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Abstract

A dislocation density based constitutive model for face-centred cubic crystals is introduced and implemented into a crystal plasticity
finite element framework. The approach assumes a homogeneous dislocation structure and tracks the dislocation evolution on each slip
system. In addition to the statistically stored dislocations, the geometrically necessary dislocation density is introduced in order to con-
sider strain gradients and thus render the model size sensitive. Furthermore, we develop a consistent algorithm for the updating of the
geometrically necessary dislocation density. A simple shear experiment of an aluminium single crystal is used to calibrate the material
parameters of the model and demonstrate its size sensitivity.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Most polycrystalline materials reveal a nonrandom dis-
tribution of their grain orientations (crystallographic tex-
ture) which entails an overall anisotropic behavior owing
to the tensorial character of most materials properties [1].
Taylor [2] was the first to formulate a model for the rela-
tionship between texture and mechanics. In his approach
the local deformation for each grain is assumed to match
the global one neglecting the micro-mechanical interaction
among grains (full constraints model). Based on this stiff
model, various variants of relaxed constraints and self-
consistent homogenization models were introduced which
allow some of the strain constraints among the grains to
be dropped [3–7].

Most polycrystal mechanics models use rather simple
constitutive formulations where the flow and hardening
rules are often described as powers laws. While for homo-
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geneous materials viscoplastic formulations are useful
they reveal disadvantages when the simulation scale
becomes so small that size effects matter [8–10]. Such size
effects lead to nonuniform plastic deformation entailing
strain and orientation gradients. Therefore, a certain
amount of extra dislocations must be introduced for pre-
serving lattice continuity. This means that local constitu-
tive models should be extended to nonlocal ones, which
can consider the interplay between texture and dislocation
evolution on the basis of divergent behavior of neighbor-
ing material points. Since local crystalline orientation gra-
dients are necessarily associated with the storage of
geometrically necessary dislocations (GNDs), it is an
obvious requirement that a nonlocal constitutive model
should be built on dislocation densities rather than on
empirical hardening functions.

In this study a local constitutive model based on dislo-
cation densities [11] will be extended to a nonlocal one in
the following way: First the cell structure composed of cell
blocks (CBs) and dense dislocation walls (DDWs) as used
in the earlier model [11] is reduced in this approach to a
homogeneous structure. Second, in addition to the
rights reserved.
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statistically stored dislocations (SSDs), GNDs are intro-
duced to accommodate local orientation gradients. The
storage of SSDs results mainly from random trapping pro-
cesses of mobile dislocations. Such arrangements are char-
acterised by a vanishing net Burgers vector. In contrast,
the storage of GNDs leads to a polarized dislocation den-
sity resulting from the curvature of the crystal lattice
under incompatible plastic strains. Another important dif-
ference between the two types of stored dislocations is that
the GNDs assume a tensorial form. Third, the evolution
of the dislocations is tracked separately for each slip sys-
tem which is an advantage inherent to the crystal plasticity
approach. Fourth, the SSDs on each slip system are
divided into mobile and immobile dislocations. While
the former ones accommodate the external plastic defor-
mation the latter ones are responsible for hardening.
The resistance against the motion of a mobile dislocation
on the slip system a results from passing stresses caused by
parallel dislocations (qa

P) and cutting stresses resulting
from forest dislocations (qa

F). Therefore, a projection pro-
cedure is used for all GNDs and immobile SSDs in order
to calculate parallel and forest dislocations for every slip
system. Fifth, a scaling relation between the mobile dislo-
cations and the forest and parallel ones is adopted which
is based on maximizing the plastic dissipation for a fixed
external resolved shear stress [11]. Other model features
are similar to earlier formulations, i.e. the Orowan expres-
sion serves as the kinetic equation and the evolution laws
for the immobile SSDs are formulated as rate equations
based on distinct dislocation processes such as lock forma-
tion or annihilation via climb. Since the flow and harden-
ing rules of the model contain all relevant basic
formulations of thermally activated processes, the rate
and temperature dependencies are included in a generic
fashion [11].

The implementation of a nonlocal dislocation density
based constitutive model into a crystal plasticity finite ele-
ment (FE) framework raises a number of fundamental
issues. In order to solve the evolution law for the GND
density the gradient of the shear rates of every slip system
must be calculated for each Gauss point. In order to meet
these requirements some authors [12,13] used the diver-
gence theorem for the transformation of the shear rates
and the plastic deformation gradient into dislocation den-
sities. In this framework GNDs and SSDs have been trea-
ted as additional degrees of freedom for every node and a
Newton–Raphson iterative procedure is introduced to
achieve the solution for the SSD and GND densities. Such
an algorithm relies on an additional dislocation density flux
boundary condition, which, however, is difficult to formu-
late for complicated forming processes. Another drawback
of this algorithm is the complex coding required prior to its
use. Therefore, in Section 4 of this paper we introduce
another integration algorithm to derive the solution for
any nonlocal constitutive model based on the general mate-
rial subroutines of commercial FEM software such as
MSC.Marc and Abaqus.
2. The constitutive formulations

2.1. Kinematics

The deformation gradient, F = ox/oX, is decomposed
according to [14]

F ¼ FeFp; ð1Þ

where Fe is the elastic part comprising the stretch, Ue,
and the lattice rotation, Re, and Fp corresponds to the
plastic deformation caused by dislocation slip. Stretch
and rotation are obtained from the polar decomposition
Fe = ReUe. The elastic and the plastic deformation gradi-
ents are

_Fe ¼ LFe � FeLp; _Fp ¼ LpFp; ð2Þ

where L ¼ _FF�1 and Lp ¼ _FpF�1
p are the total and the plas-

tic velocity gradients defined in the current and the un-
loaded configuration, respectively.

