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A dislocation density-based crystal plasticity model incorporating both transformation-induced plasticity
(TRIP) and twinning-induced plasticity (TWIP) is presented. The approach is a physically-based model
which reflects microstructure investigations of ε-martensite, twins and dislocation structures in high
manganese steels. Validation of the model was conducted using experimental data for a TRIP/TWIP Fe-
22Mn-0.6C steel. The model is able to predict, based on the difference in the stacking fault energies, the
activation of TRIP and/or TWIP deformation mechanisms at different temperatures.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

High manganese austenitic steels (15e30 wt% Mn) are particu-
larly attractive for structural applications in the automotive in-
dustry because of their outstanding mechanical properties such as
high strength and high ductility [1e3]. Under applied loading, the
hardening mechanism in this class of steels is due to Trans-
formation Induced Plasticity (TRIP) and/or Twinning Induced
Plasticity (TWIP). Austenitic steel systems which exhibit TRIP or
TWIP are, for instance, Fe-Mn-C or Fe-Mn-Al-Si [4]. Related alloys
where both phenomena can occur concurrently are Fe-Cr-Ni
stainless steels which are used in the fields of energy conversion,
household and cryogenic applications as well as chemical
industries.

Depending on the chemical composition and the deformation
temperature, additional plastic deformation mechanisms such as
mechanical twinning and/or athermal phase transformation phe-
nomena can occur besides dislocation slip in such steels [4e6]. The
activation barriers for these partially competing mechanisms are
strongly dependent on the stacking fault energy (SFE) [7]. With
decreasing SFE, the plasticity mechanisms change from (i) dislo-
cation glide to (ii) dislocation glide in conjunction with mechanical
Elsevier Ltd. All rights reserved.
twinning to (iii) dislocation glide in conjunction with martensitic
phase transformation [8]. In general, martensitic transformation is
observed in very low SFE steels (below 20mJ/m2) while twinning is
observed in medium SFE steels (20e40 mJ/m2). When the SFE ex-
ceeds 45 mJ/m2, dislocation glide becomes the predominant mode
of plastic deformation [9].

In this class of steels, the g-austenite phase is a metastable fcc
phase, which can transform into ε-martensite (hcp) or a0-
martensite (bcc/bct). Two different transformation paths, g / ε

and g / ε / a0, have been reported [10]. The transformation path
is influenced by the Mn content, where the g / ε transformation
typically occurs in high Mn steels (15e30 wt% Mn) while the
g / ε / a0 transformation path typically occurs in medium Mn
steels (5e12 wt% Mn) [11].

The objective of this work is to develop a physically-based
crystal plasticity model for high Mn steels that can capture the
activation of different plastic deformation mechanisms, in partic-
ular the TRIP and TWIP effects, and their interaction with disloca-
tion plasticity and their respective dependence on the substructure,
based on the SFE of the material. The model is implemented within
an existing crystal plasticity computational framework, the Düs-
seldorf Advanced Material Simulation Kit (DAMASK) [12,13].

The twin nucleus model in this paper used to describe defor-
mation twinning was first proposed by Mahajan and Chin [14].
Based on this model, Steinmetz et al. [15] introduced an analytical
TWIP model which is an extension of the three internal variable
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model (3IVM) by Roters et al. [16]. This model by Steinmetz et al.
[15] is an isotropic model of a polycrystal which does not take grain
orientations and grain interactions into account. Jia et al. [17,18]
implemented the crystal plasticity-based TWIP model within
DAMASK together with dislocation slip and shear banding. In the
current study, the TWIP model is extended to also model the g/ ε

martensitic transformation (TRIP), such that the current constitu-
tive model has the capability to simulate the evolution of disloca-
tion densities, twin volume fractions, and ε-martensite volume
fractions. The onset of twinning or martensitic transformation is
determined by two separate expressions for the critical stress for
twin growth and the critical stress for ε-martensite growth.

In the current work, we restrict our consideration of the
martensitic transformation to the g / ε transformation found in
high Mn and the related high Ni steels. The g / ε / a0 trans-
formation which typically occurs in medium Mn and medium Ni
steels will be considered in a future study. Therefore the term
martensite in this paper will only refer to ε-martensite. The present
model does not explicitly account for the precise distribution and
arrangement of the twins and martensite laths but rather the vol-
ume fraction of twins and ε-martensite at each material point. The
focus here is on a modeling approach that enables the prediction of
the onset of these different deformation mechanisms based on the
SFE and the effect of these competing deformation mechanisms on
the hardening behaviour of the material.

This paper is structured as follows: first, existing models for
deformation twinning and martensitic phase transformation are
reviewed. Next, the model for the twin and ε-martensite nuclei is
presented, followed by a detailed description of the constitutive
law. The experimental and simulation procedures are next
described. Finally, the results and a discussion thereof are pre-
sented. The paper ends with some concluding remarks.

2. Previous work

The incorporation of plastic deformation modes such as defor-
mation twinning and martensitic phase transformation in addition
to slip within constitutive models has long been an outstanding
problem. Early analysis by Chin et al. [19] on the behaviour of
crystals subjected to mechanical twinning were based on the
adaptation of the Taylor model [20] for mechanical twinning. Van
Houtte [21] proposed a simple scheme for reorientation of grains
due to twinning during simulation of texture development in a
polycrystal. Tome et al. [22] and Lebensohn and Tome [23] pro-
posed twin reorientation and volume fraction transfer schemes for
Taylor-type and self-consistent polycrystal models. However, these
previous attempts to model the response of polycrystals due to
both slip and twinning are for the rigid-plastic, non-hardening case.

