Modeling of Materials: Development with Simulation – Discoveries through Simulation

F. Roters, T. Hickel, J. Neugebauer, M. Friak, C. Tasan, M. Diehl, D. Raabe

Dierk Raabe, DFG Winterschool, 14. Feb. 2017, Aachen, Germany

70% of all Industrial Innovations are associated with progress in Materials Science

Key fields: energy, transportation, information, health, safety, infrastructure

3.5 billion € turnover per day in the EU World Trade Organisation

10⁷⁰ unknown alloys (we use only 1000 alloys)

Mission:

Understand and design <u>complex</u> nanostructured <u>materials</u> under real <u>environments</u> down to <u>atomic</u> scale by utilizing <u>modeling and simulation</u>

Scientific mission: complex materials in real environments

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Scientific Mission: From Electrons to Complex Materials

Example: 4th generation superalloys for turbine blades (SFB / TR 103)

sources GE; FAU Erlangen Nürnberg und RU Bochum

Bridging and jumping in ICME

ICME: Integrated Computational Materials Engineering

G. Larson

Multiscale Modeling and Experimentation

Bridging and jumping in ICME

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

7

Overview

- Some basic methods
 - Atomistic
 - Monte Carlo
 - Dislocations
 - Polycrystal mechanics
- Ab-initio informed constitutive models
 - Elasticity: from DFT to Homogenization
 - Atomistically informed simulation: from APT to MD
 - From DFT to dislocation rate models and yield surfaces

DFT: Density Functional Theory; APT: Atom Probe Tomography; MD: Molecular Dynamics; RVE: Representative Volume Element; ICME: Integrated Computational Materials Engineering

Ab initio Methods for materials science

- MOST EXACT KNOWN MATERIALS THEORY
- COMBINE TO ATOMIC SCALE EXPERIMENTS
- OBTAIN DATA NOT ACCESSIBLE OTHERWISE
- CAN BE USED AT CONTINUUM SCALE
- ELECTRONIC RULES FOR ALLOY DESIGN: ADD ELECTRONS RATHER THAN ATOMS

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r) + U(r)\psi(r) = E\psi(r)$$

square $|\psi(\underline{r})|^2$ of the wave function $\psi(\underline{r})$ at position $\underline{r} = (x,y,z)$ is a measure of the probability (Aufenthaltswahrscheinlichkeit)

many particles

$$\left(-\frac{\hbar^2}{2}\sum_{i}\frac{1}{m_i}\nabla_i^2 + U(r_i)\right)\psi(r_i) = E\psi(r_i)$$

i Electrons: Mass m_e ; Charge $q_e = -e$; Coordinates r_{ei} *j* Cores: Mass m_n ; Charge $q_n = ze$; Coordinates r_{nj}

Decoupling of cores and electrons

$$\psi(\mathbf{r}_{e},\mathbf{r}_{n}) = \varphi(\mathbf{r}_{e})\phi(\mathbf{r}_{n})$$

Atom cores

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Raabe: Adv. Mater. 14 (2002)

- Instead of using Quantum mechanics, we can use classical Newtonian mechanics to model our system.
- This is a simplification of what is actually going on, and is therefore less accurate.
- To alleviate this problem, we use numbers derived from QM for the constants in our classical equations.

For each atom in every molecule, we need:

- Position (*r*)
- Momentum (m + v)
- Charge (q)
- Bond information (which atoms, bond angles, etc.)

From potential to motion

To run the simulation, we need the force on each particle.

We use the gradient of the potential energy function.

Now we can find the acceleration.

 $F_i = m_i a_i$

 $F_i = -\nabla_i V$

 $\frac{dV}{dr_i} = m_i \frac{d^2 r_i}{dt^2}$

Integration of equation of motion (Verlet)

The Verlet technique allows one to calculate the actual position r_i and velocity \dot{r}_i of the *i*th atom at time *t* in Cartesian coordinates (in the general Lagrange formalism the Cartesian coordinates *r* must be distinguished from the generalized coordinates *x*). The displacement in the vicinity of *t* can be described by a Taylor expansion:

$$\boldsymbol{r}_{i}(t+\delta t) = \boldsymbol{r}_{i}(t) + \dot{\boldsymbol{r}}_{i}(t)\delta t + \frac{1}{2}\ddot{\boldsymbol{r}}_{i}(t)(\delta t)^{2} + \frac{1}{3!}\ddot{\boldsymbol{r}}_{i}(t)(\delta t)^{3} + \frac{1}{4!}\ddot{\boldsymbol{r}}_{i}(t)(\delta t)^{4} + \dots$$

$$\boldsymbol{r}_{i}(t-\delta t) = \boldsymbol{r}_{i}(t) - \dot{\boldsymbol{r}}_{i}(t)\delta t + \frac{1}{2}\ddot{\boldsymbol{r}}_{i}(t)(\delta t)^{2} - \frac{1}{3!}\dddot{\boldsymbol{r}}_{i}(t)(\delta t)^{3} + \frac{1}{4!}\dddot{\boldsymbol{r}}_{i}(t)(\delta t)^{4} \mp \dots$$