2.2. The elastic law

For a single crystal the mapping Fp will not change the
lattice orientation, i.e. we can use a constant stiffness tensorfK0 for the stress calculations when the elastic law is
defined in the unloaded configuration. By defining the sec-
ond Piola–Kirchhoff stress tensor eS in the unloaded config-
uration and its work conjugated elastic Green strain tensor
~E, the elastic law is derived as

eS ¼ fK0
eE with eE ¼ 1

2
ðeC � IÞ; eC ¼ FT

e Fe; ð3Þ

where I is the unity tensor and eC is the elastic right Cau-
chy–Green tensor. When the variational form is derived
in the reference or current configuration, the second Pio-
la–Kirchhoff stress S or the Cauchy stress r amounts to

S ¼ F�1
p
eSF�T

p ; r ¼ 1

J
Fe
eSFT

e ; ð4Þ

where J = det(F) = det(Fe), which means isochoric plastic
deformation is assumed, i.e. the volume change is always
purely elastic.

Owing to the different grain orientations in a polycrystal
in a global coordinate system, different stiffness tensors, slip
plane normals and slip directions must be specified for
every crystal. In order to use only one set of data a virtual
deformation step is introduced before the calculation in the
form: Fp0 is set as the initial value for Fp. By choosing Fe0

to satisfy

Fe0Fp0 ¼ I; Fe0;Fp0 2 Orth. ð5Þ

the starting value for F amounts to I as desired. As shown
for two examples in Fig. 1, this procedure allows us to use
the cube orientation as the starting reference configuration
for all crystals.



Fig. 1. Virtual deformation step to define the initial value for the plastic
portion of the deformation gradient Fp for every crystal of a polycrys-
talline aggregate. Fp0 and Fe0 are the plastic and elastic parts, respectively,
of the deformation gradient F = I of the virtual deformation step. The
indices I and II refer to two different crystal orientations.
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Fig. 2. Schematic drawing of the slip mechanism for the fcc crystal
structure.
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2.3. The flow rule

2.3.1. The constitutive assumption

The mobile dislocations in face-centred cubic (fcc) crys-
tals slip on the planes with the lowest Peierls potential
{11 1} along the closest packed directions Æ110æ. These
slip systems can be described by the Schmid tensorfMa ¼ eda � ena where eda ¼ b=b expresses the slip direction,
which is parallel to the Burgers vector b but normalized,
and ena the slip plane normal with respect to the undistorted
configuration. a is used as the slip system index. The con-
nection between the continuum variables and the process
of dislocation slip is given by

Lp ¼
XN

a¼1

_cafMa; _Fp ¼
XN

a¼1

_cafMaFp; ð6Þ

where _ca is the slip rate on the slip system a. The sum is ta-
ken over all active slip systems, i.e. in the fcc case N = 12 at
room temperature.

2.3.2. The Orowan equation as kinetic equation of state

Commonly used expressions for the relation of the shear
rate _ca and the shear stress sa are phenomenological visco-
plastic rules in the form of a power law [15] or more
physically-based ones [16,17] which account for rate effects
and temperature. In this paper, we use the Orowan equa-
tion to calculate the plastic shear rate _ca of each slip system
a as a function of the mobile dislocation density qa

M on that
slip system

_ca ¼ qa
M b va; ð7Þ
where the average velocity of the mobile dislocations, va,
depends on the resolved shear stress, sa, on the dislocation
densities, qa

M; qa
F and qa

P, and on the temperature, h, i.e.

va ¼ vaðsa; qa
M; q

a
F; q

a
P; hÞ. ð8Þ

The resolved shear stress sa is the projection of the stress
measure onto the slip system a. In the case of infinitesi-
mally small elastic stretches, sa can be approximated as [4]

sa ¼ ~S~C � ~Ma ffi ~S � ~Ma. ð9Þ
The mobile dislocations, qa

M, slide along slip system a to
accommodate a part of the external plastic deformation.
In order to do so they must overcome the stress field of
the parallel dislocations, qa

P, which cause the passing stress.
Also they must cut the forest dislocations, qa

F, with the aid
of thermal activation, see Fig. 2. We define the parallel dis-
location density, qa

P, and the forest dislocation density, qa
F,

for slip system a as: qa
P all dislocations parallel to the slip

plane, and qa
F the dislocations perpendicular to the slip

plane. Both qa
SSD and qa

GND contribute to qa
F and qa

P.
The mobile dislocation density belongs to the SSDs and

it should, therefore, also be projected into the slip plane.
However, the density of the mobile dislocations was shown
to be smaller by at least one order of magnitude compared
to the density of the immobile ones [11], which means that
we can neglect them and consider the immobile density,
qSSD, as the total SSD density. We introduce the interac-
tion strength, vab, between different slip systems, which
includes the self interaction strength, coplanar interaction
strength, cross slip strength, glissile junction strength,
Hirth lock strength, and Lomer–Cottrell lock strength. In
this formulation we only consider edge dislocations owing
to their limited mobility, and use a single set of interaction
strengths for both SSDs and GNDs.