Crystal plasticity-based models have also been proposed to
model the combined effect of slip and twinning [24,25]. These
models have the capability to model strain hardening and texture
evolution associated with deformation twinning at the grain scale.
Kalidindi [24,26,27] extended the classical crystal plasticity model
to include deformation twinning, which was used to model strain
hardening and deformation textures in low SFE fcc metals. Kali-
dindi [27] defined the evolution of the twin volume fraction in the
same way as that for slip, using a simple power law and introduced
new functions for the slip and twinning resistance. Staroselsky and
Anand [25] proposed a phenomenological saturation-type hard-
ening function to capture slipetwin interactions.

Physically-based models for strain hardening and texture evo-
lution have also been introduced [28e31]. Bouaziz and Guelton [30]
introduced a physically based model which accounts for the
interaction between twinning and dislocation motion by incorpo-
rating the characteristic spacing of twins into the dislocation
storage. In the model by Allain et al. [31,32], the evolution function
of the twin volume fraction is a mathematical description of the
twin nucleation, which captures experimental observations of the
microstructure. The twineslip interactions are based on the evo-
lution of the dislocation MPF accounting for the three-dimensional
spatial arrangement of twins within a grain.

The modeling of transformation plasticity has also seen a
number of developments over the past couple of decades. The
drivers for transformation may be controlled by stress (i.e., stress-
assisted transformation) or strain (i.e., strain-induced trans-
formation). Olson and Cohen [33] presented a phenomenological
model for the kinematics of martensite nucleation in which shear-
band intersection is the dominant mechanism for strain-induced
martensitic nucleation. The model is based on an estimation of
the number of martensite nucleation sites present in the material
and the probability of martensite nucleation at these sites. String-
fellow et al. [34] extended the Olson and Cohen model ewhere the
evolution of martensite is related to the plastic strain and tem-
perature e to also account for the effect of the stress state on
martensite nucleation. Leblond et al. [35,36] developed a
phenomenological model for strain-induced martensitic phase
transformation based upon a decomposition of the plastic defor-
mation. A HilleMandel homogenization scheme was used to relate
the macroscopic stress and strain to the microscopic stresses and
strains.

In the literature, several models have been proposed to describe
the crystallographic aspects of martensitic transformations using
micromechanics approaches [37e43] using a small-strain frame-
work. Suiker and Turteltaub [44e46] developed a model within a
multiscale framework to simulate the transformation of fcc
austenite into body-centered tetragonal (bct) martensite. This
model uses the results from the crystallographic theory of
martensitic transformations proposed by Wechsler et al. [47],
which was further developed by Ball and James [48] based on the
minimization of the free energy.

The models previous described have only considered either the
effect of slip and twinning or the effect of slip and transformation.
However, models which incorporate the combined effect of slip,
deformation twinning and martensitic transformation are more
rare. Sun et al. [49] proposed a crystal plasticity model for slip,
twinning and transformation induced plastic deformation, using a
TWIP steel single crystal for validation.
3. Background

In fcc metals with low SFE, mechanical twinning and
ε-martensite nucleation mechanisms are very similar in terms of
the dislocation reactions which form the twin and ε-martensite
nuclei. In fcc metals, a perfect dislocation on the {111} plane dis-
sociates into two Shockley partial dislocations as follows [50,51]:

a
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E
þ a
2

D
101

E
¼ 3� a

6

D
112

E
(1)

where a is the lattice parameter.
Twin formation involves the passage of 16h112i Shockley partials

on every {111} plane [14,52], while the formation of ε-martensite
(fcc / hcp transformation) is achieved through the passage of
1
6h112i Shockley partials on every second {111} plane [53,54].

The twin nucleus model used to describe deformation twinning
in the current work was first proposed byMahajan and Chin [14]. It
is a mechanism in which two perfect dislocations split into fault
pairs and react on the primary slip plane to produce three Shockley
partial dislocations on adjacent planes. A schematic of the twin
nucleus based on the model by Mahajan and Chin is shown in
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Fig. 1(a). Three stacking faults are on adjacent parallel (111) planes.
The straight back lines represent sessile Shockley partial disloca-
tions, while the bowed out front lines represent mobile Shockley
partial dislocations. The twins would then form when these three-
layer stacking faults inside a slip band on adjacent slip planes grow
into one another. The growing twins are assumed to be thin discs
where the length and volume of these twins decrease with
increasing twin volume fraction.

Mahajan et al. [55] also proposed a similar model for the for-
mation of the ε-martensite nucleus, where instead of the Shockley
partials occurring on every {111} plane, the Shockley partials occur
on every second {111} plane. The schematic for the ε-martensite
nucleus is shown in Fig. 1(b).

Considering first the twin nucleus model depicted in Fig. 1(a),
the critical event for growth of the twin nucleus depicted is
determined by the overall energy of the system. The total energy of
this system is given by Refs. [15,56]:

Qtotal ¼ Qwork þ Qsf þ Qline (2)

The term Qtotal has three contributions:

Qwork ¼ �3btAðr; LÞ (3)

Qsf ¼ GsfAðr; LÞ (4)

