of a
dipole.

Screw dipoles can annihilate by cross-slip [45]. While
this process can be thermally activated, we assume it to
take place instantaneously for all screw dipoles having a
glide plane separation below d, given the high stacking-
fault energy of Ni. Consequently, the cross-slip process of
screw dipoles is treated in the same manner as the athermal
disintegration of edge dipoles.

cross(ps:t = _4Js (Qs+fsf + stf‘SJr) - ZdVSQsi(,f* +f‘5+) (30)

However, the minimum glide plane separation that con-
trols these two mechanisms can differ significantly (see
Table 1).

While the annihilation of edge dipoles produces vacan-
cies or interstitials, screw dipoles that annihilate by cross-
slip deposit two edge jogs on the collinear slip system. Each
annihilated screw dipole creates two edge jogs of length
equal to the mean dipole height

1 .
liog = §(dS +d,). (31)

The number of screw dipoles that annihilate by cross-slip
can be determined from the cross-slip annihilation rate
aross Ps» 1f one assumes that the average segment length of
a screw dipole is proportional to the forest spacing.
Then, screw dipoles of the primary slip system & that anni-
hilate by cross-slip generate an average density of both
positive and negative edges on the according collinear slip
system (:

Table 1

Constitutive parameters of single-crystalline nickel used for the simulation of the wedge indent.

Property Value Unit Ref.

Cubic elasticity constants Cyy 246.5 GPa Hirth and Lothe [51]
Ci 147.3 GPa Hirth and Lothe [51]
(oM 124.7 GPa Hirth and Lothe [51]

Isotropic shear modulus u 94.66 GPa Hirth and Lothe [51]

Poisson ratio v 0.277 Hirth and Lothe [51]

Length of Burgers vector b 0.248 nm Cordero et al. [55]

Min. dipole separation edge d. 2.6 nm Tippelt et al. [52]

Min. dipole separation screw dy 12 nm

Mean free path prefactor k> 45

Edge multiplication factor ky 0.1

Initial dislocation density 9 2.88 - 10'2 m2

Solid-solution activation energy Oq 1.12 eV

Solid-solution concentration Cat 5.1077

Solid-solution strength Ts 8.3 MPa

Attack frequency Va 50 GHz

Dislocation mobility B 0.248 ms~! MPa~!

Edge jog formation factor k3 0.01
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¢ ¢ cross¢§ l'o

joePey = joePe = —k3 2 ~ f
L B R N AN 32
__Z 9f s+ s ) Cross ¥s4 ( )

where k3 is a scalar factor between 0 and 1.

2.3.5. Summary of dislocation density evolution equations

The equations derived above form a system of partial
differential equations (PDEs) with the local rate equations
for generation, annihilation, and state change as sink or
source terms. Hence, for each slip system & we have the fol-
lowing set of PDEs:

al@§+ + din§+ — mult ¢§+ + moﬂdi(pi +di—mo QSSJr + jog ¢§+ (333)
0105 +diVFL = @i+ mo-ai i +ai-moPi +iog®:_ (33b)
3,Q§+ + divf§+ = mult ¢§+ + mo—di ¢§+ +di—mo ¢§+ (330)
0105 +dive = ® +mo-di® +aimo®:_ (33d)
0105+ = athamn @5s + mo—di Pss + dimo Pis (33¢)
at@fi = cross ¢§i + mo—di ¢§i + di—mo (pfi (33f)

2.4. Dislocation kinetics

The driving force for the in-plane motion of dislocations
is the resolved shear stress 7 as defined in Eq. (6). The glide
motion of dislocations is impeded by various obstacles, of
which some may be overcome by thermal activation, and
some by mechanical stresses alone.

The mutual interaction of dislocations is considered too
strong as to allow for thermal activation. Hence, we
describe the effect of dislocation obstacles in terms of a
mechanical threshold stress, referred to as the critical
resolved shear stress 7.,. For an applied resolved stress
below this value no dislocation activity occurs. Above this
threshold, an effective resolved shear stress t.; that is
reduced by the critical resolved shear stress is acting as
driving force for dislocation motion [46].

(7] — ter) sign © if |7 > T
Teff =

34
0 if 7] < 1 (34)

The flow stress 7., accounts for the different strength a** of
the reaction products of the interacting dislocations on slip
systems ¢ and ( [47].