By adding equations (4.47) and (4.48) one obtains an expression for the position of the *i*th atom as a function of its acceleration,

$$\boldsymbol{r}_{i}(t+\delta t) = 2\boldsymbol{r}_{i}(t) - \boldsymbol{r}_{i}(t-\delta t) + \boldsymbol{\ddot{r}}_{i}(t)(\delta t)^{2} + \frac{2}{4!}\boldsymbol{\ddot{r}}_{i}(t)(\delta t)^{4} + \dots$$
$$\approx 2\boldsymbol{r}_{i}(t) - \boldsymbol{r}_{i}(t-\Delta t) + \boldsymbol{\ddot{r}}_{i}(t)(\Delta t)^{2}$$

The required acceleration of the *i*th atom is calculated from the conservative force F_i , the atomic mass m_i , and, if $T \neq 0$, a thermodynamic friction coefficient $\xi(t)$. The force is obtained as a derivative of the respective potential. The velocity of the atom is calculated by subtracting equation (4.47) from equation (4.48).

$$\dot{\boldsymbol{r}}_i(t) pprox rac{\boldsymbol{r}_i(t+\Delta t)-\boldsymbol{r}_i(t-\Delta t)}{2\Delta t}$$

temperature

$$T(t) = \frac{2E_{\rm kin}}{3Nk_{\rm B}} = \frac{1}{3Nk_{\rm B}} \sum_{i=1}^{N} m_i v_i^2(t)$$

pressure

$$P(t) = \frac{1}{3V} \sum_{i=1}^{N} \left(m_i v_i^2 + r_i F_i \right)$$

 $\frac{\langle T^2 \rangle - \langle T \rangle^2}{\langle T \rangle^2} = \frac{2}{3N} \left(1 - \frac{3k_{\rm B}N}{2C_{\rm v}} \right)$

Spezific heat

Diffusion constant

$$D(t) = \frac{1}{6t} \left\langle \left(r_i(\tau + t) - r_i(\tau) \right)^2 \right\rangle$$

pair correlation

$$g(r) = \frac{V}{4\pi N^2 r^2} \left\langle \left(\sum_{i} \sum_{i \neq j} \delta(r - r_{ij}) \right) \right\rangle$$

Molecular Dynamics

Overview

- Some basic methods
 - Atomistic
 - Monte Carlo
 - Dislocations
 - Polycrystal mechanics
- Ab-initio informed constitutive models
 - Elasticity: from DFT to Homogenization
 - Atomistically informed simulation: from APT to MD
 - From DFT to dislocation rate models and yield surfaces

DFT: Density Functional Theory; APT: Atom Probe Tomography; MD: Molecular Dynamics; RVE: Representative Volume Element; ICME: Integrated Computational Materials Engineering

Algorithms that use sequence of random events

- Average behavior (statistics)
- Kinetics: e.g. diffusion such as random walk (drunken sailor)
- Thermodynamics: Phase transitions (Ising and Potts Models)

General

Mathematical

Formulate a probabilistic analogue of the problem

Apply a Monte Carlo algorithm

Present and interpret results

Formulate integral expressions of the governing differential equations that describe the stochastic process

Integrate the governing expression using a weighted or nonweighted random sampling method

Extract state equation values, correlation functions, structural information, or MC kinetics

Monte Carlo

Numerical integration using random numbers (stochastic integration)

e.g. circle area

Problem:
$$\langle A \rangle = \int P(X)A(X)dX$$

mit
$$P(X) = \frac{1}{Z} \exp\left(-\frac{H(X)}{k_{\rm B}T}\right)$$

Numerical Integration:

$$\langle A \rangle \approx \overline{A} = \frac{1}{M} \sum_{i=1}^{M} P(X_i) A(X_i), \quad M \to \infty$$