Qline ¼ 9
2
Gb2Bðr; LÞ (5)

where Qwork is the energy supplied by the applied shear stress t, Qsf
is the energy required to create two interfaces between the twin
and the parent phase, and Qline is the energy required to extend the
dislocation line. The term Gsf represents the stacking fault energy
(SFE) and b is the Burgers vector of the Shockley partial. The
assumption for Qsf is that the SFE is approximately twice the twin
interface energy, Gsf. The area function A(r,L) and line function B(r,L)
for a twin nucleus with dimensions r and L as shown in Fig. 1(a)
given as:
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Fig. 1. Schematic of the twin and ε-martensite nuclei, where d(111) is the interplanar spacing
twin/ε-martensite nucleus, r is the distance the mobile Shockley partial dislocations have bo
twin or ε-martensite lath are denoted by D1, D2 and D3.
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for r�L/2 and
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for r>L/2, respectively.
For high applied stresses, the energy is constantly decreasing,

but for a particular stress level a saddle point is found at r/L¼0.5, as
shown in Fig. 2(a). The saddle point is very sharp in stress, creating
a steep increase in the activation barrier for small reductions in
stress, resulting in an essentially athermal barrier stress. At this
point, the mobile partial dislocations will have formed a semicircle
between the two pinning points. The stress at this configuration is
defined as the critical stress for twin growth and is given by:

bttw ¼ Gsf
3btw

þ 3Gbtw
Ltw

(10)

The hcp nucleus model proposed by Mahajan et al. [55] is used
in the present model to describe g / ε martensitic phase trans-
formation. Similar to the twin nucleation model, the critical event
for growth of a hcp nucleus is also determined by the overall energy
of the system. The expression for the overall energy of the system is
similar to Eq. (2), although an additional term Qtrans is needed to
account for the release in energy due to a change in phase:

Qtotal ¼ Qwork þ Qint þ Qline þ Qtrans (11)

For low SFE, the assumption that the SFE is approximately twice
the interface energy used in the twinning case in Eq. (4) is no longer
valid. Therefore, the interface energy term, Qint, for the trans-
formation case is given as:

Qint ¼ 2sg=εAðr; LÞ (12)

where sg/ε is the interface energy.
of the {111} plane, L is the length of the sessile Shockley partial dislocations forming the
wed out. Three mobile Shockley dislocations which can grow into each other to form a



Fig. 2. Total energy, Qtotal of the twin and ε-martensite nucleus as a function of the normalized radius, r/L. The energy curves were computed using the following values: G ¼ 93 GPa,
Gsf ¼ 15 mJ/m2, sg/ε¼10 mJ/m2, b ¼ btw ¼ btr ¼ 2.56 � 10�10m, a ¼ 3.68 � 10�10m. The numbers on each curve represent the applied shear stress.
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The transformation energy term, Qtrans is given as:

Qtrans ¼ hAðr; LÞDGg/ε (13)

where h is the height of the hcp nucleus, L ¼ Ltr, and DGg/ε is the
change in Gibbs free energy per unit volume from the austenite to
the martensite phase.

The energy curves for ε-martensite (hcp) nucleation are shown
in Fig. 2(b), where for the same energy level, the stress required for
growth of the ε-martensite nucleus is lower compared to twinning.
The critical stress for growth of the hcp nucleus is:

bttr ¼ 2sg=ε

3btr
þ 3Gbtr

Ltr
þ hDGg/ε

3btr
(14)

where btr is the Burgers vector for transformation.

4. Constitutive law

4.1. Kinematics

The total deformation gradient F is decomposed into an elastic
part, Fe, and a plastic part, Fp [57]:

F ¼ FeFp (15)

The elastic part Fe consists of a stretch, Ue and a lattice rotation,
Re according to the polar decomposition Fe¼ReUe.

The total velocity gradient is defined as:

L ¼ _FF�1 (16)

The plastic velocity gradient, Lp, in the relaxed configuration for
pure dislocation slip is determined by the slip rates _ga on all active
slip systems a:

Lp ¼
XNs

a¼1

_gama5na (17)

wherema and na are the slip direction and the slip plane normal of
slip system a, respectively.

Following the approach of Kalidindi [24], the contribution of
mechanical twinning and phase transformation are taken into ac-
count as an additional terms in the plastic velocity gradient:
Lp ¼
0@1�

XNtw

b¼1

f b �
XNtr

c¼1

f c

1AXNs

a¼1

_gama5na þ
XNtw

b¼1

_gbmb
tw5nb

tw

þ
XNtr

c¼1

_gcmc
tr5nc

tr

(18)

where fb is the volume fraction of twins for the twin system b and fc

is the volume fraction of martensite for the transformation system
c. The vectors m and n denote the directions and plane normals of
the deformation systems on which shear occurs at a rate of _g.

The present expression for Lp in Eq. (18) does not consider
subsequent slip within twins and ε-martensite. This approximation
is often suitable for extremely thin twins, while the ε-martensite is
assumed to have a very high yield strength and therefore only
deforms elastically after transformation occurs.

Slip occurs on the 12 f111g〈110〉 slip systems, while twinning
occurs on the 12 f111g〈112〉 twin systems. The fcc to hcp lattice
transformation in the model is described by the Shoji-Nishiyama
orientation relationship [58]:

ð111Þfcc
����ð0001Þhcp

h
112

i
fcc

�����1100�
hcp

An orthonormal basis in the fcc lattice consisting of the di-
rections ½112�, ½110� and [111] becomes ½1100�, ½1120�, and [0001]
respectively, in the hcp lattice. Assuming that the resulting hcp
phase has an ideal c/a ratio, the deformation gradient which
transforms the fcc phase to the hcp phase is a simple shear

ffiffiffi
2

p
=4 in

the ½112�fcc direction on the (111)fcc plane:

S ¼
0@1 0

ffiffiffi
2

p .
4

0 1 0
0 0 1

1A (19)

All {111} planes of the fcc lattice are possible shear planes. Each
{111} plane contains three 〈112〉 shear directions; therefore, there
are 12 possible ε-martensite variants. The transformation tensor
associated with the transformation system c, which is analogous to