In order to calculate qa
F and qa

P, we must first determine
the tangent vectors for SSDs and GNDs. From the fact
that all the immobile SSDs are created as reaction products
of mobile dislocations, we can define their tangent vector as
the cross product of the slip plane normal and the slip
direction, ~tb ¼ ~nb � ~db, as only edge dislocations are con-
sidered. However, this is not the case for the GNDs as this
class of dislocations only preserves the continuity of the
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lattice when orientation gradients occur, i.e. it is not bound
to any particular slip system. As a result the tangent vector
of the GNDs may not be parallel to ~tb. More generally we
assume that tb

GND is a function of the local orientation gra-
dient. One way to handle this problem is to divide qb

GND

into three fractions with respect to ~db, ~tb and ~nb, and to
define three kinds of effective GND densities qb

GNDs,
qb

GNDet and qb
GNDen for the projection procedure, as shown

in detail in Section 3.2 and Fig. 3.
By using this approach, the projection for the forest dis-

location density, qa
F, and for the parallel dislocation den-

sity, qa
P, introduced in Ref. [11] can be extended as follows:

qa
F ¼

XN

b¼1

vab½qb
SSDj cosðena;etbÞj þ jqb

GNDs cosðena; edbÞj

þ jqb
GNDet cosðena;etbÞj þ jqb

GNDen cosðena; enbÞj�; ð10Þ

qa
P ¼

XN

b¼1

vab½qb
SSDj sinðena;etbÞj þ jqb

GNDs sinðena; edbÞj

þ jqb
GNDet sinðena;etbÞj þ jqb

GNDen sinðena; enbÞj�; ð11Þ

where the absolute value of the GND density is used, i.e.
the sign of its net Burgers vector is ignored. As a direct re-
sult no kinematic hardening can be predicted, which is,
however, less relevant in the case of unidirectional loading.

2.3.3. Relation between mobile and immobile dislocation

densities

When integrating the velocity equation (8) into the Oro-
wan equation (7), it becomes apparent that the shear rate _ca

is a nonlinear function of qa
M. From [11,18] we know that

by applying the principle of maximum plastic dissipation
for the external resolved shear stress during the plastic
deformation

o _ca

oqa
M

� �
sa;qa

F
;qa

P
;h

¼ 0 ð12Þ

a scaling relation can be derived for the homogeneous dis-
location structure which amounts to
Fig. 3. Schematic drawing of the geometric configurations for the SSDs and th
edge character ðqa

GNDet; q
a
GNDenÞ parallel to eta and ena, respectively, and one wit
qa
M � Bh

ffiffiffiffiffiffiffiffiffiffi
qa

Pq
a
F

p
with B ¼ 2kB

c1c2c3Gb3
; ð13Þ

where c1, c2, c3 are constants, G is the shear modulus, and
kB the Boltzmann constant. See details in Ref. [11].

This means that the mobile dislocation density is pro-
portional to the geometric mean of the parallel and the for-
est dislocation densities. Moreover, the fraction of mobile
dislocations increases linearly with the temperature, which
is reasonable as dislocation glide is a thermally activated
process. Eq. (13) forms an intrinsic constraint equation
for the dislocation structure. It implies that the dislocation
structure with three sets of independent internal variables
ðqa

M; q
a
SSD; q

a
GND; a ¼ 1;NÞ has been reduced to one with

only two sets of independent internal variables
ðqa

SSD; q
a
GND; a ¼ 1;NÞ.

2.3.4. The flow rule based on dislocation mechanisms

Conventional flow rules use a reference shear rate and a
rate sensitivity exponent which are typically constant. In
this paper a new flow rule is derived based on dislocation
slip. It includes a reference shear rate which is a function
of the dislocation density and the temperature,

_ca ¼
_ca

0 exp � Qslip

kBh 1� js
aj�sa

pass

sa
cut

� �h i
signðsaÞ; jsaj > sa

pass;

0; jsaj 6 sa
pass

8<:
ð14Þ

with the pre-exponential variable _ca
0, which is the upper lim-

it of the shear rate for the case where the Boltzmann factor
is equal to 1 in Eq. (14)

_ca
0 ¼

kBh

c1c3Gb2

ffiffiffiffiffi
qa

P

p
ð15Þ

and the passing stress, sa
pass, caused by the parallel

dislocations

sa
pass ¼ c1Gb

ffiffiffiffiffi
qa

P

p
ð16Þ

and the cutting stress, sa
cut, at 0 K caused by the forest

dislocations
e GNDs. The GND density is split into three fractions. Two fractions with
h screw character (qa

GNDs) parallel to eda.
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sa
cut ¼

Qslip

c2c3b2

ffiffiffiffiffi
qa

F

p
; ð17Þ

where Qslip is the effective activation energy for dislocation
slip.

3. Evolution of the densities of the statistically stored and

geometrically necessary dislocations

3.1. The evolution of the statistically stored dislocation

density

There are four processes contributing to the evolution of
the immobile SSDs. The lock forming mechanism between
mobile dislocations and forest dislocations, and the dipole
forming mechanism between mobile dislocations with anti-
parallel Burgers vector determine the multiplication terms,
while the athermal annihilation of two parallel dislocations
with anti-parallel Burgers vector within a critical distance
and the thermal annihilation by climb of edge dislocations
determine the annihilation terms. The complete rate equa-
tion for the immobile SSD combines these four processes

_qa
SSD ¼ c4

ffiffiffiffiffi
qa

F

p
_ca þ c6da

dipoleq
a
M _ca � c5q

a
SSD _ca

� c7 exp �Qbulk

kBh

� �
jsaj
kBh
ðqa

SSDÞ
2 _cc8 ð18Þ

with c4–c8 being constants, ddipole the critical distance for
dipole formation, and Qbulk the activation energy for self
diffusion. Details are given in Ref. [11].