BUT: phase space very large Solution: importance sampling

Monte Carlo

Metropolis Algorithm: importance sampling: prescribe areas where it is worth to look ! (meaning where to integrate)

create sequence of states
$$X_{\nu} \to X_{\nu+1} \to X_{\nu+2} \to \dots$$

using transition probability $W(X \to X')$
e.g.: $\Delta H = H(X') - H(X)$
 $W(X \to X') = \begin{cases} 1 & \text{if } \Delta H \leq 0 \\ \exp(-\Delta H / k_B T) \text{ if } \Delta H > 0 \end{cases}$

W fulfills condition of detailed balance

$$P(X)W(X \to X') = P(X')W(X' \to X)$$

and hence

$$\overline{A} = \frac{1}{M} \sum_{i=1}^{M} A(X_i)$$

Monte Carlo: diffusion

 $x^2 = 6D\tau$ $\Delta x \propto \sqrt{\tau}$

Monte Carlo Ising and Potts models

Monte Carlo Ising and Potts models

Monte Carlo: Potts model

S. Zaefferer, Y. Chen

Overview

- Some basic methods
 - Atomistic
 - Monte Carlo
 - Dislocations
 - Polycrystal mechanics
- Ab-initio informed constitutive models
 - Elasticity: from DFT to Homogenization
 - Atomistically informed simulation: from APT to MD
 - From DFT to dislocation rate models and yield surfaces

DFT: Density Functional Theory; APT: Atom Probe Tomography; MD: Molecular Dynamics; RVE: Representative Volume Element; ICME: Integrated Computational Materials Engineering

Dislocations and strain hardening

Kinematics: displacement vector in continuum space

Kinematics: displacement vector in continuum space

$$\underline{u}_{(1)}(x,y,z) \neq \underline{u}_{(2)}(x,y,z)$$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Distorsions come from gradients in the displacement fields

Displacement vector:

 $\mathbf{u} = [\mathbf{u}_{x}, \, \mathbf{u}_{y}, \, \mathbf{u}_{z}]$

Strain tensor:

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x}$$

Strain tensor: symmetrical part of displacement gradient tensor

Displacement gradient

The tensor $\frac{\partial u_i}{\partial x_j}$ is called **displacement gradient tensor** and may be written as

$$\frac{\partial u_i}{\partial x_j} = u_{i,j} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$$

The displacement gradient tensor in general is a non-symmetric tensor and can be decomposed into symmetric and antisymmetric part. Hence the displacement is

Matrix expression of the strain tensor

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & \boldsymbol{\varepsilon}_{xy} & \boldsymbol{\varepsilon}_{xz} \\ \boldsymbol{\varepsilon}_{xy} & \boldsymbol{\varepsilon}_{yy} & \boldsymbol{\varepsilon}_{yz} \\ \boldsymbol{\varepsilon}_{xz} & \boldsymbol{\varepsilon}_{yz} & \boldsymbol{\varepsilon}_{zz} \end{bmatrix}$$

Matrix expression of the rotation tensor

$$\boldsymbol{\omega} = \begin{bmatrix} 0 & \boldsymbol{\omega}_{xy} & \boldsymbol{\omega}_{xz} \\ -\boldsymbol{\omega}_{xy} & 0 & \boldsymbol{\omega}_{yz} \\ -\boldsymbol{\omega}_{xz} & -\boldsymbol{\omega}_{yz} & 0 \end{bmatrix}$$

strain rates and displacement gradients in crystals

$$\dot{\varepsilon}_{ij}^{K} = D_{ij}^{K} = \frac{1}{2} \left(\dot{u}_{i,j}^{K} + \dot{u}_{j,i}^{K} \right) = \sum_{s=1}^{N} m_{ij}^{\text{sym},s} \dot{\gamma}^{s} \qquad \text{mit} \qquad m_{ij}^{\text{sym}} = m_{ji}^{\text{sym}} = \frac{1}{2} \left(n_{i} b_{j} + n_{j} b_{i} \right)$$

plastic spin from polar decomposition

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Strain tensor

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

In matrix form

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$

The above strain tensor is called Caushy strain tensor

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

$$= \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right) & \frac{\partial u_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} + \frac{\partial u_2}{\partial x_3} \right) & \frac{\partial u_3}{\partial x_3} \end{bmatrix}$$

strain rates and displacement gradients in crystals

Normal strains

$$\varepsilon_{xx} = \frac{\partial u}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial v}{\partial y}, \quad \varepsilon_{zz} = \frac{\partial w}{\partial z}$$

Shear strains

$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$\varepsilon_{xz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$
$$\varepsilon_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

Engineering shear strains

$$\gamma_{xy} = 2\varepsilon_{xy}, \quad \gamma_{xz} = 2\varepsilon_{xz}, \quad \gamma_{yz} = 2\varepsilon_{yz}$$

"Recipe" :

- take a hollow cylinder, axis along z:

- cut on a plane parallel to the z-axis;

-displace the free surfaces by b in the z-direction.