= ub [Y atet (35)

In the case of face-centered cubic (fcc) crystals, six distinct
reactions with characteristic strength can be identified. Val-
ues for junction and lock forming are taken from Kubin
et al. [48]. However, in contrast to Kubin et al. [48], we as-
sume the coefficients for the self-interaction and the copla-
nar interaction to be equal to zero. Instead, self-hardening
is implied by the sink term for the monopolar density due
to formation of dipoles, which decreases the amount of the

available carrier density for dislocation slip (see Egs. (27a)
and (27b)). A second source for self-hardening stems
from the deposition of edge jogs on the cross-slip plane
due to the annihilation of screw dipoles as described in
Section 2.3.4. These edge jogs act back on the primary slip
system via the strong collinear interaction contributing to
self-hardening.

In addition to dislocation obstacles, we consider solid
solution atoms of concentration c, as further obstacles
against dislocation motion. Thermal activation of this
effect is treated according to Kocks et al. [49]. The proba-
bility P of overcoming an obstacle by thermal activation
at temperature 7 is given by:

B Os |Teir |
aChCE),

where Qg is the activation energy required to overcome the
obstacle and g is its strength. Then, the waiting time ¢, in
front of an obstacle is determined by the product of the at-
tempt frequency v, and the success probability P.

1
=15 (37)

After a successful event the dislocation will on average tra-
vel a distance that is equal to the mean spacing between
obstacles Ag = % The travel time for this distance de-
pends on the travel velocity v, which is considered as linear
viscous drag law with mobility B.

vt = Bterr| (38)

The effective velocity can then be determined from the
waiting time at an obstacle and from the travel velocity
between the obstacles.

s
_—

_ Ve Os [, |tenl
n [bva P kgT ! Tg +

3. Problem setup

vV =

-1
sign T 39
Blreffl] g (39)

As a suitable reference example for comparing simula-
tions with experiment we use an elegant wedge indenta-
tion study published by Kysar et al. [39] (a more
detailed view on the same experiment has recently been
published by Dahlberg et al. [50]). In this experimental
work, pure single-crystalline fcc Ni was indented by a
90° wedge indenter to an indentation depth of about
200 um. The indent was placed into a (00 1)-oriented sur-
face; the indenter axis was aligned parallel to the [110]
lattice direction (see Fig. 2). Kysar et al. [39] suggest that
these specific loading conditions lead to a plane-strain
deformation state. After indentation, the sample was cut
in half normal to the wedge indent and the exposed
surface was analyzed by EBSD.
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Fig. 2. FE mesh used for the simulation of wedge indentation. The
indenter is modeled by two flat surfaces that have an inclination angle of
90° and a flat tip of 5 um width.

The experiment is modeled by a FE simulation with a
planar mesh of 1092 hexahedral elements with quadratic
interpolation functions and reduced integration capacity
(Fig. 2). Except for the indented surface, all nodes on the
outer surfaces of the model were constrained to in-plane
motion, i.e. no displacement normal to the respective sur-
face was allowed. In particular, displacement in the direc-
tion of the wedge indent was constrained to be zero on
the front and back surface in Fig. 2 in order to mimic
plane-strain conditions. Due to the plane-strain conditions
the mesh is only one element thick. The lateral extent of the
FE mesh does not cover the complete sample domain
(which was approximately 1 x 1 x 1 ecm?®), but is chosen
sufficiently large for the boundaries to not influence the
predictions. The wedge indenter was modeled by two rigid
surfaces that form an angle of 90° and a flat tip surface of
5 um width (see blow-up in Fig. 2). The exact shape of the
indenter tip does not, however, play an important role as
long as the tip geometry is smaller than the minimum dis-
tance between nodes, since in the simulation a contact con-
dition is evaluated only at and not in between nodes.'
Contact conditions between the indenter and material sur-
face were modeled by Coulomb friction with a friction
coefficient of 0.3.

The sample coordinate system is chosen such that the
indentation proceeds in negative z direction and the inden-
ter axis is parallel to the x direction. This implies an orien-
tation of the single crystal of ¢, =315°, ¢ =0°, ¢, =0°
expressed in Bunge notation, such that in the reference con-
figuration the [110] direction corresponds to the x axis, the
[110]direction to the y axis and the [00 1] direction to the z
axis.