3.2. The evolution of the geometrically necessary dislocation

density

In the presence of orientation gradients GNDs must be
introduced to preserve the lattice continuity. A relation
between a possible GND measure and the plastic deforma-
tion gradient has been proposed by Nye [19]. This
approach has been later extended to a more physically
motivated continuum approach to generally account for
strain gradient effects by Dai and Parks [20,21]. Following
these pioneering approaches we use as a dislocation density
tensor for a selected volume portion and Burgers circuit

K ¼ � 1

b
ð$X � FT

p Þ
T
; ð19Þ

where nabla, $X , is defined as the derivative with respect to
the reference coordinates, i.e. $X ¼ o=oX. If the gradient is
calculated in the current configuration we use the definition
$x ¼ o=ox. Using Eq. (19) the resulting Burgers vector for
a circuit with an arbitrary orientation can be calculated. In
general this tensor is nonsymmetric and it can be mapped
to nine independent slip systems in a unique fashion. For
the fcc crystal structure with its 12 slip systems for the
SSDs only five systems are independent according to the
von Mises–Taylor constraint. This implies that it is impos-
sible to calculate the exact amount of GNDs for every slip
system in a unique way as for the SSDs. As a result the tan-
gent vector, taGND, cannot be kept constant, but it should
evolve as a function of strain as already shown for the sca-
lar variable qa

GND.
When using the material time derivative of Eq. (19) and

the result from Eq. (6) we obtain

_K ¼
XN

a¼1

� 1

b
eda � ½$X � ð _caFT

p Þena� ¼
XN

a¼1

_Ka. ð20Þ

Eq. (20) defines a normal vector for the GNDs of slip sys-
tem a. In this context we assume again that the tangent vec-
tor is parallel to the normal vector of the slip system for the
case where the dislocation density is defined as the piercing
density through the slip plane

na
GND ¼ ta

GND ¼
1

_qa
GND

1

b
$X � ð _caFT

p Þena

� �
ð21Þ

with

_qa
GND ¼

1

b
jj$X � ð _caFT

p Þenajj. ð22Þ

Up to now it has not been pertinent to project qa
GND into

forest and parallel dislocations because the tangent vector
of the GNDs is not constant. Although in this paper SSDs
are assumed to be edge dislocations only, for the GND
analysis we have to account for edge and screw disloca-
tions. _Ka can then be decomposed into three groups of dis-
locations, namely, one group of screw dislocations with
their tangent vector parallel to the slip direction eda, and
two groups of edge dislocations with their respective tan-
gent vectors parallel to ena and eta, i.e.

_Ka ¼� _qa
GNDs

eda� eda� _qa
GNDet

eda�eta� _qa
GNDen

eda� ena ð23Þ

and the scalar dislocation densities to

_qa
GNDs ¼ _Ka � ðeda � edaÞ; ð24Þ

_qa
GNDet ¼ _Ka � ðeda �etaÞ; ð25Þ

_qa
GNDen ¼ _Ka � ðeda � enaÞ ð26Þ

which satisfies

ð _qa
GNDÞ

2 ¼ ð _qa
GNDsÞ

2 þ ð _qa
GNDetÞ

2 þ ð _qa
GNDenÞ

2. ð27Þ
4. Consistent time integration scheme for the nonlocal model

4.1. The global control equations

Starting from the standard displacement based FE anal-
ysis in conjunction with the total Lagrangian approach, the
equilibrium can be expressed using the principle of virtual
workZ

V 0

S � dE dV 0 ¼
Z

V 0

tv0 � du dV 0 þ
Z

S0

ts0 � du dS0; ð28Þ

where tv0 is the body force, ts0 is the surface traction, and
du is an arbitrary virtual displacement field. E is the total
Green–Lagrangian strain
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E ¼ 1

2
ðFTF� IÞ ð29Þ

and the virtual strain dE caused by the virtual displacement
field du is

dE ¼ 1

2

odu

oX

� �T
ox

oX
þ ox

oX

� �T
odu

oX

" #
. ð30Þ

For the isoparametric element the virtual field, du, can be
interpolated as a function of the nodal values, dûI , via
the shape function values NI

du ¼
X

I

N IdûI ð31Þ

and the virtual strain changes to

dE ¼ 1

2

X
I

½ðdûI � $X N IÞTFþ FTðdûI � $X NIÞ�. ð32Þ

An equivalent expression can be derived for the strain
increment, d�, defined in the current configuration

d� ¼ F�TdEF�1

¼ 1

2

X
I

½F�T dûI � $X NIð ÞT þ dûI � $X NIð ÞF�1�

¼ 1

2

X
I

½ðdûI � $xNIÞ þ ðdûI � $xNIÞT�; ð33Þ

where $x ¼ $X F�1 is defined in the current configuration.
When inserting this result into the virtual work equation

(28), and considering the symmetry of the stress tensor and
the arbitrarily chosen virtual displacements, dûI , Eq. (28)
becomes equivalent to the equation for the residual force
HðûÞ in the current configuration

HðûÞ ¼
Z

V
ð$xN IÞTr dV �

Z
V

N I tv dV �
Z

S
N I ts dS ¼ 0;

ð34Þ

where tv is the body force and ts is the surface traction in
the current configuration. For solving Eq. (34) the New-
ton–Raphson procedure is used to update the displacement
û step by step until the desired precision is reached

ûnþ1 ¼ ûn � oH

oû

� ��1

n

Hn. ð35Þ

oH

oû
¼
Z

V
ð$xNIÞTKð$xNIÞ dV þ

Z
V
ð$xNIÞTr� ð$xNIÞ dV .