S.L. Wong et al. / Acta Materialia 118 (2016) 140e151144
the Schmidt tensor, is defined as:

Nc ¼ RcSRT
c � I ¼ mc

tr5nc
tr (20)

where Rc is the rotation matrix which rotates the orthonormal
basis aligned with the fcc lattice to the orthonormal basis aligned
with the 〈112〉, 〈110〉 and 〈111〉 directions. The calculated values of
Nc for fcc materials is shown in Table 4.1.
c Nc ¼ mc
tr5nc

tr

1 ½211�5 (111)/12
2 ½121�5 (111)/12
3 ½112�5 (111)/12
4 ½211�5 (111)/12
5 ½121�5 (111)/12
6 ½112�5 (111)/12
7 ½211�5 (111)/12
8 ½121�5 (111)/12
9 ½112�5 (111)/12
10 ½211�5 (111)/12
11 ½121�5 (111)/12
12 ½112�5 (111)/12
4.2. Dislocation densities

The microstructure is parameterized in terms of the edge
dislocation density, re, the dipole dislocation density, rd, the twin
volume fraction, ftw, and the ε-martensite volume fraction, ftr.

In a dislocation-based model, the Orowan equation [59] gives
the shear rate on the slip system a as:

_ga ¼ rebsv0exp

"
� Qs

kBT

(
1�

 ��taeff ��
tsol

!p)q#
signðtaÞ (21)

where taeff is the effective resolved shear stress on the slip system a,
tsol is the solid solution strength, bs is the length of the Burgers
vector for slip, v0 is the dislocation glide velocity, Qs is the activation
energy for dislocation slip, kB is the Boltzmann constant, T is the
temperature, p and q are fitting parameters.

The effective shear stress, taeff , is calculated as:

taeff ¼
���ta��� tapass; for

��ta��> tapass
0; for

��ta�� � tapass

where ta is the resolved shear stress on the slip system a.
The passing stress, tapass is given by:

tapass ¼ Gb

 XNs

a0¼1

xaa0

�
ra

0
e þ ra

0
d

�!1=2

(22)

where G is the shear modulus, xaa' is interaction matrix between
the different slip systems a and a'.

The evolution of the edge dislocation density is given as:

_rae ¼ j _gaj
bsLa

s
� 2bda

bs
rae
�� _ga��� 2d�a

bs
rae
�� _ga�� (23)

where La
s is the mean free path (MFP) for slip which will be

described in Section 4.3.
The evolution of the dislocation dipole density is given as:
_rad ¼ 2bda

bs
rae
�� _ga��� 2d�

a

bs
rad
�� _ga��� rad

4vclimb�bda � d�
a
� (24)

The dislocation climb velocity is given as:

vclimb ¼ 3GD0U
2pkBT

1�bda þ d�
a
� exp

�
� Qc

kBT

�
(25)

where D0 is the self-diffusion coefficient for fcc Fe, U is the acti-
vation volume for climb and Qc is the activation energy for climb.

The maximum glide plane distance two dislocations can have to
form a dipole, bda

and the minimum distance required for two edge
dislocations to annihilate, d�

a
, are calculated respectively as:

bda ¼ 3Gbs
16pjtaj (26)

d�a ¼ Cannibs (27)

where Canni is a fitting parameter.
4.3. Mean free paths

Strain hardening is described in terms of a dislocation mean free
path (MFP) approach, where the mean free path is denoted by the
symbol L. The mean free path for slip has confining contributions
due to the pileup of dislocations, the formation of twins and the
formation of ε-martensite as follows:

1
La

s
¼ 1

d
þ 1
laslip

þ 1
lasliptwin

þ 1
lasliptrans

(28)

1
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¼ 1
islip

 XNs
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�
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0
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0
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�!1=2

(29)

1
lasliptwin

¼
XNtw

b¼1

xabf
b 1
ttwð1� ftwÞ (30)

1
lasliptrans

¼
XNtr

c¼1

xacf
c 1
ttrð1� ftrÞ (31)

where d is the average grain size, ttw is the average twin thickness,
ttr is the average ε-martensite thickness, ftw is the total twin volume
fraction, ftr is the total ε-martensite volume fraction and islip is a
fitting parameter. xaa' is the interaction matrix between the
different slip systems a and a', xab is the interaction matrix between
the slip system a and twin system b and xah is the interactionmatrix
between the slip system a and transformation system c.

The mean free path between two obstacles seen by a growing
twin is computed as:

1

Lb
tw

¼ 1
itw

0@1
d
þ
XNtw

b
0¼1

xbb0 f b
0 1
ttwð1� ftwÞ

1A (32)

where itw is a fitting parameter and xbb' is the interaction matrix
between the different twin systems b and b'.
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The mean free path between two obstacles seen by a growing
ε-martensite lath is computed as:

1
L

c
tr
¼ 1

itr

0@1
d
þ
XNtr

c0¼1

xcc0 f c
0 1
ttrð1� ftrÞ

1A (33)

where itr is a fitting parameter and xcc' is the interaction matrix
between the different transformation systems c and c'.

4.4. Twin nucleation

The twin nucleation rate for the twin system b is given as:

_N
b
tw ¼ _N0pncsptw (34)

where _N0 is the number density of potential twin nuclei per unit
time.