! While Kysar et al. [39] report a tip radius of 100 nm for the indenter
that was used in experiment, Dahlberg et al. [50] used a tip radius of
100 pm for their simulation of the same experiment.

400 T T T T T T T T T T T T T T T T

<
g L _
= 300 |- —
2 L |
=
2 200 — —
é’ L = == = experiment [54] -
W
= - —
2 100 e SiMulation

O 1 1 1 1 | 1 1 1 1 | | | | 1 I 1 1 1 1

0.00 0.05 0.10 0.15 0.20

logarithmic tensile strain

Fig. 3. Stress-strain curve of a tensile test of a polycrystalline sample.
Experimental data was reproduced from Keller et al. [54] and used for
fitting of the material parameters.

Elastic constants of Ni are taken from Hirth and Lothe
[51]. An experimentally obtained value for the minimum
dipole separation distance d. is taken from Tippelt et al.
[52]. The self-diffusivity of Ni at room temperature was cal-
culated on the basis of material parameters from Gottstein
[53]; however, the self-diffusivity at room temperature is
small enough so that dislocation climb can be neglected.
All other material parameters have to be fitted to experi-
mental data, but have clear physical bounds. Apart from
a force—displacement measurement of the actual indenta-
tion experiment, Kysar et al. [39] do not provide further
material characteristics of the sample. Therefore, data from
uniaxial tensile tests of highly pure polycrystalline Ni taken
from Keller et al. [54] were used to fit the material param-
eters of the model. The stress—strain curves of both exper-
iment and fitting simulation can be seen in Fig. 3. A list of
all material parameters is given in Table 1.

4. Results obtained from comparing wedge indentation
simulations with experiment

4.1. Load-displacement response

Fig. 4 compares the load—displacement response of the
indentation experiment to two simulations, one with the
nonlocal model and one with a local model variant that
does not include the transport term. Surprisingly, the local
simulation results perfectly match the experiment for small
indentation depth up to a displacement of about 75 pum.
However, for larger displacements above 75 um, the exper-
imental load—displacement curve becomes notably steeper
as compared to the simulation, such that the maximum
load for the local simulation is about 28% lower than in
the experiment. In general, the nonlocal simulation reveals
larger forces than the local simulation; hence, the maxi-
mum load is closer to the experiment. However, similar
to the local simulation, the slope of the load—displacement
curve deviates significantly from the experiment in not
showing a distinct increase at larger indentation depths.
One main reason for this might be the improper account
of friction forces. Although the friction coefficient was
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Fig. 4. Load-displacement curves of the wedge indent in single-crystalline
nickel. Dotted curve represents experimental values reproduced from
Dahlberg et al. [50], solid black and gray lines are nonlocal and local
simulation results, respectively.

chosen comparably high at a value of 0.3, the influence on
the forces was found to be marginal (at zero friction the
maximum load reduces by merely 2%). This indicates that
the influence of friction is underestimated in the simulation.
Since the friction force is expected to grow proportionally
with the displacement [56], this could explain the deviations
at higher deformations. Another probable source of error
is the fitting of the material parameters against tensile test
data of not exactly the same material as used in the inden-
tation experiment. Also, the tensile test specimens in Keller
et al. [54] had a mean grain size of 40 um, which could give
rise to a visible grain size effect. Since the fitting simulations
are based on the local model, such a grain size effect would
not have been taken properly into account, which may
be one explanation for the systematic overestimation of
forces at small deformation in the nonlocal indentation
simulations.

4.2. Lattice rotation and GND density

In addition to the load—displacement curve, Kysar et al.
[39] measured the lattice rotations around the indent by

Experiment [39]

EBSD. Fig. 5 juxtaposes maps of the experimentally
obtained lattice rotation in the yz plane and the simulated
rotation maps. Both reveal the same features, although, in
general, the simulation slightly overestimates the rotations
compared to the experiment. Regions of high rotation can
be found on both flanks of the indent and directly below
the tip of the indent. A boundary running vertically down
from the indenter tip divides the sample into two halves
with symmetric rotation patterns but inverted sign. The
out-of-plane rotations were negligibly small both in exper-
iment and simulation.