ð36Þ

On the right-hand side of Eq. (36), the first term is the
material stiffness and the second one is the geometric stiff-
ness. In general, during global iteration, the material
behavior is linearized according to

DS ¼ fKDE; Dr ¼KD� ð37Þ

with

K ¼ 1

J
fK 	 F; ð38Þ
where * indicates the Rayleigh product which yields

Kijkl ¼
1

J
fKmnopF imF jnF koF lp. ð39Þ
4.2. The local control equations

For each global Newton–Raphson iteration step the
deformation gradient F can be calculated from the approx-
imate displacement field û at every Gauss point. In the local
procedure we have to calculate the Cauchy stress r and
material stiffness K on the one hand, and on the other
hand the internal variables qSSD and qGND have to be
updated. Therefore, for this nonlocal dislocation model
corresponding control functions for these values must be
derived first. For the case that the flow and the hardening
rules are highly nonlinear, a small time step Dt has to be
used during integration, i.e. iLDti
 1 and iLpDti
 1.
This implies that the exponential function can be approxi-
mated by the linear form

Fiþ1
p ¼ expðLpDtÞFi

p ffi ðIþ LpDtÞFi
p ð40Þ

and we can use the update equation for eS as derived by
Kalidindi et al. [4]

eS iþ1 ffi
1

2
fK0½ðF�T

pi Ciþ1F�1
pi � IÞ �

X12

a¼0

ðF�T
pi Ciþ1F�1

pi
fMa

þfMaTF�T
pi Ciþ1F�1

pi Þ _caDt�; ð41Þ

Ciþ1 ¼ FT
iþ1Fiþ1 ¼ 2Eiþ1 þ I. ð42Þ

Finally, we obtain three implicit control equations, namelyeS iþ1 ¼ eSiþ1ðEiþ1; eSiþ1; q
iþ1
SSD; q

iþ1
GND;DtÞ; ð43Þ

qiþ1
SSD ¼ qi

SSD þ _qiþ1
SSDðeSiþ1; q

iþ1
SSD; q

iþ1
GNDÞ;Dt ð44Þ

qiþ1
GND ¼ qi

GND þ _qiþ1
GND $X � _caFT

pena
� �

; a ¼ 1;N
� �

Dt. ð45Þ

During the simulation we need to calculate the stiffness ten-
sor K for every Gauss point. According to Eq. (38) we first
have to calculate fK. The left part of Eq. (4) yields the tan-
gent stiffness in the reference configuration

fK ¼ dS

dE
¼

oF�1
p

oE
eSF�T

p þ F�1
p
eS oF�T

p

oE
þ F�1

p

oeS
oE

F�T
p . ð46Þ

When the control equations (43)–(45) are satisfied,
oF�1

p

oE
,

oF�T
p

oE

and oeS
oE

can be derived. Details are given in Ref. [22,23].
In order to calculate _qiþ1

GND, the shape functions of the
isoparametric element are assumed to also work for
_caFT

pena in Eq. (20). This assumption was earlier also
adopted by several other authors [21,22]. We use a trilinear
brick element with eight integration points and eight nodes.
At first the values of ð _caFT

penaÞI at the nodes are calculated
from ð _caFT

penaÞGP at the Gauss points using the inverse of
the shape functions according to

ð _caFT
penaÞGP ¼

X
I

N Ið _caFT
penaÞI ) ð _caFT

penaÞI . ð47Þ
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This procedure yields eight different values of _caFT
pena in

each node from the eight adjacent elements1 and, therefore,

the average of these values, ð _caFT
penaÞI , is calculated. Finally,

the rate of change of the GND density at the integration
points can be calculated as

_Ka ¼ � 1

b
eda �

X
I

�
ð$X NIÞ � ð _caFT

p ÞIena

�
. ð48Þ
4.3. The solution algorithms

In general it is not straightforward to formulate a fully
implicit Newton–Raphson iteration algorithm for this set
of equations. The difficulty arises in particular from
Eq. (45) where we need to know the deformation informa-
tion, F, for the neighboring integration points for the calcu-
lation of the strain gradient. Owing to this difficulty most
nonlocal models use a post-update procedure, when they
are built on general-purpose FEM codes, because their
material subroutines can only supply the deformation gra-
dient for one integration point, i.e. the deformation infor-
mation of the neighboring Gauss points can only be
obtained from the last converged time step. When using
such a post-update nonlocal model one cannot ensure con-
vergence for the GNDs. This means that it is important to
develop a robust and generic consistent nonlocal algorithm
in order to yield convergence for the GNDs in a FE
environment.

4.3.1. The global algorithm

Since the integration points are coupled with each other
in the nonlocal model via qGND the update procedures foreSiþ1, qiþ1

SSD, and qiþ1
GND have to be solved simultaneously.

