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Abstract

We present plane strain simulations about the dependence of orientational in-grain subdivision and crystallographic
deformation textures in aluminum polycrystals on grain interaction. The predictions are compared to experiments. For
the simulations we use a crystal plasticity finite element and different polycrystal homogenization models. One set of
finite element simulations is conducted by statistically varying the arrangement of the grains in a polycrystal. Each
grain contains 8 integration points and has different neighbor grains in each simulation. The reorientation paths of the
8 integration points in each grain are sampled for the different polycrystal arrangements. For quantifying the influence
of the grain neighborhood on subdivision and texture we use a mean orientation concept for the calculation of the
orientation spread among the 8 originally identical in-grain orientation points after plastic straining. The results are
compared to Taylor–Bishop–Hill-type and Sachs-type models which consider grain interaction on a statistical basis.
The study reveals five important points about grain interaction. First, the consideration of local grain neighborhood
has a significant influence on the reorientation of a grain (up to 20% in terms of its end orientation and its orientation
density), but its own initial orientation is more important for its reorientation behavior than its grain neighborhood.
Second, the sharpness of the deformation texture is affected by grain interaction leading to an overall weaker texture
when compared to results obtained without interaction. Third, the in-grain subdivision of formerly homogeneous grains
occurring during straining is strongly dependent on their initial orientation. For instance some crystals build up in-
grain orientation changes of more than 20° after 95% straining while others do practically not subdivide. Fourth, the
dependence of in-grain subdivision on the neighbor grains is different for crystals with different initial orientation (cube
or rotated Goss grains reveal strong subdivision). Fifth, the upper bound for the variation of texture due to changes in
grain neighborhood amounts at most to 5% in terms of the positions of the main texture components. In terms of the
overall orientation density all predictions (using different neighborhood configurations) remain within a narrow tube
with an orientation scatter of 10% (β-fiber) to 20% (Brass component,α-fiber)) when the neighborhood changes.
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1. Introduction and motivation

Plastic straining of polycrystals entails crystal-
line orientation changes and the development of
grain orientation distributions which are also
referred to as crystallographic textures. Defor-
mation textures are characteristic for the strained
type of material, the inherited microstructure, and
the macro- and micromechanical boundary con-
ditions. Crystallographic orientation changes occur
at different microstructural scales since initially
uniformly orientated crystals do as a rule not rotate
as units (macroscale or global texture formation)
but can subdivide into portions with a range of dif-
ferent orientations within their original grain bor-
ders (microscale texture formation). The activation
of plastic slip and hence also the spin arising from
it are strongly dependent on the relationship
between the crystallographic coordinate system
and the external reference system created by the
loading conditions (orientation). Consequently,
texture evolution is at the micro- and macroscale
a pronounced function of the starting texture. The
present study addresses the evolution of crystallo-
graphic deformation textures at the grain- and
subgrain scale in face centered cubic (fcc) polycry-
stals using aluminum as example. It places parti-
cular attention on the influence of the interaction
of neighboring grains on the overall texture evol-
ution and on in-grain orientation subdivision
phenomena as well as on the comparison of crystal
plasticity simulations with grain-interaction homo-
genization models.

We have four major motivations to tackle these
questions. First, it is our aim to basically under-
stand not only the mere dependence of subgrain
and global texture formation on the grain neighbor-
hood but to quantify the effects and derive their
orientation dependence. Second, we want to under-
stand the dependence of texture formation on grain
neighborhood in order to validate existing phenom-
enological grain interaction approaches which are
embedded in polycrystal homogenization models.
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Third, we consider it important to elucidate the
orientation- and neighborhood dependence of the
in-grain subdivision tendency with respect to the
orientation dependence of the kinetic instability
criterion of recrystallization nucleation. Fourth, we
wish to identify the upper bound for the influence
of grain interaction on texture evolution for better
separating grain interaction effects from constitut-
ive, i.e. grain-scale strain hardening effects, on the
development of deformation textures.

These motivations require some remarks. Our
first set of comments addresses the importance of
the basic understanding of these texture phenom-
ena. It is an important experimental observation,
particularly since the introduction of advanced
automated local orientation imaging techniques via
interpretation of Kikuchi-diagrams obtained in the
transmission- and scanning electron microscope,
that texture development and in particular the
orientation subdivision of originally uniform grains
during loading depends on both, the initial orien-
tation of a grain and on the grain neighborhood [1–
9]. Although some experiments seem to suggest
that the size of in-grain dislocation cell structures
(but not their in-grain orientation distributions) can
be scaled to one common master distribution, it are
some of the most relevant texture components who
are known to not coincide with this scaling. Fur-
thermore, the scaling of in-grain dislocation cell
sizes does not justify the conclusion of an equival-
ent scaling of the in-grain orientation distribution
of the cells. Another aspect in this context is to
better understand existing experimental and theor-
etical observations of the macro- and microscale
texture evolution with respect to the clear separ-
ation of intrinsic effects (orientation dependence)
and extrinsic effects (neighborhood dependence).
As intrinsic effects we understand in this context
the mere dependence of deformation texture
phenomena on the orientation of the initial grain.
For instance the micromechanics and the plastic
spin of some orientations (say under plane strain
loading) are so much governed by the activation
of a small but dominating set of slip systems that
minor changes in the micromechanical boundary
conditions (e.g. different neighborhood) do not
substantially alter the orientation change or the
subdivision behavior. A typical example is the
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enormous micromechanical stability of the 45°
about the normal rotated cube orientation
{001} � 110 � in body centered cubic (bcc) met-
als under plane strain conditions1. As extrinsic
effects we understand in this context the depen-
dence of deformation texture phenomena on the
grain neighborhood and, more general, on the
micromechanical boundary conditions. A strong
extrinsic influence on the macro- and microtexture
is particularly typical of instable orientations, for
which minor changes in the boundary conditions
entail different sets of activated slips and as a
consequence a variety of plastic spins within the
same original grain borders. A typical example is
the cube component in fcc metals or the Goss
component in bcc metals under plain strain load-
ing. While the intrinsic origin of in-grain subdiv-
ision was recently discussed in terms of the orien-
tation dependence of the divergence of the
reorientation fields [10] the extrinsic influence on
texture evolution is up to now less well understood.