The observation that the absolute values of the rotations
are higher in the simulations compared to the experiments
can be explained in terms of the fact that the highest
reorientation would be expected to occur close to the
interface between indenter and crystal. However, the
metallographic preparation required for the EBSD charac-
terization leads to a modest curvature of the sample edges.
Hence, the contact area between indenter and sample can-
not be mapped.

From the experimentally obtained lattice rotations
Kysar et al. [39] derived lower bounds for the L; norm of
the GND density, i.e. for the sum of the absolute values
of edge and screw GNDs over all slip systems. This lower
bound is equivalent to the actual value when only one or
two effective slip systems are active. The obtained map of
GND density is shown on the left-hand side of Fig. 6 with
the corresponding L; norm of the simulated excess disloca-
tion density on the right. The experimental and simulated
dislocation densities match very well both qualitatively
and quantitatively. In particular, both reveal the highest
densities of GNDs around the evolving border beneath
the indenter. To both sides of this boundary, GNDs of
about 10 times lower density extend into the material and
form bands that draw an angle of about +45° with the
deformation-induced boundary. The same feature with
similar angles occurs in the simulation, yet not as finely
structured due to the limited mesh resolution and the
disregard of the discreteness in dislocation sources. While
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Fig. 5. In-plane lattice rotation as obtained from experiment [39] and from simulation.
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Fig. 6. GND density as obtained from experiment [39] and from simulation on a logarithmic scale.

in the experiment no detailed description of the GND
distribution on the individual slip systems was possible,
the simulation provides information about this distribution
with respect to slip system and dislocation character (edge
and screw) as shown in Fig. 7.

4.3. Strain and stress state

In order to understand the material behavior, especially
with respect to dislocation activity, it is helpful to map the
strain and stress state below the indenter.

Fig. 8 shows a map of the simulated von Mises logarith-
mic strain after unloading. It reveals several distinct
regions of concentrated strain and a symmetric distribution
with respect to the vertical indentation axis. The highest
strains of about 1 occur directly under the indenter tip.
Around the tip we observe a triangular region with still
comparably high strains around 0.5 that encloses approxi-
mately the same area as the actual indent. Within this cen-
tral region two deformation modes prevail. Directly under
the indenter tip the material deforms by compression in the
z direction and extension in the y direction (see right side of
Fig. 8). In the lateral corners of the triangle the material
rather deforms by simple shear. Two regions of slightly
lower equivalent strain are visible on both sides of the sym-
metry axis. They have a beam-like shape that points away
from the symmetry axis at an angle of nearly 45° and
extends into the sample to approximately five times the
indentation depth. The first region, which connects to the
lower sides of the central triangular region, exhibits the
same deformation mode as under the indenter tip, namely
compression in the z direction and extension in the y direc-
tion. The second region, which starts slightly below the
flank of the indent, reveals biaxial strain with extension
in the z direction and compression in y direction. In
between these strain concentrations, the material stays
almost undeformed with ¢ < 0.1.

Fig. 9 shows the equivalent Cauchy stress just before
unloading (left) and after unloading (right). In both the

loaded and unloaded condition there are mainly two differ-
ent regimes (however, this differentiation is less pro-
nounced for the unloaded situation). In a circular area of
about the indentation depth around the indenter the mate-
rial faces almost pure hydrostatic pressure. Around this
central area of hydrostatic pressure, the stress has uniaxial
compressive character. The principal direction of this com-
pressive stress points radially away from the central regime.
This means that on the indentation axis the compressive
stress acts in the z direction, i.e. in the direction of the
evolving boundary, while close to the material surface the
principal axis of the stress lies almost parallel to the y axis.
The highest stress occurs in between these two positions
when the principal stress axis makes a 45° angle with the
indentation axis, i.e. is perpendicular to the indenter flanks.

While the highest strain is found in a circular area
directly under the indenter, the highest stress values are
found around this area. It is just at the edge of these two
areas where most of the plastic shear occurs, as will be dis-
cussed next.