The probability that cross-slip does not occur, which would
allow a sufficient number of dislocations to pile up and form the
stress concentration necessary to form a twin nucleus, is given as:

pncs ¼ 1� exp
	
� Vcs

kBT

�
tr � tb

�

(35)

where Vcs is the cross-slip activation volume.
The stress needed to bring two partials to within the critical

distance to form the twin nucleus, xc, without help from an external
applied shear stress is:

tr ¼ Gb
2pðx0 þ xcÞ þ

Gbcosðp=3Þ
2px0

(36)

The equilibrium separation of Shockley partials in fcc metals is
calculated as:

x0 ¼ G
Gsf

b2

8p
2þ n

1� n
(37)

The probability that the twin nucleus shown in Fig. 1(a) bows
out to form a twin is:

ptw ¼ exp

"
�
�bttw

tb

�A
#

(38)

where the critical stress for twinning, bttw, is given in Eq. (10), tb is
the resolved shear stress on the twin system b and A is a fitting
parameter which determines the sharpness of the transition be-
tween the non-twinning to the twinning regime.

The evolution of the twin volume fraction is expressed as:

_f
b ¼ ð1� ftw � ftrÞVb _N

b
tw (39)

where ftw ¼PNtw
b¼1f

b and ftr ¼
PNtr

c¼1f
c.

The resulting shear rate for each twin system b is calculated as

_gb ¼ gtw
_f
b

(40)

where gtw is the characteristic twin shear.
The volume of a new twin is:

Vb ¼ p

4
L2

twttw (41)

whereLtw is given in Eq. (32) and ttw is the average twin thickness.
4.5. ε-martensite nucleation

The probability that the six layer hcp nucleus bows out to form
an ε-martensite lath is:

ptr ¼ exp

"
�
�bttr
tc

�B
#

(42)

where the critical stress for transformation, bttr is given in Eq. (14),
tc is the resolved shear stress on the transformation system c and B
is a fitting parameter.

The total nucleation rate of ε-martensite is given as:

_N
c
tr ¼ _N0pncsptr (43)

The expression for _N0 in Eq. (43) is assumed to be the same as
that in Eq. (34) because the dislocation reactions are assumed to be
equally likely to form twin nuclei or ε-martensite nuclei. The
probability pncs approaches 1.0 as the temperature decreases
because cross slip does not occur at low temperatures.

The evolution of the volume fraction of ε-martensite is
expressed as:

_f
c ¼ ð1� ftw � ftrÞVc _N

c
tr (44)

The volume of the new ε-martensite lath is given by:

Vc ¼ p

4
L2

trttr (45)

where Ltr given in Eq. (33) and ttr is the ε-martensite mean
thickness.

The shearing rate for each transformation system c is thus
calculated as:

_gc ¼ gtr
_f
c

(46)

where gtr is a characteristic shear for transformation.

5. Experimental procedure

The material used in this study is Fe-22Mn-0.6C, where the
composition in wt.% is given in Table 1 [60]. Electron backscatter
diffraction (EBSD) was used to analyze the texture and micro-
structure of the as-delivered material, as shown in Fig. 3. Tensile
samples were machined using water jet cutting from the as-
delivered cold rolled sheet. The tensile samples were annealed at
800 �C for 30 min and subsequently water quenched, resulting in
an equiaxed microstructure with an average grain size of 5 mm.
Tensile tests were carried out within a temperature range of
123 Ke423 K and at a quasi-static initial strain rate of 0.001 s�1.
Since tensile tests at 673 K and 773 K were only carried out on the
as-delivered material, the Hall-Petch relationship [61] was used to
determine the macroscopic stress-strain curves at 673 K and 773 K
for the annealed material.

High energy synchrotron x-ray diffraction (XRD) was used to
study the evolution of the ε-martensite fraction and EBSD analysis
was used to determine the twin volume fraction. The twin volume
fraction of the material was determined from EBSD measurements
prior to fracture of each sample while the ε-martensite volume
fraction was measured in pre-strained tensile samples at macro-
scopic strains of 0.05, 0.10, 0.20, 0.30, 0.40 and also after fracture of
the specimen.

The XRD measurements were carried out at beamline 9 at the



Table 1
Composition of material considered in this study in wt% [60].

Fe Mn C Si P S Cr Ni N Al Nb V

76.31 22.50 0.580 0.235 0.022 0.001 0.070 0.030 0.026 0.002 0.0087 0.225

Fig. 3. EBSD map of the as-delivered Fe-22Mn-0.6C cold rolled sheet.
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DELTA synchrotron facility in Dortmund, Germany. The measure-
ments were conducted using monochromatic x-rays with a
wavelength of l ¼ 0.45919 Å and energy of 27 keV. The pre-
strained tensile specimens were measured in the Bragg-Brentano
configuration with an angle of 2� and a sample to detector dis-
tance of 339 mm. A MAR345 2D detector with a resolution of
3450 � 3450 pixels was used to record the diffraction pattern.
Prior to each measurement, a calibration measurement was per-
formed on silicon to determine the center of the detector and the
sample to detector distance. The diffraction pattern for each
sample was then captured using an exposure time of 90 s. The
diffraction patterns were then transformed by integrating the in-
tensity of each detection point on a ring into a 1D diagram which
plots the intensity versus the 2q angle. The volume fractions of g-
austenite and ε-martensite phases were calculated using the lat-
tice parameter proposed by Gebhardt et al. [62]. The calculation of
the volume fraction was performed by integrating the intensities
of the g(200) and ε(101) peaks using the Rietveld method [63e65].
The ε-martensite volume fraction can be deduced directly from
the integrated intensities of the ε-martensite peaks. The experi-
mental procedure has been described in more detail by Twar-
dowski [60].