Our second set of comments addresses the incor-
poration of neighborhood effects on texture and on
grain subdivision into polycrystal homogenization
models. These are approaches which use simplified
external and internal boundary conditions to pre-
dict the elastic-plastic response of polycrystalline
and multiphase materials at the meso- and macros-
cale without the explicit incorporation of the elas-
tic–plastic interaction of neighboring grains or in-
grain subdivision phenomena [see overviews in 11-
15]. Polycrystal homogenization models replace
real microstructures by simplified model ingredi-
ents. For instance the dynamics of intricate dislo-
cation ensembles are essentially condensed into
phenomenological hardening laws and crystallo-
graphic kinematics. The influence of the grain
shape and size is typically reduced to micromech-
anical degrees of freedom with respect to the relax-
ation of certain strain rate constraints. The elastic–
plastic co-deformation (not the true interaction) of
the grains is mapped via strain rate homogenization
(Taylor–Bishop–Hill-based approaches [16,17]),

1 The Miller indices of a crystal orientation {hkl}�uvw�
indicate its crystallographic plane parallel to the sheet surface,
{hkl}, and the crystallographic axis parallel to the longitudinal
direction, �uvw�, assuming orthothropic sample symmetry.

stress homogenization (Sachs-based approaches
[18]), or the interaction between each grain and
an average surrounding medium with the kinematic
properties of the entire sample (self-consistent Esh-
elby–Kröner-based approaches [19–21]). Although
polycrystal homogenization models hence obvi-
ously reduce the complexity of polycrystalline mat-
ter in a rather drastic fashion they still seem to cap-
ture some of the essential ingredients which govern
polycrystal plasticity, particularly at large strains.
This is evident by the astonishing qualitative
accord between many polycrystal homogenization
simulations and experiments as well as by the suc-
cess of many yield surface and subsequent shape
change predictions obtained by polycrystal models
when incorporated in the form of anisotropic yield
functions into otherwise microstructure-inde-
pendent finite element formulations. Particularly
the latter aspect is rapidly gaining momentum for
efforts to derive physically based yield surface
approximations from crystallographic textures and
integrate them into finite element formulations for
time-efficient industry-scale simulations of plastic
forming operations [e.g. 22-27]. An important
aspect of homogenization models in this context is
to obtain quantitative results. Another important
goal of current polycrystal homogenization models
is to merge strain hardening theory and yield sur-
face concepts. The aim of such efforts is to obtain a
unified more-dimensional theory of the yield curve
or—in other words—a dislocation dynamics based
theory of the yield locus. The above aspects sub-
stantiate that polycrystal homogenization models
play an important role in the field of polycrystal
plasticity simulations, particularly with respect to
engineering applications. Therefore, different
approaches have been suggested in the past dec-
ades to render the classical Taylor–Bishop–Hill or
Sachs homogenization models physically more
plausible and in better accord with experimental
data. Conceptual modifications of the constitutive
descriptions consist essentially in the introduction
of grain-interaction or respectively interaction pen-
alty measures. These terms quantify the elastic–
plastic mismatch between neighboring grains or
within larger grain clusters where the interacting
grains are typically selected statistically from a
large set of single orientations (1000–5000) which
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map the inherited texture [28–31]. The real neighb-
orhood arrangement of the grains is usually not
accounted for, due to obvious reasons. An
important point in this context is the question how
realistic, necessary, and effective the respective
grain interaction concepts are which are used in the
different homogenization models. Another
important feature still not grasped so far by these
improved grain interaction homogenization models
is that during deformation grains break up on a
micrometer scale into deformation structures with
different crystallographic orientation. Therefore,
this study aims to answer the questions how
important the influence of the neighborhood grain
arrangement is on the global deformation textures
and on the in-grain subdivision.

Our third set of comments addresses the impor-
tance of the orientation- and neighborhood depen-
dence of in-grain subdivision phenomena with
respect to the orientation dependence of the kinetic
instability criterion of recrystallization nucleation.
The phenomenological theory of primary static
recrystallization states that nucleation can only
take place in areas with large stored elastic energy
(thermodynamic instability criterion) and large
orientation gradients (kinetic instability criterion)
(e.g. [32]). The latter point implies, that during dis-
continuous subgrain coarsening (in grains with
high stacking fault energy) subgrains which rapidly
accumulate large misorientations beyond the
small-angle regime have a higher chance to act as
discontinuous nuclei in the further course of
recrystallization. This means that recrystallization
nucleation must be considered as a problem which
highly depends on the deformed host orientation in
which it takes place.

Our fourth set of comments addresses the aim
to identify the bounds for the influence of grain
interaction on texture evolution. The various grain
interaction approaches used by the improved
homogenization models [28–31,33] and the com-
parison of their predictions with experimental data
do alone not allow one to separate grain interaction
effects from constitutive, i.e. grain-scale strain
hardening effects on the texture development. It is
up to now not completely understood which of the
observed texture effects stem from the intrinsic
orientation dependence of strain hardening or grain

size effects and which stem from grain interac-
tion phenomena.

The organization of the paper is as follows: The
second section is about the experimental pro-
cedure. The third section describes the presentation
of fcc textures. The fourth section describes the
simulation procedures. In the fifth section the
simulation results are discussed and compared to
our own experimental data and to observations
made by other groups.