4.4. Plastic slip

The deformation of the material under the indenter is
accomplished by only six slip systems (Table 2). All other
systems do not significantly contribute to plastic deforma-
tion. As shown by Rice [57] and in detail for the current
geometry by Kysar et al. [39], the six active slip systems
form three pairs of “partner” slip systems that coopera-
tively accomplish a plane-strain deformation when sub-
jected to a line load along the [110] direction. The two
collinear slip systems 3 and 6 in combination allow for slip
in the direction of [110] on an effective slip plane (001),
hence shear in the (110) plane. The two coplanar slip sys-
tems 7 and 8 in combination allow for slip in an effective
direction [112] on the slip plane (111), hence also shear
in the (110) plane. Finally, the two coplanar slip systems
10 and 11 in combination allow for slip in an effective direc-
tion [112] on the slip plane (111), hence again shear in the
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Fig. 7. Simulated accumulated plastic shear and GND densities for the six active slip systems below the wedge indent.
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Fig. 8. Simulated von Mises logarithmic strain distribution with schematic representation of the predominant deformation modes around the wedge

indent.

(110) plane. All six observed activated slip systems lead to
a plane-strain deformation in the (110) lattice plane, which
is normal to the lab x axis. The exact distribution of the
accumulated plastic slip on the six active slip systems is
shown in the second column of Fig. 7. The two “partner”
slip systems cover the same regions of activity, but with
inverted signs of the accumulated slip due to the symmetric
orientation of the two slip systems with respect to the
indentation axis. The most striking feature of the maps
for slip systems 7/8 and 10/11 is the sharp edge of the
slipped volume right below the indenter tip, which is in
contrast to the gradual decay in slip activity elsewhere.
Fig. 10 shows the evolution of the shear rate on three of
the active slip systems with increasing indentation depth;
the shear rate on the other slip systems follows from inver-
sion of sign. On slip system 6, plastic slip starts in two
bands that point away from the (undeformed sample) sur-
face at a 45° angle. With increasing indentation these
microbands of concentrated slip become broader, less
intense, and move downwards. At the same time, a region
of no slip activity expands around the indenter tip. This
corresponds to the hydrostatic pressure regime seen in
Fig. 9 that does not provide any resolved shear stress for
plastic slip. The slip activity on slip system 8 also starts
in two bands of 45° from the surface. However, the active
regions evolve differently on both sides of the rotation
boundary. The red band on the right is moving up while
keeping its relative position on the indenter flank. The blue

before unloading

band on the left side splits up into two branches with an
inflection point at the boundary that moves down. The
upper branch describes an arc towards a point at the same
relative position on the indenter flank as where the red
band starts at on the left side. With increasing indentation,
the arc bows out, leaving behind a region of virtually no
slip activity similarly to what can be seen for slip system
6. The lower branch of the active region becomes broader
to the bottom with increasing indentation and rotates
towards the indentation axis. The slip activity on system
10 evolves accordingly, with reflection at the indentation
axis and inversion of sign.

5. Discussion
5.1. Analogy to closing crack

Saito and Kysar [58] proposed an analogy between the
stress and deformation fields around a closing crack and
those around the moving contact singularity at the indenter
flanks, where the indenter loses contact with the surface.
They derive analytical expressions for the stress field
around the singularity if the included angle of the indenter
approaches 180°. It turns out that for an ideally plastic
material this implies that plasticity occurs in confined rays
that emanate from the contact singularity under certain
angles, which can be determined analytically. In a compan-
ion paper, Saito et al. [59] could verify these characteristics

after unloading

Ocq/MPa
800
v
150um 1] 150 um 0
I |

Fig. 9. Simulated von Mises Cauchy stress around the wedge indent before and after unloading. Main stress states are indicated by white arrows.
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Table 2
Face-centered cubic slip systems used in the simulations. Active slip
systems are listed in black, all others in light gray.

14 Slip plane Slip direction System number as in [39]
3 (111 [110] 2
6 (111) [110] 2
7 i 011] 3
8 (111) [1o1] 3

10 (1
11 4l

— —
— —
(=)
—_
—_
—
—_

of the deformation field for simulations with a phenomeno-
logical crystal plasticity model. The plasticity model used in
this work results in very similarly oriented plastic rays ema-
nating from the contact singularity point, as can be seen
from the match against the analytically predicted angles
[58] that are shown as an overlay in Fig. 10.