EBSD measurements were carried out to show the trend in the
evolution of twinning with respect to temperature. Since the EBSD
measurements were carried using a step size of 50 nm, it was only
possible to detect twin lamella or twin bundles larger than 50 nm.
The measured quantity in the EBSD analysis is the twin boundary
length. The twin volume fraction is approximated by calculating the
minimum twin thickness as a function of the stacking fault energy
and the mean free path [32]. The procedure of the evaluation of the
twin volume fraction is described in Ref. [60].

6. Simulations

Using the constitutive law outlined in Section 4, representative
volume element (RVE) simulations were conducted using the
spectral solver implemented in the freeware crystal plasticity
micromechanical simulation framework DAMASK [12,13]. The RVE
is a spectral grid of dimensions 16 � 16 � 16 comprising 100
grains, where the grain shapes were generated using the Voronoi
tessellation method. Periodic boundary conditions were applied to
this RVE. Mechanical loading on the RVE was imposed by uniaxial
tension with the same strain rate of 0.001 s�1 as in the experi-
ment. The material was assumed to have a uniform texture and
the crystallographic orientations of the grains were randomly
assigned from a uniform orientation distribution.

The constitutive parameters for the crystal plasticity model
were determined by fitting the macroscopic stressestrain (s vs. ε)
and the strain hardening (ds/dε vs. ε) curves obtained from the
uniaxial tension experiments. The constitutive parameters used in
the simulations are shown in Table 1. Since different strain hard-
ening behaviors were observed for the lower temperature stress-
strain curves in comparison to the high temperature curves, it
was found that a different value of islip was required for the high
temperature stress-strain curves exhibiting only pure slip (673 K
and 773 K). The parameter islip from Eq. (29) is a scaling factor for
the mean free path of dislocations.

The determination of the single crystal elastic moduli for both
the austenite and ε-martensite phase is described in Section 6.1. The
remaining constitutive model parameters, which are temperature
dependent, are described in Section 6.2. The temperature depen-
dent input parameters are the solid solution strength (tsol), the
stacking fault energy (Gsf), and the Gibbs free energy difference for
the g / ε transformation (DGg/ε). Since the yield strength of the
material varies as a function of temperature, the solid solution
strength, tsol, was also varied to achieve this difference in the
simulated stress-strain curves. The values of tsol used for each
temperature are shown in Table 4.
6.1. Single crystal elastic moduli

While the fcc single crystal elastic constants for the austenite
phase in Fe-22Mn-0.6C steel can be estimated from the ab initio
calculations of Music et al. [66] for Fe-Mn alloys, the hcp single
crystal elastic constants for the ε-martensite phase are not avail-
able in the literature and are more challenging to calculate. Thus,
the single crystal elastic constants for the ε-martensite phase are
computed from the fcc elastic constants using the procedure
originally proposed by Martin [67,68]. According to this procedure,
the fcc and hcp structures can both be constructed from tetrahe-
dral building blocks. The fcc structure is formed by aligning these
tetrahedra in equivalent orientations, whereas in the hcp structure
these tetrahedra are alternately aligned in two inequivalent ori-
entations that are rotated 180� with respect to each other. The
only other difference of the two structures is that the tetrahedral
blocks in hcp are distorted from the ideal tetrahedra of fcc.

The cubic elastic constants are first rotated from the [100], [010]
and [001] directions which form an orthonormal basis for the fcc
crystal lattice to the orthonormal basis represented by the [110],
[112] and [111] directions:



Table 3
Single crystal elastic constants for austenite (fcc) and ε-martensite
(hcp) used in the simulations.

Austenite (fcc) CF
11 ¼ 175.0 GPa

CF
12 ¼ 115.0 GPa

CF
44 ¼ 135.0 GPa

ε-martensite (hcp) CH
11 ¼ 242.3 GPa

CH
12 ¼ 117.7 GPa

CH
13 ¼ 45.0 GPa

CH
33 ¼ 315.0 GPa

CH
44 ¼ 40.5 GPa
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C11 ¼ 1
2

�
CF
11 þ CF

12 þ 2CF
44

�
C12 ¼ 1

6

�
CF
11 þ 5CF

12 � 2CF
44

�
C33 ¼ 1

3

�
CF
11 þ 2CF

12 þ 4CF
44

�
C13 ¼ 1

3

�
CF
11 þ 2CF

12 � 2CF
44

�
C44 ¼ 1

3

�
CF
11 � 2CF

12 þ CF
44

�
D ¼ C14 ¼ 1

3
ffiffiffi
2

p
�
CF
11 � CF

12 � 2CF
44

�

(47)

where the superscripts F and H denote the elastic constants for the
fcc phase and hcp phase, respectively.

The conversion from cubic to hexagonal elastic constants is then
completed by using two internal strain corrections, X1 and X2 as
follows:

CH
11 ¼ C11 � X1

CH
12 ¼ C12 þ X1

CH
13 ¼ C13

CH
33 ¼ C33

CH
44 ¼ C44 � X2

(48)

where

X1 ¼ D2

C44

X2 ¼ 2D2

C11 � C12

The single crystal elastic constants for the austenite phase [66]
and the computed elastic constants for the ε-martensite phase
are shown in Table 3.
Table 2
Input parameters for the constitutive model.