2. Experiments

An aluminum sample with commercial purity
(99.9 mass% Al) was chosen for comparing the
various texture predictions with experimental
results. At first a block of the aluminum sample
was forged in three mutually perpendicular direc-
tions several times with gradually decreasing thick-
ness reductions. This initial forming procedure was
conducted in order to produce a fine grained micro-
structure with a random orientation distribution.
From the previous literature on experimental rol-
ling textures of aluminum it is well known that
the generation of a random starting texture is very
difficult, but it is an essential precondition for com-
paring texture predictions with experimental data.
After forging the sample was cold rolled to 95%
thickness reduction (expressed in terms of the
engineering strain �d /d, where d is the initial sheet
thickness). The textures were quantitatively exam-
ined by measuring the four incomplete pole figures
{111}, {200}, {220}, and {113} in the range of
the pole distance angle α from 5° to 85° using
CuKa1 radiation. The measurements were carried
out using a Bragg-type back-reflection set-up.
From the experimental pole figures the orientation
distribution function f(g) was derived by use of the
series expansion method (1max � 22) and sub-
sequently ghost corrected by use of spherical
Gauss model functions.

3. Presentation of textures

Owing to the high symmetry of both the fcc
crystal system and the orthorhombic sample sys-
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tem which is set up by the rolling direction, RD,
normal direction, ND, and transverse direction,
TD, the rolling textures are presented in the
reduced Euler space where an orientation is given
by the three Euler angles ϕ1, φ, and ϕ2 (0°�
ϕ1, φ, ϕ2�90°). Crystal orientations can also be
conveniently described by use of Miller indices
{hkl}�uvw�. In this concept the triple {hkl}
describes the crystallographic plane which is paral-
lel to the sheet surface whereas �uvw� indicates
the direction parallel to the rolling direction. Since
fcc metals usually tend to develop fiber type tex-
tures during rolling and plane strain compression,
it is advantageous to also depict the orientation
density by use of fiber diagrams. For further com-
parison we therefore use the α-fiber and the β-skel-
eton line [34]. Texture fibers are sections of an
orientation distribution function which present the
orientation density along one of the Euler angles
where the other two angles remain constant. Crys-
tallographically this presentation shows the change
in orientation density for a rotation about a fixed
crystal axis. A texture skeleton line is a special
kind of texture fiber. It comprises the orientation
density of three major texture components with
variable coordinates in orientation space. This
presentation is important when the inspected tex-
ture components are less symmetric and therefore
not exactly located at a certain point in orientation
space. This means a texture skeleton line always
consists of two sets of information, namely, of the
orientation density plot and of the coordinate plot
in Euler space. For presenting textures of deformed
aluminum the most important presentations are the
αfcc-fiber which comprises all orientations with a
common crystallographic fiber axis � 011 �
parallel to the normal direction including major
components {011} � 100 � (Goss-component,
ϕ1 � 0°, φ � 45°, ϕ2 � 0°), {011} � 211 �
(Brass-component, ϕ1 � 35°, φ � 45°, ϕ2 � 0°),
{011} � 111 � , and {011} � 011 � (90° about
the normal rotated Goss-component, ϕ1 �
90°, φ � 45°, ϕ2 � 0°) and the less symmetric β-

skeleton line including major components
{211} � 111 � (Copper-component, ϕ1 �
90°, φ � 35°, ϕ2 � 45°), � {123} � 634 � (S-

component, ϕ1 � 60°, φ � 32°, ϕ2 � 65°), and
the Brass component {011} � 211 � .

4. Applied texture simulation methods

4.1. Basic constitutive model for the finite
element simulations

In the large-strain constitutive crystal plasticity
model [35] used in the present work one assumes
the stress response at each macroscopic continuum
material point to be potentially given by one crystal
or by a volume-averaged response of a set of grains
comprising the respective material point. The latter
assumption can be referred to as a local Taylor-
type or local strain-rate homogenization assump-
tion. In case of a multi-grain description the vol-
ume averaged stress amounts to

�T� � �N
k � 1

(wkTk) (1)

where N is the total number of individual orien-
tations mapped onto an integration point using the
Taylor assumption, wk the volume fraction of each
single orientation, Tk the Cauchy stress produced
by the kth individual orientation, and �T� the vol-
ume average stress produced by all orientation
mapped at the integration point. The constitutive
equation for the stress in each grain is then
expressed in terms of

T∗ � CE∗ (2)

where C is the fourth order elastic tensor and
E∗ an elastic strain measure obtained by polar
decomposition,

E∗ �
1
2

(F∗TF∗�1) (3)

which leads to a stress measure which is the elastic
work conjugate to the strain measure E∗,

T∗ � F∗-1(det(F∗)T)(F∗)�T (4)

where T is the symmetric Cauchy stress tensor in
the grain, and F∗ is a local elastic deformation
gradient defined in terms of the local total defor-
mation gradient F and the local plastic deformation
gradient FP. The relation between the elastic and
the plastic portion of F amounts to

F∗ � F(FP)�1 , det(F∗) � 0 , det(FP) � 1
(5)
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The plastic deformation gradient is given by the
flow rule

ḞP � LpFp (6)

with its crystalline portion

LP � �N
k � 1

ġkmk, mk � b̂k�n̂k (7)

where mk are the kth dyadic slip products of unit
vectors b̂kin the slip direction and n̂knormal to the
slip plane, and ġk the shear rates on these systems.
The specific constitutive functions for the plastic
shearing rates ġk on the slip systems are taken as