5.2. Active slip systems

In order to understand the evolution of lattice rotations
and GND densities it is useful to have a closer look at the
evolution of plastic slip on the individual slip systems. As
pointed out above, the stress that drives dislocation motion
is of almost pure uniaxial compressive nature with the prin-
cipal axis pointing radially away from a central region of

C. Reuber et al. | Acta Materialia 71 (2014) 333-348

hydrostatic pressure and no slip activity. The highest stress
values are found in two regions left and right of the inden-
ter axis, where the principal stress direction makes a 45°
angle with the rotation boundary. A positive lattice rota-
tion around the x = [1 1 0] direction (or a negative rotation
of the principal stress axis) increases the Schmid factor of
systems 10 and 11 on the right side and decreases the Sch-
mid factor of systems 7 and 8. The opposite holds for
inverted rotation sense or on the other side of the indenta-
tion axis. Slip systems 3 and 6 initially have their highest
possible Schmid factors with respect to a rotation around
the [110] direction for a 45° principal stress axis, so that
any change in the lattice orientation or the principal stress
axis decreases the Schmid factor.

Fig. 11 shows the evolution of the plastic slip on the six
active slip systems exemplarily for three points on the right
side of the indentation axis. For the point directly next to
the boundary (first row), the principal stress axis is almost
aligned with the indentation axis. This stress state initially
equally favors slip on systems 7, 8, 10, and 11. However,
before the yield point is reached, the lattice has already
rotated slightly in negative sense around the [110] axis
and continues to do so. As a result, slip on systems 10
and 11 is preferred and dominates the plastic behavior.
Only at the end of loading do slip systems 3 and 6 start
to become active due to the negative lattice rotations reori-
enting these slip systems to their preferential orientation.
The second point (second row in Fig. 11) is located in an
area of modest lattice rotations of not more than 10°. In
the course of deformation, the point actually reverts its
rotation sense and finally again reaches almost its initial
orientation. The principal stress axis at this point is close
to a 45° angle, which favors the activation of 3/6 and

Indentation
depth 40 pm 80 pm 120 pm 160 pm 200 pm
L v <} 90°
: . e . s,
system 6 : %, : . '
A11)[I10] ? & & . - - |
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Fig. 10. Simulated plastic shear rate on slip systems (111)[110],(111)[101], and (111)[011] for the wedge indent at indentation depths of 40, 80, 120,
160, and 200 pm. Contact singularity at the indenter flank is marked by black dots in the 160 pm maps. The corresponding angles indicate the analytically

predicted direction of plasticity rays emanating from the contact point [58].
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Fig. 11. Inverse pole figures and evolution of plastic shear with indentation depth A/ for three different material points close to the wedge indent. Positions
of the material points are marked in blowups of Fig. 12 in the first column (open circles correspond to position before loading, filled circles to positions at
end of loading; the initial geometry is indicated by a dashed gray line). The (001) inverse pole figures in the second column show the rotation of the
principal axis of compressive stress for the respective material points (i.e. in the direction of (y,z) = (0, —1) for the first point, (y,z) = (1,—1) for the
second point, and (y,z) = (1, 0) for the third point). The third column shows evolution plots of the accumulated plastic slip on the six active slip systems 3,
6, 7, 8, 10, and 11, which always act pairwise.
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Fig. 12. Simulated in-plane lattice rotation around the wedge indent. Left: Overlay of a line plot showing the rotation across the central antisymmetry
boundary along the gray line. The dotted line represents experimental values at approximately the same position reproduced from Fig. 4 in [50]. Right:
Overlay of the (010) lattice plane traces. The nominal spacing of the traces is 10 um.

particularly 10/11, but not 7/8. The reason for slip systems  which requires higher stresses for activation. The last point
3 and 6 being activated at a later stage compared to 10/11 (third row in Fig. 11) lies close to the surface. The stress
can be attributed to the mutual strong collinear interaction, axis at this point is nearly aligned with the y axis. Slip
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systems 7 and 8 become active first, but get less favorable
for slip due to the positive lattice rotation around [110].
Plastic deformation becomes harder and enforces further
lattice rotation in order to accommodate the geometrical
constraints of the indenter, finally leading to such high
rotations that slip systems 10/11 become favorable for slip
and take over as the prevalent carriers of deformation.