Symbol Description

Slip parameters parameters bs Burgers vector for
Qs Activation energy
Qc Activation energy
U Activation volume

p Top of the obstacl
q Bottom of the obs
islip Average dislocatio
v0 Dislocation glide v
D0 Self-diffusion coef
Canni Coefficient for disl
d Grain size

Twin parameters parameters btw Burgers vector for
Ltw Width of twin nuc
itw Average twin spac
ttw Average twin thick
A Twinning transitio
Vcs Cross-slip activatio

Transformation parameters btr Burgers vector for
Ltr Width of martensi
itr Average martensit
ttr Average martensit
B Transformation tra
6.2. Stacking fault energy

The stacking fault energy (SFE), is defined as [69,70]:

Gsf ¼ 2rDGg/ε þ 2sg=ε (49)

whereDGg/ε is the Gibbs free energy difference for the austenite to
ε-martensite transformation, and sg/ε is the interfacial energy be-
tween the austenite and ε-martensite phase. The interface energy
term is typically treated as a free parameter that is adjusted to
better match the experimental data. The interface energy term, sg/ε,
is generally taken to be between 5 and 15 mJ/m2 for transition
metals [9,70,71].

The molar surface density, r, of the {111} plane is defined as:

r ¼ 4ffiffiffi
3

p
a2

1
NA

(50)

where a is the fcc lattice parameter of the austenite phase and NA is
Avogadro's number.

The SFE for thematerial used in this study is calculated using the
thermodynamic approach by Dumay et al. [72] using the compo-
sition shown in Table 1. The calculated values of the SFE at each
temperature are shown in Table 4. It is known that the SFE for Fe-
22Mn-0.6C steel at room temperature is typically in the range of
20e25 mJ/m2 and that the transition between the TRIP and TWIP
regimes occurs approximately at 20mJ/m2 [72]. However, when the
SFE is below 12 mJ/m2, a0-martensite is predominant rather than
Value Units

slip 2.56 � 10�10 m
for slip 3.5 � 10�19 J
for climb 3.0 � 10�19 J
for climb 1:5b3s m3

e profile 1.15
tacle profile 1.0
n spacings a discloation travels 30.0
elocity 1.0 � 10�4 m/s
ficient for fcc Fe 4.0 � 10�5 m2/s
ocation annihilation 2.0

5.0 mm
twinning 1.20 � 10�10 m
leus 1.92 � 10�7 m
ings a dislocation travels 10.0
ness 5.0 � 10�8 m
n profile width exponent 5.0
n volume 1.67 � 10�29 m3

transformation 1.47 � 10�10 m
te nucleus 1.28 � 10�7 m
e spacings a dislocation travels 3.0
e thickness 1.0 � 10�7 m
nsition profile width exponent 8.0



Table 4
Temperature-dependent input parameters. The solid solution strength, tsol, is
determined from fitting the experimental stress-strain curves shown in Fig. 4. The
SFE (Gsf) and the Gibbs free energy (DGg/ε) are calculated using the approach by
Dumay et al. [72], assuming the interface energy (sg/ε) values as shown in this table.

Temperature (K) tsol (MPa) Gsf (mJ/m2) DGg/ε (J/mol) sg/ε (mJ/m2)

123 250 14.33 �266.25 15
233 160 19.45 �9.42 10
293 130 25.37 91.30 10
373 130 39.03 323.32 10
423 100 48.60 486.02 10
673 60 98.32 1330.78 10
773 35 118.41 1672.13 10
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ε-martensite [73]. It was observed found from the experimental
measurements that the type of martensite found in the material
was predominantly ε-martensite. Therefore, the SFE at 123 K and
233 K should be larger than 12 mJ/m2. Using an interface energy
value of sg/ε¼10 mJ/m2 in Eq. (49) satisfies this condition.

However, using an interface energy value of sg/ε¼10 mJ/m2, the
simulated ε-martensite volume fraction did not compare well with
the experimentally measured values at 123 K. A better fit between
the experimental and simulated data was obtained at 123 K using a
DGg/ε value that is more negative than the one obtained using an
interface energy value of sg/ε¼10 mJ/m2. The SFE is difficult to
calculate accurately at low temperatures because of the difficulty in
determining the magnetic contribution to the SFE at these tem-
peratures [74]. The SFE calculated using Density Functional Theory
(DFT) methods for Fe-Mn alloys are largely negative [75] and the
extrapolation of SFE to low temperatures results in values of the SFE
not lower than �40 mJ/m2. This large discrepancy indicates that
magnetic interactions and/or chemical ordering play a crucial role
in Fe-Mn alloys and have to be taken into account in the compu-
tation of the SFE, which is beyond the scope of the current study.

7. Results

The experimental stress-strain curves are shown in Fig. 4. These
stress-strain curves show two different types of strain hardening
behaviour depending on the temperature regime. The stress-strain
curves in the temperature regime of 123 Ke423 K have the same
slope in the plastic regime and differ only in the yield stress, where
the yield stress increases with decreasing temperature [1,2,8].
However, the high temperature stress-strain curves (673 K and
773 K) have a smaller slope compared to the lower temperature
curves (123 Ke423 K) and therefore exhibit less strain hardening.
Fig. 4. Experimental stress-strain curves at different temperatures.
The stress-strain curves at 673 K and 773 K exhibit only pure slip
and therefore the addition of the TRIP and TWIP effect increases the
rate of strain hardening for the lower temperature curves.

The comparison between the experimental and simulated
stress-strain curves is shown in Fig. 5(a), while the comparison
between the experimental and simulated hardening curves is
shown in Fig. 5(b). The hardening curves are calculated as the slope
(ds/dε) of the stress-strain curves. The simulated stress-strain
curves fit reasonably well to the experimental data. The strain
hardening curves compare less well, however, the hardening
curves calculated from the experimental stress-strain data are
relatively noisy. To reduce noise in the experimental stress-strain
data, the stress-strain curves were smoothed using a moving
average of 40 data points. It was checked that the smoothing pro-
cedure did not remove important trends from the stress-strain
data. The hardening curves in Fig. 5(b) were then determined
based on the smoothed stress-strain curves.