ġk � ġ0| tktk,crit|
1/m

sgn(tk) (8)

where τk is the resolved shear stress for the slip
system k, and τk,crit is the actual critical shear stress
on the kth slip system. ġ0 and m are material para-
meters representing shearing rate and the rate sen-
sitivity of slip. The calculation of τk,crit has been
achieved by accounting for latent hardening
through the use of an appropriate hardening matrix,

ṫk,crit � �
i

hki|ġi|, hki � qkih(i) (9)

where hki is the rate of strain hardening on kth slip
system due to a shearing on ith slip system, qki is
the hardening matrix describing the latent harden-
ing behavior of a crystallite, and h(i) is the harden-
ing rate of the single slip system i. In the present
study, 12 slip systems with crystallographic
�110� slip directions and {111} slip planes are
taken into account for room temperature simula-
tions of plastic deformation of aluminum. The
matrix hki can be taken as

hki � �
A qA qA qA

qA A qA qA

qA qA A qA

qA qA qA A
� (10)

where q is the ratio of the latent hardening rate to
the self-hardening rate, and A is a 3 × 3 matrix
populated by ones. Using this constitutive descrip-
tion renders the finite element method an elegant

tool for detailed simulation studies of texture evol-
ution and strain distribution under realistic bound-
ary conditions. Each integration point can represent
one orientation or map a larger set of crystals as
outlined above.

4.2. Set-up for the finite element simulations of
grain interaction and in-grain subdivision

A finite element model was formulated to evalu-
ate the influence of grain interaction on texture
evolution as well as on in-grain subdivision. As
shown in Fig. 1, 936 three-dimensional linear type
elements (C3D8) were used in the model. Each
element represents one individual grain with an
identical initial crystal orientation everywhere in
the element. The 936 different orientations are dis-
tributed randomly in orientation space. The orien-
tations were statistically assigned to the elements
so that they constitute a random artificial starting
texture according to the starting conditions used for
the experiments. Each element contains 8 inte-
gration points. All integration points in the same
element have the same crystallographic orientation
prior to loading but they can undergo different
reorientation paths during straining. The subdiv-
ision of each grain into a set of initial orientations
was used to predict the dependence of subdivision
within individual initially uniform grains during
loading the sample into the plastic regime. Coun-

Fig. 1. FEM model setup for evaluating the influence of
neighboring grains on the deformation texture. (a) 936 three-
dimensional linear type elements were used. Each element rep-
resents one individual grain with one initial orientation. (b)
Each element contains 8 integration points. (c) The boundary
conditions preserved an ideal plane strain shape of the entire
sample during forming.
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ting all individual integration points a set of 7488
(936 × 8) individual orientation points was used in
the finite element simulation. An implicit crystal
plasticity procedure proposed by Kalidindi et al.
[35] was implemented and used for the time inte-
gration of the constitutive equations (see Section
4.1). Calculations were carried out using the finite
element program ABAQUS in conjunction with
the user defined material subroutine UMAT [36].
Simulations were based on 12 × 1/√3{111}T

1 /√2 � 110 � T slip systems using viscoplastic
hardening. The model was used to simulate plane
strain compression to 95% engineering thickness
reduction (corresponding to a logarithmic strain of
ε � 3.0). The orientation distribution functions
were calculated from the orientations of all 7488
integration points by using spherical Gaussians
with a scatter width of 5°.

4.3. Set-up for the finite element simulations
without grain interaction and without in-grain
subdivision

A second crystal plasticity finite element simul-
ation was conducted in order to obtain a defor-
mation texture without any effects of the grain
neighborhood. In this approach, only one element
was used and 936 orientations were assigned to this
element on the basis of the Taylor-type assumption
given by Eq. (1).

4.4. Set-up for the finite element simulations of
global texture variation as a function of grain
interaction and in-grain subdivision

A third set of finite element simulations was per-
formed for obtaining an upper bound evaluation of
the influence of changes in the grain neighborhood
on the global texture evolution and on in-grain sub-
division. For this purpose the 936 texture compo-
nents were randomly assigned to the elements of
the finite element mesh. By repeating this pro-
cedure 9 times, thereby giving each grain in each
of the 9 subsequent simulation runs a different
neighborhood configuration, we generated a data
set which gives an overview of the spread in
response of each texture component to a variety of
neighborhood constraints. The results were statisti-

cally analyzed using the concept of a mean orien-
tation [5,6]. The aim of this simulation series con-
sisted in the identification of the maximum
possible texture and subdivision variation which
can be generated due to changes in the grain
neighborhood. Further details are as described in
Section 4.2.

4.5. Set-up for the homogenization simulation of
texture as a function of grain interaction

We selected four polycrystal homogenization
models in order to compare their predictions with
the experimental data and with the crystal plasticity
finite element calculations, namely, the original no-
strain-constraints (NC)-Sachs model, a modified
grain interaction Sachs model suggested by Mao
[37], the original full constraints (FC)-Taylor
model and a modified Taylor grain interaction
model by Schmitter [29,31]. For all predictions we
used as a starting point a set of 936 individual
orientations which were distributed homo-
geneously in orientation space. This set formed the
random starting texture for all polycrystal homo-
genization simulations. All individual orientation
changes were calculated in small strain steps of
�ε � 0.01 (logarithmic strain in sheet normal
direction). The resulting deformation textures of
the calculation at ε � 3.0 (corresponding to 95%
engineering thickness reduction) were analyzed in
the same way as the experiments and the crystal
plasticity finite element predictions.