By inspection:

$$u_{x} = u_{y} = 0$$
$$u_{z} = \frac{b\theta}{2\pi}$$
$$= \frac{b}{2\pi} \tan^{-1}\left(\frac{y}{x}\right)$$

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{xy} = \varepsilon_{yx} = 0$$

$$\varepsilon_{xz} = \frac{1}{2} \frac{\partial u_z}{\partial x} = \frac{b}{4\pi} \frac{\partial}{\partial x} \tan^{-1} \left(\frac{y}{x} \right)$$

$$= -\frac{b}{4\pi} \frac{1}{1 + \left(\frac{y}{x} \right)^2} \frac{y}{x^2}$$

$$= -\frac{b}{4\pi} \frac{y}{x^2 + y^2} = -\frac{b}{4\pi} \frac{\sin \theta}{r}$$

1

5

$$\varepsilon_{yz} = \frac{1}{2} \frac{\partial u_z}{\partial y} = \frac{b}{4\pi} \frac{\partial}{\partial y} \tan^{-1} \left(\frac{y}{x} \right)$$
$$= \frac{b}{4\pi} \frac{1}{1 + \left(\frac{y}{x} \right)^2} \frac{1}{x}$$
$$= \frac{b}{4\pi} \frac{x}{x^2 + y^2} = \frac{b}{4\pi} \frac{\cos \theta}{r}$$

Stress field of straight screw dislocation

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{xy} = \varepsilon_{yx} = 0$$

$$\varepsilon_{xz} = -\frac{b}{4\pi} \frac{y}{x^2 + y^2} = -\frac{b}{4\pi} \frac{\sin\theta}{r}$$

$$\varepsilon_{yz} = \frac{b}{4\pi} \frac{x}{x^2 + y^2} = \frac{b}{4\pi} \frac{\cos\theta}{r}$$

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = \sigma_{xy} = \sigma_{yx} = 0$$

$$\Delta = 0$$

$$\sigma_{xz} = 2G\varepsilon_{xz} = -\frac{Gb}{2\pi} \frac{y}{x^2 + y^2} = -\frac{Gb}{2\pi} \frac{\sin\theta}{r}$$

$$\sigma_{yz} = 2G\varepsilon_{yz} = \frac{Gb}{2\pi} \frac{x}{x^2 + y^2} = \frac{Gb}{2\pi} \frac{\cos\theta}{r}$$

In Polar coordinates:

(either by direct inspection, or by transforming the strains and stresses from Cartesian co-ordinates)

$$\varepsilon_{\theta z} = \varepsilon_{z\theta} = \frac{b}{4\pi r}$$
$$\sigma_{\theta z} = \sigma_{z\theta} = \frac{Gb}{2\pi r}$$

All other components of the stress tensor are zero.

Note:

- · Stress and strain fields are pure shear
- Fields have radial symmetry
- Stresses and strains are proportional to 1/r:
 - extend to infinity
 - tend to infinite values as r⇒0

Infinite stresses cannot exist in real materials: the dislocation core radius r_0 is that within which our assumption of linear elastic behaviour breaks down. Typically $r_0 \approx 1$ nm.

$$\underline{u}(\underline{x}) = \begin{pmatrix} 0 \\ 0 \\ \frac{b}{2\pi} \arctan \frac{y}{x} \end{pmatrix}$$

$$\underline{\underline{\varepsilon}}(\underline{x}) = \begin{pmatrix} 0 & 0 & -\frac{b}{4\pi}\frac{y}{x^2+y^2} \\ 0 & 0 & \frac{b}{4\pi}\frac{x}{x^2+y^2} \\ -\frac{b}{4\pi}\frac{y}{x^2+y^2} & \frac{b}{4\pi}\frac{x}{x^2+y^2} & 0 \end{pmatrix}$$

$$\underline{\underline{\sigma}}(\underline{x}) = \frac{Gb}{2\pi} \begin{pmatrix} 0 & 0 & -\frac{b}{4\pi} \frac{y}{x^2 + y^2} \\ 0 & 0 & \frac{b}{4\pi} \frac{x}{x^2 + y^2} \\ -\frac{b}{4\pi} \frac{y}{x^2 + y^2} & \frac{b}{4\pi} \frac{x}{x^2 + y^2} & 0 \end{pmatrix}$$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Summary: infinite straight edge dislocation