The comparison of the measured and simulated twin volume
fractions is shown in Fig. 5(c). There is qualitative agreement be-
tween the measured and computed twin volume fractions, where
twinning decreases with decreasing temperature. Although the
computed twin volume fraction at 123 K is not zero as in the
experiment, the computed twin volume fraction is very small.
However, the model tends to overpredict the twin volume fractions
at 373 K and 423 K while slightly under predicting the twin volume
fractions at 233 K and 293 K. Although the twin volume fractions
were not measured for the high temperature curves at 673 K and
773 K, the model predicts that there twinning does not occur at
those temperatures, which is expected at high temperatures
[15,76].

For the ε-martensite volume fractions shown in Fig. 5(d), the
measured and computed volume fractions decreasewith increasing
temperature. The martensitic transformation is more active at
lower temperatures because of the lower SFE and more difficulties
for cross-slip of the material. Martensitic phase transformation
decreases at higher temperatures as the SFE and Gibbs free energy
increases. Above 233 K, the ε-martensite volume fraction is on the
order of 0.05.

8. Discussion

Serrations are observed in the experimental stress-strain curves
in Fig. 4 at temperatures of 293 K, 373 K and 423 K. This jerky or
serrated behaviour in the stress-strain curves has also been
observed in TWIP steels [77e79] and has been attributed to the
PortevineLe Chatelier effect, a type of dynamic strain aging (DSA).
The presence of twins in thematerial act as obstacles to plastic flow
[80]. When dislocation meets obstacles (like twins) they are tem-
porary arrested. During this time solutes (such as interstitial par-
ticles) diffuse around the dislocations further strengthening the
obstacles. Eventually, when the applied stress is sufficiently high
these dislocations will overcome these obstacles and will quickly
move to the next obstacle where they are stopped and the process
is repeated.

It should be noted that in the experiments, the twin volume
fraction of a sample just prior to fracture is measured using EBSD.
This means that only one data point is available for the twin volume
fraction at each temperature, as seen in Fig. 5(c). Since only the twin
volume fraction prior to fracture is known, the evolution path of the
twin volume fraction with increasing strain is not known.

The onset of plastic deformation mechanisms such as slip,
twinning and martensitic phase transformation is controlled by the
critical resolved shear stresses for slip, twinning and martensitic
phase transformation, respectively. However, the yield strength of
the material also increases with decreasing temperature which



Fig. 5. Comparison between experimental and simulation data.

Fig. 6. Evolution of twin volume fraction for different SFEs at a constant temperature
of 293 K.
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means that the influence of temperature has to be taken into ac-
count within the model on both the solid solution strength and the
SFE. As shown in the previous section, the model tends to over
predict the twin volume fraction at 373 K and 423 K. Since the
model is highly dependent on the SFE to predict the onset of
twinning and martensitic phase transformation, accurate deter-
mination of the SFE is important. In this study, however, since the
SFE is calculated using a CALPHAD approach [9,72], it is possible
that there are some inaccuracies in determining the SFE particu-
larly at low temperatures. While there are still improvements to be
made in terms of accurately determining the SFE for use in the
model, it should be emphasized that the goal of this model is to
predict the activation of the TRIP and/or TWIP effects within
different temperature or stacking fault energy regimes. Alterna-
tively, the current model could also be validated at room temper-
ature through a study varying the SFE of the material by varying the
composition.

A numerical study was conducted in this work where the SFE
was varied at room temperature (293 K) to investigate the influence
of the SFE on the twin volume fractions and ε-martensite volume
fraction at a constant temperature of 293 K. The constitutive pa-
rameters that were used in this study are shown in Table 2.

Using the current model, the effect of varying the SFE at a
constant temperature on the evolution of the twin volume fraction
can be investigated, as shown in Fig. 6. At SFE values below 20 mJ/
m2, twinning does not occur. The twin volume fraction increases
with increasing SFE up to 50 mJ/m2. Above 50 mJ/m2, twinning
decreases with increasing SFE. This indicates that twinning occurs
at intermediate values of the SFE and there is less tendency for
twinning to occur at low or high values of the SFE.

The effect of varying the SFE at a constant temperature of 293 K
on the ε-martensite volume fraction is shown in Fig. 7. Using the
TRIPmodel, it is observed that as the SFE increases, the formation of
ε-martensite decreases. This is consistent with the observation that
martensitic phase transformation tends to occur at low SFE values.
By increasing the distance between the pinning points of the
ε-martensite nucleus, Ltr, the onset of phase transformation can be
controlled as well.
9. Conclusion

A martensitic phase transformation model has been developed
within a crystal plasticity framework to simulate the g / ε



Fig. 7. Evolution of ε-martensite volume fraction for different SFEs at a constant temperature of 293 K.
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transformation in high Mn and high Ni base steels. The novelty of
this model is that martensitic phase transformation is incorporated
in addition to dislocation glide and twinning. By conducting FFT-
based crystal plasticity simulations using the spectral solver
within DAMASK, quantitative comparisons are conducted between
the experiments and simulations on the stress-strain curves, strain
hardening curves, twin volume fraction and ε-martensite for a Fe-
22Mn-0.6C steel.

Themodel is able to predict, based on the temperature, which in
turn changes the stacking fault energy of the material, the activa-
tion of martensitic phase transformation at low temperatures, the
predominance of twinning at intermediate temperatures, and
plastic deformation solely by pure slip at high temperatures. It is
observed from the experiments that g/ ε transformation occurs at
low temperatures and increases as the temperature decreases.
However, twinning occurs starting at room temperature and in-
creases as the temperature increases.
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