5. Results and discussion

5.1. Influence of grain neighborhood on global
polycrystal texture

Fig. 2(a) shows an experimental deformation
texture obtained from a fine grained aluminum
polycrystal with random starting texture after 95%
cold rolling reduction (engineering strain). The tex-
ture is given in the reduced Euler space using con-
tour lines for the orientation density in sections
along the ϕ2-axis in �ϕ2 � 5° steps. The experi-
mental texture is characterized by a weak incom-
plete α-fiber consisting of a minor Goss component
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Fig. 2. (a) Rolling texture with random starting texture after 95% thickness reduction. (b,c) Deformation textures (95%) calculated
by the crystal plasticity finite element method with different mesh configurations: (b) 936 elements were used to present the whole
sample and each element represents one individual grain. (c) Only one element was used, but 936 orientations were assigned to the
same integration point using the Taylor assumption.

and a strong Brass component with a maximum at
ϕ1 � 30° (Fig. 3a) as well as a pronounced β-skel-
eton line (Fig. 3b) containing the Copper, S-, and
Brass components (the Brass orientation occurs on
both texture fibers, due to symmetry). The variable
coordinates of the β-skeleton line in Euler space
are given in Fig. 3(c).

Fig. 2(b) and 2(c) show the results for two crys-
tal plasticity finite element simulations with differ-
ent mesh configurations as outlined in Sections 4.2
and 4.3. Fig. 2(b) shows the simulation with 936
finite elements, where each element represents a
different grain and contains 8 integration points
with identical crystal orientation prior to loading.
Fig. 2c shows a simulation with only one element

Fig. 3. Texture comparison of 95% cold-rolled aluminum sheet (�), no-strain-rate-constraints (NC) Sachs model (�), full-constraints
(FC) Taylor model (�) and crystal plasticity finite element model with one element containing 936 orientations (+). (a) α-fiber, (b)
β-skeleton line, (c) coordinates of β-skeleton line.

where all 936 orientations, assembling the random
starting texture, were mapped on the same inte-
gration point using the Taylor assumption. Quali-
tatively, the two simulations reproduce the most
important features of the experimental texture, i.e.
the presence of the Copper, S-, and Brass compo-
nents (Figs. 2a and 3a-c). However, the simulation
with 936 different elements which automatically
takes into account grain interaction (Fig. 2b)
reveals a much better agreement with the experi-
mental texture (Fig. 2a). This applies particularly
for the shape and orientation density of the incom-
plete α-fiber with a weak Goss and a pronounced
Brass component as well as for the orientation den-
sity of the components on the β-skeleton line. The
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finite element simulation where only one element
is used to map all 936 orientations via the Taylor
assumption (Fig. 2c) predicts a deformation texture
with a missing Goss component and strongly over-
emphasized Copper- and S-components on the β-
skeleton line. The fiber analysis (Fig. 3) underlines
that the disregard of grain interaction in the finite
element simulation (when using only one element,
Fig. 2c) leads to results which are almost identical
to the predictions of the FC Taylor model. Fig. 3(b)
shows particularly the abnormally high orientation
density (�60–70) near the Copper orientation
(ϕ1 � 90°, � � 30°, ϕ2 � 45°), while the orien-
tation density of the Brass component (ϕ1 �
35°, � � 45°, ϕ2 � 0°) is much lower than

obtained by experiment. In contrast to this result,
the NC–Sachs model shows the opposite tend-
ency. Dropping the assumption of strain rate
compatibility leads to an even worse correspon-
dence between simulation and experiment (Fig.
3). Although both, the Taylor FC and the Sachs
NC models do obviously not correspond to the
experimental data, the Taylor constraint of strain
rate compatibility among the grains seems to be
more dominant for the evolution of the global
texture than the Sachs constraint of force equilib-
rium at the grain boundaries. Similar arguments
as for the Taylor FC model also apply for the
finite element simulation with only one element.
The comparison of the two classical homogeniz-
ation models with the experiment and with the
finite element prediction shown in Fig. 2(b)
underlines that an improvement in texture pre-
diction requires the incorporation of grain inter-
action.

Fig. 4 compares the results of the modified
Sachs model [37], the Taylor-grain interaction
model by Schmitter [29,31], and the crystal plas-
ticity finite element model with 936 elements, i.e.
with explicit consideration of the grain-neighbor
configuration. All these texture predictions show a
much better qualitative and quantitative agreement
with the experimental results than the classical
homogenization approaches presented in Fig. 3.

The α-fiber and the coordinates of the β-skel-
eton line (Figs. 4a and 4c) reveal that the Taylor
grain interaction model predicts a slightly shifted

Brass component (ϕ1 � 25°, � � 45°, ϕ2 � 0°)
when compared to the experimental data (ϕ1 �
30°, � � 45°, ϕ2 � 0°). The modified Sachs

approach also shows a slightly shifted Brass
component with a maximum at ϕ1 � 35°. The
modified Taylor model underestimates the Goss
orientation. The modified Sachs model reveals a
better match for Goss. The crystal plasticity
finite element model with 936 elements shows
an excellent agreement with the experimentally
observed position of the Brass component on the
α-fiber, but the predicted orientation density is
much below that observed in experiment. The
results shown on the β-skeleton line (Fig. 4b)
and on the β-skeleton line coordinates (Fig. 4c)
also reveal a good qualitative correspondence to
the experiments. While the modified Taylor grain
interaction model reveals similar component
positions though slightly sharper orientation den-
sity of the Copper and S components, the modi-
fied Sachs model overemphasizes both, the Cop-
per and the S-orientation and underestimates the
Brass-component. The crystal plasticity finite
element model shows a good agreement for the
Copper- and the S-orientations, but deviates for
the Brass component.