Therefore, we have developed the following solution
scheme:

� The iteration identifier, n, in the stress calculation is sep-
arated into odd and even valued counts.
� When n is odd, we record the deformation gradient, Fn,

for every integration point. Without performing any fur-
ther calculation we feed an arbitrary constant stress ten-
sor back into the FE algorithm. By doing so we achieve
that global convergence cannot be obtained in any odd-
valued iteration step. Moreover, we assign a diagonal
matrix with very large values to the stiffness tensor,
Kn, namely

Kn
ijkl ¼ 0; i 6¼ k; j 6¼ l;

Kn
ijkl ¼ 1050; i ¼ k; j ¼ l.

� If n is even, due to the form of Kn, the global Newton–
Raphson procedure yields
1 In fact eight adjacent elements apply only for nodes in the volume. For
surface nodes the number is smaller.
oH

oû

� ��1

n�1

� 0) Fn ¼ Fn�1.

Therefore, the deformation gradient is now known for
every integration point, as it was recorded in the previ-
ous odd-ordered iteration. With this information the
control equations (43)–(45) can be solved using the fol-
lowing local procedure.

4.3.2. The local algorithm

In our approach we use three steps to obtain the final
solution for eSiþ1, qiþ1

SSD, and qiþ1
GND. In the first step we keep

qiþ1
SSD and qiþ1

GND constant and use the Newton–Raphson
algorithm in order to identify eSiþ1 and satisfy Eq. (43).
In the second step qiþ1

SSD is calculated using eS iþ1. If the dif-
ference between the initial value and the newly calculated
one is larger than a certain threshold value, steps 1 and 2
are repeated until convergence. When these calculations
are finished for all integration points, we proceed to step
three, where qiþ1

GND is calculated using eSiþ1 and qiþ1
SSD as

determined in the preceding steps. Again, if the difference
between initial and newly calculated values for qiþ1

GND is lar-
ger than a threshold value, steps 1–3 are repeated until con-
vergence is obtained.

5. Application to simple shear of an Al single crystal

The nonlocal dislocation model introduced in this
paper is implemented in the commercial FE code
MSC.Marc200x in terms of the user defined material sub-
routine HYPELA2 [25]. The experimental setup and the
FE mesh with the eight-noded, isoparametric, three-
dimensional brick elements with trilinear interpolation
are shown together with the boundary conditions in
Fig. 4.

In the FE calculations, the displacements X, Y, and Z of
the nodes at the front and back surfaces on the lower part
of the mesh were set to zero. This set of boundary condi-
tions is referred to as apply1 in Fig. 4. On the upper part
of the mesh the displacements Y and Z of the nodes at
the front and back surfaces were also set to zero while a
constantly increasing value was assigned to the X displace-
ments. This set of boundary conditions is referred to as
apply2. The orientation data obtained from the micro-
texture measurements are expressed as (u1,U,u2) in
Bunge–Euler notation in the RD–TD–ND coordinate
system. For the FE analysis the global coordinate system
was defined by X parallel to RD, Y parallel to TD and Z

parallel to ND. This means that the measured initial orien-
tations were directly assigned to the respective integration
points.

The average shear stress–shear strain curve of a simple
shear test of an aluminium single crystal with
99.999 wt.% purity (Fig. 5) was used to fit the constitu-
tive parameters of the dislocation model (Table 1). In
this process we used the values for the interaction



Table 2
The values used for the interaction strength, vab, as given in Ref. [24]

Interaction/reaction product vab

Self-interaction 1.0
Coplanar 2.2
Cross slip 3.0
Glissile junction 3.8
Hirth lock 1.6
Lomer–Cottrell lock 4.5

Fig. 4. Experimental setup and the FE mesh used in the simulations indicating also the boundary conditions applied.

Fig. 5. Parameter determination by a simple shear test of an Al single
crystals.

Table 1
The parameters of the nonlocal dislocation model for pure aluminium
crystals

Symbol Value Meaning

Qslip 3.0 · 10�19 J Activation energy for slip
Qbulk 2.4 · 10�19 J Activation energy for climb
c1 0.1 Constant for passing stress
c2 2.0 Constant for jump width
c3 1.0 Constant for obstacle width
c4 1.5 · 107 m�1 Constant for lock forming rate
c5 10.0 Constant for athermal annihilation rate
c6 1 · 10�30 m�1 Constant for thermal annihilation rate
c7 1� 107 m5 sc8 Constant for dipole forming rate
c8 0.3 Constant for nonlinear climb of edge

dislocations
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strength, vab, as given in Ref. [24] (see Table 2). The ini-
tial orientation of the single crystal was u1 = 3.4�,
U = 37.6�, u2 = 36.5� and the shear rate amounted to
2.6 · 10�4 s�1. During the shear experiments digital
images were recorded from the decorated sample surface
for photogrammetric analysis providing the von Mises
strain distribution for an area of 3.1 · 2.2 mm2. Details
of this method were reported in Ref. [26–29]. The simple
shear test revealed a rather large inner homogeneous
plastic deformation region far away from areas affected
by the influence of the boundaries.