5.3. Rotation

As seen in Fig. 5, the lattice rotation changes abruptly
within a few pm across a vertical line below the indenter.
More specifically, in the simulation this jump in lattice
rotation occurs among neighboring integration points. If
there was a gradual change in the rotation, then the lateral
mesh resolution of about 5 um does not suffice to resolve
this gradient. Kysar et al. [39] specify the resolution of their
orientation measurements as 3 um, which is comparable to
our simulation.

Fig. 12 shows the lattice rotation jump on a line across
the vertical boundary for both simulation and experiment
(experimental data reproduced from [50] at approximately
the same position). The lattice rotation jump is more pro-
nounced in the simulation than in the experiment, but the
main characteristics of the rotation fields match, e.g. the
distance from the boundary at which the rotation changes
its sign. With increasing indentation depth, the discontinu-
ity in the lattice rotation evolves since the left and right half
of the crystal rotate away from each other. Fig. 13 illus-
trates the simulated evolution of the lattice rotations
directly right and left of the boundary as a function of
the position under the indenter. The lattice rotations
quickly converge towards a maximum value of approxi-
mately +35° at about 30 um below the indenter tip even
for small indentation depths Ax. These high rotation differ-
ences grow further down into the material, such that at the
final indentation depth of A2 = 200 um a boundary length
of more than 100 um reveals a misorientation of 70°. The
reason for this large misorientation can be understood
when looking at the traces of the (010) lattice planes

40 20 0 —20 —40

Fig. 13. Simulated lattice rotation directly left and right of the antisym-
metry boundary with evolving indentation depth Ah and along the
indentation axis. The origin at —z — Ak = 0 corresponds to the indenter
tip.

around the indent shown on the right-hand side of
Fig. 12. Although these lattice traces do not correspond
to any slip traces in the material, they reflect the curvature
of the lattice in general. As seen in Fig. 7, the specific crys-
tal orientation does not allow for large plastic deformation
at the upper indenter flanks, so that the material mainly
performs a rigid-body rotation following the inclination
angle of the indenter. (The orientation dependence of the
rotation pattern was previously reported by Bouvier and
Needleman [60].) Thus, the (010) plane traces in Fig. 12
exit the surface at an almost 90° angle. This induces coun-
ter-rotations further below in order to compensate for the
unrotated lattice in the undeformed regions far below the
indenter. The deeper the indenter penetrates into the mate-
rial the deeper these counter-rotations extend. The same
qualitative features of the (010) plane traces have also been
reported by Kysar et al. [39]. However, due to the missing
data close to the original indented surface, it is not possible
to evaluate the angle that the trace lines draw with the sur-
faces. The strongly diverging traces under the indentation
axis are, however, clearly visible also in the experimental
data. As already pointed out by Kysar et al. [39], this indi-
cates that a significant amount of material is transported
there. Clearly, this is the material that is pushed away by
the indenter above. The compression of material in this
region leads to the hydrostatic pressure seen in Fig. 9.

5.4. Influence of dislocation transport and resulting GND
density

On both sides of the rotation boundary there is an accu-
mulation of GNDs. The reason for this is that the axis of
principal compressive stress changes its direction across
the indentation axis, the resolved shear stress on the active
slip systems changes sign and the direction of slip is
reverted. Dislocations cannot travel across the indentation
axis and become stored there (see third and fourth column
of Fig. 7). Most of the piled-up dislocations have edge
character and belong to systems 7/8 or 10/11. As also indi-
cated by the (010) plane traces in Fig. 12, these disloca-
tions form a disclination under the indenter.

The pileup of GNDs around the boundary is a direct
consequence of the dislocation transport and naturally
evolves without any additional boundary conditions. While
the GND density is related to a curvature of the crystal lat-
tice, it is not easily possible to (inversely) derive it solely
from lattice rotations. Additional assumptions have to be
made, e.g. minimization of line energy or line length. The
latter method was used by Kysar et al. [39] to calculate a
lower bound for the GND density from the measured lat-
tice orientations, which in the present example, indeed,
equates to the exact solution when not more than two effec-
tive slip systems are active (being the case for almost the
entire sample). The good match between experimental
and simulated results for the GND density (see Fig. 6) thus
confirms the validity of the predictions from the dislocation
transport model.
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Fig. 14. Comparison of simulations performed with and without dislocation transport. Maps show the GND density (derived by slip gradients), the total
dislocation density, the equivalent Cauchy stress after unloading and the equivalent logarithmic strain after unloading.