Similar observations, in particular about the
Brass component, were made earlier by Fortunier
and Driver [5], Hirsch and Lücke [34], and Beau-
doin et al. [38]. These studies showed that the
development of the Brass, Copper, and S texture
components is promoted by the relaxation of cer-
tain grain-to-grain shear constraints. Specifi-
cally, the exact position and intensity of the brass
component depends on the micromechanical
relaxation of the shear between rolling and trans-
verse direction. This shear component was often
not properly included in earlier simulations of
channel die compression or rolling which were
typically idealized by a (two dimensional) plane
strain tensor. Fortunier and Driver [5], Hirsch
and Lücke [34], and Beaudoin et al. [38] showed
that the incorporation of additional kinematic
degrees of freedom through inclusion of the out-
of-plane dimension in certain Taylor-type mod-
els and finite element models leads to a more
pronounced Brass texture.



4388 D. Raabe et al. / Acta Materialia 50 (2002) 4379–4394

Fig. 4. Texture comparison of 95% cold-rolled aluminum sheet (�), modified Sachs model (�), modified Taylor grain interaction
model (�), and crystal plasticity finite element model with 936 elements, each containing a set of 8 integration points with identical
initial orientation (+). (a) α-fiber, (b) β-skeleton line, (c) coordinates of β-skeleton line.

5.2. Upper bound evaluation of the influence of
grain neighborhood on the global texture
evolution

Fig. 5 shows a set of 9 simulation results which
were obtained by randomly re-arranging the initial
grain orientations assigned to the elements. This
approach was originally introduced by Mika and
Dawson [39] who used it to investigate the depen-
dence of grain micromechanics on the local grain
neighborhood. Employing a hybrid crystal plas-
ticity finite element formulation these authors con-
ducted a series of numerical experiments on the
same set of crystals. Each simulation used a differ-
ent spatial mapping of orientations to effectively
alter the neighborhood of each crystal, allowing the

Fig. 5. Set of 9 crystal plasticity finite element simulations conducted by statistically varying the arrangement of the grains in a
polycrystalline aggregate. Each grain is represented by 8 integration points and has different neighbor grains in each simulation. (a)
α-fiber, (b) β-skeleton line, (c) coordinates of β-skeleton line.

dependence of deformation on crystal orientation
to be examined.

In this study we conducted similar simulations
using the crystal plasticity finite element model
with 936 elements and 8 integration points in each
element as explained in Section 4.2. The 9 different
set-ups lead to 9 polycrystal configurations with
different neighbor relationships among the grains.
Comparing the predictions to the experimental
results reveals three essential points. The first point
is that the correspondence between the finite
element model and the experimentally observed
texture is qualitatively satisfying, but some quanti-
tative and even qualitative deviations remain. For
instance the predicted orientation density of the
Brass component (Fig. 5a,b) is in all 9 simulations
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much below the experimental value. Furthermore,
the crystal plasticity finite element model pro-
nounces the Copper-component somewhat less
than the experiment. The correspondence of the
exact positions of the occurring texture compo-
nents in Euler space is excellent between experi-
ment and simulation. The second point is that the 9
finite element simulations with their different grain
configurations reveal excellent qualitative agree-
ment with each other and only little variation in
terms of the overall orientation density. All predic-
tions occur within a similar spread of the overall
orientation distribution. Sampling the results for
the different neighborhood configurations shows
that the upper bound for the variation of texture
due to changes in grain interaction amounts at most
to 5% in terms of the positions of the main texture
components. In terms of the overall orientation
density all predictions fall within a narrow orien-
tation tube with an orientation scatter of 10% (β-
fiber) to 20% (Brass component, α-fiber). This
means that the influence of details of the grain
neighborhood on the global texture evolution var-
ies within these rather narrow bounds. The
micromechanical analysis by Mika and Dawson
presented in [39,40], however, suggests that the
texture scatter is also dependent on the shape of
the used finite elements. For instance in [40] Mika
and Dawson used a polycrystal model which was
constructed of 1099 rhombic dodecahedron shaped
crystals, each discretized with 48 tetrahedra
elements. The rhombic dodecahedron is a 12-sided,
space-filling polyhedron and serves as an idealized
crystal geometry. The scatter of the mean strain
component in compression direction as a function
of the Taylor factor extracted from simulations
with different grain neighborhood was larger for
rhombic dodecahedron shaped elements than for
brick shaped elements [see Fig. 5 in 40]. Similar
aspects associated with the element shape were dis-
cussed also in [39].

The third point that can be extracted from Fig.
5 is that all occurring texture components reveal
similar scatter. In other words the texture system-
atically broadens into a texture tube with a scatter
radius of 10–20% of the orientation density. When
expressed in absolute values, the texture scatter
among the 9 simulations is even more homo-

geneous with an average magnitude of �f(g) of
about 2–3 for the main texture components. This
indicates that the stability of all predicted texture
components shows a similar dependence on
changes in the grain neighbor configuration. At the
same time, the positions of the main texture
components are practically not affected by changes
in the grain neighborhood configuration (see coor-
dinates in Fig. 5c).

The simulations underline that the consideration
of grain interaction has a clear influence on the
global texture evolution of polycrystalline alumi-
num. Without reasonable consideration of this
effect neither classical homogenization theory nor
the crystal plasticity finite element simulations
which map larger sets of orientations on one single
integration point can predict textures accurately. It
is an essential result that—since the individual tex-
tures fall within a common texture tube (Fig. 5)—
the complex interaction of the grains with their
neighbors may be tackled in a statistical fashion.
This means that the input of the precise neighbor-
hood topology of the grains, as randomly varied in
the finite element simulations given in Fig. 5, has
rather little qualitative effect on the final global
texture. The simulations reveal that the orientation
spread as a function of the exact grain neighbor-
hood amounts at most to a variation in orientation
density of 10% for the β-fiber components and
20% for the α-fiber components. The exact
location of the texture components is even less
affected by the fine details of the grain neighbor-
hood arrangement.