The experimental results are compared to simulations
achieved using a phenomenological viscoplastic local
model [28,29] and the nonlocal model in Fig. 6. In the
experiment the maximum deformation occurs in the
lower left corner of the single crystal and extends diago-
nally across the crystal surface. While this behavior is
correctly reproduced by the new nonlocal model, the
phenomenological viscoplastic model predicts the highest
strains in the lower right corner of the specimen. We
assume that the better prediction yielded by the new
model is mainly a consequence of the introduction of
the GNDs and the physically based latent hardening
law into the framework. This assumption is supported
by the data in Fig. 8(b) which reveal that substantial
densities of GNDs are generated near the sample bor-
ders. For a better comparison of the relative contribu-
tions of the two types of dislocations, Figs. 8(a) and
(b) show both the SSD and the GND density distribu-
tions on the ND-surface.



Fig. 6. Comparison of the von Mises strain on the surface of an Al single crystal (3.1 mm long, 2.0 mm thick and 2.2 mm high) for the simple shear test.
The first row shows the experimental results obtained by digital image correlation (DIC). The middle row shows the results obtained by using a
conventional viscoplastic formulation. The bottom row shows the results obtained by using the new nonlocal formulation as introduced in this work.
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5.1. Size dependence of the nonlocal model

The introduction of GNDs renders the new model size
sensitive. Therefore, we repeated the shear simulation for
a set of three virtual specimens of different height-to-length
ratios. For this purpose we changed the height of the
sheared sample to one half and one tenth of the original
height, respectively. The resulting shear stress–shear strain
curves are shown in Fig. 7.

Eqs. (10), (11), (14) and (18) reveal that the GNDs
contribute to the passing stress, the cutting stress in the
flow rule, and to the multiplication term of the immobile
dislocations. For this reason one would expect higher
predicted stresses for the thinner samples owing to their
relative increase of zones which are mechanically affected
by the presence of interfaces. This is indeed confirmed by
Fig.7. From Figs. 8(b), (e), (h) it becomes obvious how
the relative size of the zone influenced by GNDs
increases with decreasing sample height. This increasing
GND density entails also an increase of the SSD density
as expected and shown in Figs. 8(a), (d), (g). Addition-
ally, Figs. 8(c), (f), (i) also show that the texture evolu-
tion of the crystals is changed. This results in an
intersection of the stress–strain curves for H = H0 and
H = H0/2 in Fig. 7.

The strong influence of the incorporation of the GNDs
into the crystal plasticity FE framework on the observed
reorientation rates is due to the penalty function they
impose. This means that each reorientation step which
introduces an orientation divergence with respect to the
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Fig. 9. Comparison of statistically stored and geometrically necessary
dislocations for simulated shear tests of samples with different height after
50% shear deformation.
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neighborhood [30] is impeded owing to the corresponding
introduction of GNDs.

Fig. 9 shows the profiles of the two immobile dislocation
densities (SSDs and GNDs) across the specimen near the
sample center for a shear deformation of about 30%. While
both dislocation densities are always of the same order of
Fig. 8. Comparison of the dislocation densities and misorientation for differen
samples with height H = H0, H = H0/2 and H = H0/10 (all plots are scaled to
(c, f, i) show plots of the statistically stored and geometrically necessary dislo
current orientation), respectively.
magnitude, their ratio is clearly influenced by the relative
sample height. For H = H0 the SSD density is always
higher than the GND density. However, this situation is
gradually changed with decreasing relative sample height.
Finally, for H = H0/10 the GND density surpasses the
SSD density near the edges of the heavily sheared zone of
the sample.
t samples after 30% shear deformation, (a, b, c), (d, e, f) and (g, h, i) are
the same height for better comparison), respectively; (a, d, g), (b, e, h) and
cation density and misorientation (orientation change between initial and
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6. Conclusions

The mechanical behavior of crystalline matter is a mul-
tiscale problem. While the underlying deformation pro-
cesses such as the slip of dislocations and their reactions
and elastic interactions are microscopic problems, the
forming process itself is usually of a macroscopic nature.
Therefore, the dislocation density based constitutive model
developed by Ma and Roters for the fcc crystal structure
[11] has been extended to crystal plasticity FE applications.
In this context, several modifications and extensions were
introduced which allow us to connect the two scales in
one common framework. The main modification and
extensions are the assumption of a homogeneous disloca-
tion structure which replaces the dislocation cell structure;
the introduction of GNDs in addition to the SSDs with the
aim to consider strain gradients and thus render the model
size sensitive; and the formulation of a consistent algorithm
to update the GND density. The latter controls the integra-
tion error. The model was implemented into commercial
FEM software. A simple shear experiment of an Al single
crystal was used for validation. The predicted distribution
of the local deformation was found to be in better accor-
dance with the experimental data than for a conventional
viscoplastic phenomenological model. We assume that
the better prediction yielded by the new model is mainly
a consequence of the introduction of the GNDs and the
physically based latent hardening law into the framework.
References

[1] Randle V, Engler O. Introduction to texture analysis, macrotexture,
microtexture and orientation mapping. Boca Raton (FL): CRC
Press; 2000.

[2] Taylor GI. Plastic strain in metals. J Inst Met 1938;62:307–24.
[3] Bronkhorst CA, Kalidindi SR, Anand L. Polycrystalline plasticity

and the evolution of crystallographic texture in fcc metals. Philos
Trans R Soc A 1992;341(1662):443–77.

[4] Kalidindi SR, Bronkhorst CA, Anand L. Crystallographic texture
evolution in bulk deformation processing of fcc metals. J Mech Phys
Solids 1992;40:537–69.