Since the complete deformation history of each slip sys-
tem is known in the simulation, the GND density can also
be derived from a gradient in the dislocation slips. We
applied this method to the simulations with both the (non-
local) dislocation transport model and a local model vari-
ant without dislocation transport. The results of the
simulations are compared in Fig. 14. The maps of the
GND densities in the first column reveal that the GND
densities cannot adequately be reproduced from gradients
in slip without dislocation transport. The local simulation
overestimates the GND density with respect to the non-
local model and even introduces features that are not visi-
ble in the experimental results. However, the importance of
a correct description of dislocation transport and genera-
tion of GNDs becomes apparent in columns 24 of
Fig. 14, especially with regard to the rotation boundary.
In the absence of dislocation transport no dislocations pile
up around the boundary in the local simulation (second
column) and do not influence the mechanical response. In
contrast, for the nonlocal model, the accumulated density
at the boundary leads to an increased hardening and higher
stresses that are visible as dark lines below the indenter
(third column of Fig. 14). It should be emphasized that
no additional gradient-dependent stress terms were used
in the simulation to explicitly induce a stress field by the
excess dislocations. Instead, the observed stress arises nat-
urally from an unbalanced transport of dislocations and
the resulting accumulation of density. In general, the incor-
poration of the dislocation transport leads to a stiffer
response. In the local model, the equivalent Cauchy stress
is on average lower by —20% during loading (yet slightly
higher after unloading). This results in higher strains of
about +10% when compared to the nonlocal model.

6. Conclusions

We simulated the wedge indentation of single-crystalline
Ni and compared it to an experiment of Kysar et al. [39]
and to more detailed data of the same experiment given
by Dahlberg et al. [50]. We draw the following conclusions:

e Most of the deformation occurs in a region below the
indenter of about the same size as the actual indent.
However, two broad shear-bands form on both sides
of the indenter that advance about five times the inden-
tation depth into the material.

e The stress state in the material can be divided into two
regions: hydrostatic pressure in a circular area around
the indenter tip, and more or less uniaxial compressive
stress radially pointing away from the central region.
The highest stress values are found in two broad areas
perpendicular to the indenter flanks.

e Only six out of the twelve fcc slip systems become acti-
vated and act pairwise in order to accomplish plane-
strain deformation. In most regions of the sample, only
two slip systems are active at the same time.

e A comparably low slip activity at the indenter flanks
requires large rigid-body rotations in order to accommo-
date the geometrical constraints of the indenter. The
high rotations at the indenter flank induce equally high
counter-rotations below the indenter, which have differ-
ent signs left and right of the indentation axis. A high
gradient in the lattice rotations below the indenter arises
with a maximum change from +35° to —35° within a
distance of at most 5 um. This simulated rotation pat-
tern is in agreement with experiment, although simu-
lated rotations are slightly too high.
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e In the simulation, the rotation jump below the indenter
evolves and reaches a total misorientation of about 70°
after an indentation depth of 80 pm. With further inden-
tation, the magnitude of the jump no longer changes sig-
nificantly, but the lattice rotation jump propagates
further down into the material.

e Due to a sign change of the resolved shear stress across
the evolving boundary, dislocations pile up on both
sides and form a disclination. This leads to additional
hardening of the boundary in the nonlocal model due
to forest hardening, which is not seen for a local model
variant without dislocation transport.

e The measured lattice rotations translated into GND
densities match both qualitatively and quantitatively to
the simulated excess dislocation densities of the nonlocal
model. GNDs can also indirectly be determined from
spatial gradients in the accumulated plastic slip per each
individual slip system. While this indirect method gives
comparable results when applied to the nonlocal simula-
tion results, the local model variant without transport
overestimates the GND densities significantly (+215%
compared to the nonlocal model, averaged over the sim-
ulated domain).

e In general, the nonlocal model behaves significantly
harder during loading (stress +20%), is less compliant
(strain —10%) and accumulates smaller lattice rotations
(—13%, the latter values all being averages over the sim-
ulated domain).
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