This analysis of the finite element simulations
corresponds to the simulation results obtained by
the modified Taylor-type [29,31] and Sachs-type
[37] models which also showed reasonable accu-
racy when compared to the finite element simula-
tions and to the experiments. Considering the
expense in computation time, these models are
obviously more effective than finite element
approaches. This means that modified homogeniz-
ation models which contain plausible statistical
assumptions on grain interaction should provide
similar reliability as finite element simulations as
far as the global texture prediction is concerned.
This is particularly important for tackling plastic
anisotropy on an engineering scale. Of course,
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more detailed mechanisms of polycrystal plasticity
can only be obtained via the finite element method,
as will be discussed in the ensuing section.

5.3. Influence of grain interaction on in-grain
subdivision

During plastic deformation initially uniform
grains do as a rule not rotate as units but subdivide
into portions with a range of different orientations.
This phenomenon which leads to the formation of
in-grain orientation spreads does not only occur in
the trivial case of externally imposed strain gradi-
ents but also under gradient-free external loadings.
The intrinsic tendency (i.e. the orientation
dependence) of grains to build up in-grain orien-
tation gradients was recently systematically inves-
tigated using experiment, homogenization theory,
and finite element simulations [10,39–43]. It was
found in these studies that first, the formation of
in-grain subdivision is strongly dependent on the
initial orientation of the undeformed grain and that
second, the formation of in-grain orientation gradi-
ents was less dependent on the details of the con-
figuration of the neighbor grains.

Beaudoin et al. [42] were the first to address the
problem of in-grain orientation subdivision in a
very detailed fashion. In their work they showed
that large orientation spreads which contained most
orientation components from the β texture fiber can
build up in plane strain deformed S-oriented
grains.

Mika and Dawson [39] conducted crystal plas-
ticity finite element simulations using rhombic
dodecahedral-shaped crystals, each finely discret-
ized with tetrahedral elements. They observed spa-
tial in-grain variations in deformation even under
simple external loadings leading to orientational
grain subdivision phenomena. Particular attention
in their study was focused on the resulting crystal-
lographic misorientation across the newly formed
boundaries and their orientations relative to the
applied loads. This evolving in-grain boundary tex-
ture was compared to published experimental data
obtained using TEM and Kikuchi pattern analysis.

In a second paper Mika and Dawson [40] inves-
tigated the deformations of a face-centered cubic
polycrystal under idealized plane strain rolling

conditions. The polycrystal model consisted of
1099 rhombic dodecahedron shaped crystals, each
discretized with 48 tetrahedra elements. Different
simulations used a different spatial mapping of
orientations to effectively alter the neighborhood
of each crystal, allowing the dependence of defor-
mation on crystal orientation to be examined. The
authors stated that coarse crystal discretizations are
adequate for modeling bulk anisotropic properties,
but a detailed investigation of local neighborhood
effects require a finely discretized mesh that is bet-
ter able to capture gradients in the deformation
field.

Raabe et al. [43] have recently conducted an
experimental and simulation study on the in-grain
strain- and orientation gradients occurring in a
coarse grained plane strain compressed aluminum
polycrystal.

The crystal plasticity finite element simulations
with 936 finite elements where each element con-
tains 8 integration points conducted in our current
study allow us to investigate the dependence of in-
grain orientation subdivision as a function of
changes in the grain neighbor configuration and to
compare the results with homogenization theory.
Since each of the 9 simulations was conducted with
a different neighborhood arrangement differences
in the subdivision behavior can be analyzed for
each texture component as a function of the
grain neighborhood.

For obtaining a quantitative description of the
in-grain orientation scatter observed for the differ-
ent grain neighborhoods we adopted the concept of
mean orientation which was recently suggested by
Delannay et al. [41]. As schematically shown in
Fig. 6, the mean orientation in a set of discrete
orientations is defined as the lattice orientation that
has the minimum misorientation to all other orien-
tations constituting the set.

Fig. 7 exemplary shows the subdivision results
for one orientation out of the set of 936 different
texture components. The {111} pole figure projec-
tion shows the orientational subdivision obtained
after 95% thickness reduction (engineering strain)
in the crystal plasticity finite element model for one
particular starting orientation (indicated by the
solid circle �). The different neighborhood con-
figurations were achieved by changing the arrange-
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Fig. 6. The mean orientation (�) is defined as the lattice
orientation which has the minimum misorientations to all orien-
tations constituting a set of discrete orientations (�).

ment of the starting orientations assigned to the
finite elements 9 times. The 9 different final mean
orientations obtained from each of those simula-
tions with different grain neighborhood are rep-
resented by open symbols (����...). Each grain
was represented by 8 integration points so that in
total 72 (8 × 9) cross marks (+) show the orien-
tation fragments for each of the mean orientations
as a scatter field of the deformed grains in the dif-
ferent surroundings. It can be seen that for the
presented starting orientation (�) the different
grain neighborhood led to different final mean
orientations. All final mean orientations fall into a
range of about 20° mutual orientation deviation.
However, the main tendency of the reorientation
of the original crystal reveals the same direction
in orientation space. As will be discussed in the
following, the orientation scatter observed in Fig.
7 is not necessarily typical of all strained grains
since the effect is strongly orientation dependent.
The example, however, shows that the misorien-
tation between each mean orientation (obtained for
one of the 9 finite element simulations) and the
single orientations of each of the 8 integration
points used for deriving the mean orientation can

Fig. 7. One orientation from the set of 936 initial grain orien-
tations showing the subdivision after a thickness reduction of
95% in the finite element model. Different neighborhood con-
figurations were realized by changing the arrangement of the
elements 9 times. The solid circle (�) represents the initial
orientation and the open symbols (����...) represent the final
mean orientations of the subdivided grains having different
grain neighborhoods. Each element contained 8 initially ident-
ical orientation points. Therefore, in total 72 (8 × 9) cross marks
(+) are plotted to show the scatter in the orientational subdiv-
ision of the deformed grains.

serve as a measure for the orientation scatter within
the deformed grain.