[5] Ma A, Roters F, Raabe D. Numerical study of textures and Lankford
values for fcc polycrystals by use of a modified Taylor model. Comput
Mater Sci 2004;29(3):353–61.

[6] Van Houtte P, Li S, Engler O. Continuum scale simulation of
engineering materials. New York: Wiley-VCH; 2004 [chapter: Tay-
lor-type homogenization methods for texture and anisotropy].

[7] Van Houtte P, Li S, Seefeldt M, Delannay L. Deformation texture
prediction: from the Taylor model to the advanced lamel model. Int J
Plasticity 2005;21(3):589–624.

[8] Ashby MF. The deformation of plastically non-homogenous mate-
rials. Philos. Mag. 1970;21:399.

[9] Evers LP, Parks DM, Brekelmans WAM, Geers MGD. Crystal
plasticity model with enhanced hardening by geometrically neces-
sary dislocation accumulation. J Mech Phys Solids
2002;50(11):2403–24.

[10] Gao H, Huang Y. Geometrically necessary dislocation and size-
dependent plasticity. Scr Mater 2003;48(2):113–8.

[11] Ma A, Roters F. A constitutive model for fcc single crystals based on
dislocation densities and its application to uniaxial compression of
aluminium single crystals. Acta Mater 2004;52(12):3603–12.

[12] Evers LP, Brekelmans WAM, Geers MGD. Non-local crystal
plasticity model with intrinsic ssd and gnd effects. J Mech Phys
Solids 2004;52(10):2379–401.

[13] Arsenlis A, Parks DM, Becker R, Bulatov V. On the evolution of
crystallographic dislocation density in non-homogeneously deforming
crystals. J Mech Phys Solids 2004;52(6):1213–46.

[14] Lee EH. Elastic–plastic deformation at finite strains. Trans ASME E
1969;36(1):1–6.

[15] Peirce D, Asaro RJ, Needleman A. Analysis of nonuniform and
localized deformation in ductile single crystals. Acta Metall
1982;30(6):1087–119.

[16] Kocks UF, Argon AS, Ashby AF. Thermodynamics and kinetics
of slip. In: Chalmers B, Christian JW, Massalski TB, editors.
Progress in materials science, vol. 19. Oxford: Pergamon Press;
1975. p. 1–289.

[17] Nemat-Nasser S, Ni L, Okinaka T. A constitutive model for fcc
crystals with application to polycrystalline ofhc copper. Mech Mater
1998;30(4):325–41.

[18] Roters F. A new concept for the calculation of the mobile dislocation
density in constitutive models of strain hardening. Phys Stat Sol B
2003;240(1):68–74.

[19] Nye JF. Some geometrical relations in dislocated crystals. Acta
Metall 1953;1:153–62.

[20] Dai H, Parks DM. Geometrically-necessary dislocation density and
scale-dependent crystal plasticity. In: Khan A, editor. Proceedings of
sixth international symposium on plasticity. London: Gordon and
Breach; 1997. p. 17–8.

[21] Dai H. Geometrically-necessary dislocation density in continuum
plasticty theory, FEM implementation and applications. PhD thesis,
Massachusetts Institute of Technology; 1997.

[22] Meissonnier FT, Busso EP, O’Dowd NP. Finite element imple-
mentation of a generalised non-local rate-dependent crystallo-
graphic formulation for finite strains. Int J Plasticity
2001;17(4):601–40.

[23] Ma A. Implicit scheme of rve calculation for fcc polycrystals. Comput
Mater Sci 2003;27(4):471–9.

[24] Arsenlis A, Parks DM. Modeling the evolution of crystallographic
dislocation density in crystal plasticity. J Mech Phys Solids
2002;50(9):1979–2009.

[25] MSC.Marc user’s manual 2003. User subroutines and special
routines, Volume D; 2003.

[26] Sachtleber M, Zhao Z, Raabe D. Experimental investigation
of plastic grain interaction. Mater Sci Eng A 2002;336(1–2):
81–7.

[27] Zaefferer S, Kuo J-C, Zhao Z, Winning M, Raabe D. On the influence
of the grain boundary misorientation on the plastic deformation of
aluminum bicrystals. Acta Mater 2003;51(16):4719–35.

[28] Roters F, Wang Y, Kuo J-C, Raabe D. Comparison of single crystal
simple shear deformation experiments with crystal plasticity finite
element simulations. Adv Eng Mater 2004;6(8):653–6.

[29] Kuo J-C. Mikrostrukturmechanik von Bikristallen mit Kippkorn-
grenzen. PhD thesis, RWTH Aachen; 2004.

[30] Raabe D, Zhao Z, Park SJ, Roters F. Theory of orientation gradients
in plastically strained crystals. Acta Mater 2002;50:421–40.


	A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations
	Introduction
	The constitutive formulations
	Kinematics
	The elastic law
	The flow rule
	The constitutive assumption
	The Orowan equation as kinetic equation of state
	Relation between mobile and immobile dislocation densities
	The flow rule based on dislocation mechanisms


	Evolution of the densities of the statistically stored and geometrically necessary dislocations
	The evolution of the statistically stored dislocation density
	The evolution of the geometrically necessary dislocation density

	Consistent time integration scheme for the nonlocal model
	The global control equations
	The local control equations
	The solution algorithms
	The global algorithm
	The local algorithm


	Application to simple shear of an Al single crystal
	Size dependence of the nonlocal model

	Conclusions
	References