Fig. 8 presents three of the 9 in-grain misorien-
tation functions between the mean orientation and
the orientations of the 8 integration points initially
pertaining to the same grain. By using spherical
Gaussians all misorientation results for the 936 dif-
ferent elements (grains) were mapped into Euler
space according to their initial orientation position.
The misorientation functions given in Fig. 8 is nor-
malized so that the contour lines indicate not the
absolute but the relative tendency of individual
grains to build up in-grain orientation scatter. The
procedure was repeated 9 times for the 9 different
arrangements of the grain neighborhood. Fig. 8
shows only three of them, representing the upper
and lower bounds as well as an example between
them. It can be seen that different initial grain
orientations reveal a different tendency to undergo
orientational subdivision during plastic straining.
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Fig. 8. In-grain misorientation functions between the mean orientation and the orientations of the 8 integration points initially
pertaining to the same grain (element). The misorientation results for the 936 different elements were mapped according to their
initial orientation position. The contour lines indicate not the absolute but the relative tendency of individual grains to build up in-
grain orientation scatter. The procedure was repeated 9 times for the 9 different arrangements of the grain neighborhood (only 3
representative results are shown).

Although the intensity distribution is different in
the three simulated in-grain misorientation distri-
bution functions, the basic tendency, i.e. the orien-
tation dependence to undergo orientation subdiv-
ision is rather similar in the three results.

As is known from numerous previous investi-
gations, the cube orientation (ϕ1 � 0°, � �
0°, ϕ2 � 0°, and ϕ1 � 90°, � � 0°, ϕ2 � 0°,

marked by x in Fig. 8c) has in fcc metals a strong
tendency to undergo orientation subdivision both,
in polycrystals [40–43] as well as in single crystals
[44,45]. The calculations also show that the cube
orientation keeps its tendency to subdivide in dif-
ferent neighborhood configurations. The different
sections containing the cube orientations in Euler
space reveal further different scatter tendencies in
the three different rotation directions. A different
behavior can be found for the 90° about the sheet
normal rotated Goss component (ϕ1 � 90°, � �
45°, ϕ2 � 0°). Fig. 8(a) shows a strong in-grain-

subdivision for this component while Fig. 8(c)
shows no tendency to subdivide. This means that
this texture component (which does not play an
important role in aluminum rolling textures) shows
substantial sensitivity with respect to its neighbor-
ing grain configuration. A strong maximum in the
normalized in-grain misorientation distribution can
be observed for a component about 10° off the
Copper orientation. The main texture components
on the β-skeleton line, i.e. the Copper, S-, and
Brass orientations reveal a very small tendency to

undergo orientation subdivision according to our
finite element simulations. This observation was
also experimentally confirmed by the work of
Delannay et al. [41]. The qualitative similarity in
the orientation dependence of the in-grain mis-
orientation function among the different finite
element simulations for most of the orientations
suggests the conclusion that the basic inclination
of a grain to undergo orientation subdivision is
strongly determined by its initial orientation and
the basic constraints (intrinsic dependence) and
less determined by the details of the neighborhood
configuration (extrinsic dependence).

5.4. Limitation of the analysis

The application of the crystal plasticity finite
element model with 936 elements allows one to
conduct detailed calculations about the influence of
the neighbor grains on the individual deformation
behavior of different crystals as well as on the glo-
bal texture evolution of polycrystals. However,
several limitations of this method should be
emphasized.

First, the grain shape assumed in the simulations
has a simple brick-like geometry. More accurate
simulations of grain subdivision should take into
account the real topology of the grains and use
more elements in one individual grain. Second, in
the present work we used a random initial texture
in the experiments and a set of 963 discrete crystal-
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lographic orientations which formed a random
initial texture in the simulations. However, real
polycrystalline materials rarely have a random tex-
ture. This means we cannot exclude that the pres-
ence of pronounced starting textures might influ-
ence the statistics of the grain neighborhood
configuration, rendering randomly chosen single
grain mechanics a cluster-mechanical phenom-
enon, where larger sets of similarly oriented
neighboring crystals undergo cooperative shape
changes. Such phenomena are well known from
ridging and roping phenomena.

6. Conclusions

We investigated the dependence of crystallo-
graphic deformation textures and in-grain subdiv-
ision phenomena in aluminum polycrystals on
grain interaction. We used experiments, homogen-
ization theory, and crystal plasticity finite element
methods. The main conclusions are:

� Grain neighborhood interaction has a significant
influence on the evolution of the global defor-
mation texture. Quantitative predictions of
deformation textures, be it with homogenization
or crystal plasticity finite element theory, cannot
be obtained without taking the influence of grain
interaction into account.

� The influence of the grain neighborhood on the
global texture evolution can be described by
statistics. Crystal plasticity finite element simul-
ations with different grain neighborhood con-
figurations predicted slightly different textures
which all fall in a narrow orientation tube with
an orientation scatter between 10% (β-fiber) to
20% (Brass component, α-fiber) in terms of the
orientation density and only 5% in terms of
orientation changes. Correspondingly modified
Taylor-type and Sachs-type models, therefore,
in principle represent effective and fast methods
to capture this systematic influence into
polycrystal modeling.

� The tendency of grains to undergo orientation
subdivision during straining is much stronger
affected by their initial orientation (intrinsic
dependence) rather than by the details of the

grain neighborhood surrounding them (extrinsic
dependence). Statistical variations in the grain
neighborhood revealed mostly a similar orien-
tation dependence of orientational subdivision,
but the magnitude of the effect varied.
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