$$u_x = \frac{b}{2\pi} \left(\arctan\frac{y}{x} + \frac{1}{2(1-\nu)}\frac{xy}{x^2 + y^2}\right)$$

$$u_y = \frac{b}{2\pi} \left(-\frac{1-2\nu}{2(1-\nu)}\log\sqrt{x^2 + y^2} + \frac{1}{2(1-\nu)}\frac{y^2}{x^2 + y^2}\right)$$

$$u_z = 0$$

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = \frac{b y ((3 - 2\nu) x^2 + (1 - 2\nu) y^2)}{4 (-1 + \nu) \pi (x^2 + y^2)^2}$$

$$\varepsilon_{yy} = \frac{\partial u_y}{\partial y} = \frac{-(b y ((1+2\nu) x^2 + (-1+2\nu) y^2))}{4 (-1+\nu) \pi (x^2 + y^2)^2}$$

$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) = \frac{b x \left(-x^2 + y^2 \right)}{4 \left(-1 + \nu \right) \pi \left(x^2 + y^2 \right)^2}$$

$$\sigma_{xx} = \frac{b G y (3 x^2 + y^2)}{2 (-1 + \nu) \pi (x^2 + y^2)^2}$$

$$\sigma_{yy} = \frac{b G y (-x^2 + y^2)}{2 (-1 + \nu) \pi (x^2 + y^2)^2}$$

$$\sigma_{zz} = \frac{b \, G \, \nu \, y}{(-1+\nu) \, \pi \, (x^2+y^2)}$$

$$\sigma_{xy} = \frac{b G x (-x^2 + y^2)}{2 (-1 + \nu) \pi (x^2 + y^2)^2}$$

Forces among edge dislocations

So glide force, resolved onto the slip plane, is:

$$F_{glide} = \frac{Gb^2}{2\pi(1-\nu)} \frac{\Delta x(\Delta x^2 - \Delta y^2)}{\left(\Delta x^2 + \Delta y^2\right)^2}$$

$$\begin{split} \sigma_{xx} &= -\mathsf{D}\, y \, \frac{3 \Delta x^2 + \Delta y^2}{\left(\Delta x^2 + \Delta y^2\right)^2}, \quad \text{with}: \quad \mathsf{D} = \frac{\mathsf{Gb}}{2\pi(1-\nu)} \\ \sigma_{xy} &= \sigma_{yx} = \mathsf{D}\, \Delta x \, \frac{\Delta x^2 - \Delta y^2}{\left(\Delta x^2 + \Delta y^2\right)^2} \end{split}$$

Forces among edge dislocations

Dislocation 2 "feels" the stress field of dislocation 1 (and vice versa).

Peach-Koehler Force

$$\vec{F}_{1\to 2} = \left(\underline{\sigma}^{1\to 2} \ \vec{b}_2\right) \times \vec{t}_2$$

 σ_{xy} – produces *glide* force

 $\sigma_{xx} - \text{produces } \textit{climb} \text{ force}$

For like Burgers vectors: $\Delta x = \pm \Delta y$: unstable equilibrium $\Delta x = 0$: stable equilibrium

For **opposite** Burgers vectors: $\Delta x = \pm \Delta y$: stable equilibrium $\Delta x = 0$: unstable equilibrium

For a set of "opposite" Burgers vectors:

There are a large number of possible stable

These stable arrangements have minimal *long-range* stress fields.

For like Burgers vectors: Stable array is a planar stack

A low angle tilt boundary.

This arrangement has a strong long-range stress field.

2D - view parallel to dislocation line

2D – view parallel to dislocation line

Some questions:

Difference between edge and screw dislocations?

How to do multiplication?

Dislocation bow-out?

Annihilation?

Climbing?

2D – view into the glide plane

2D – view into the glide plane

Some questions:

Difference between edge and screw dislocations?

Cross-slip?

Climb?

Cutting?

Jog-drag?

2D – view into the glide plane

Some questions:

Difference between edge and screw dislocations?

Cross-slip?																	
•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (5
Climb?	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (0
	0	0	0	0	0	Nev	Slip	Pla	unit	0	0	0	0	0	0 0	0 (5
Cutting?	0	0	0	0	a	brigit	al SI	ip P	lane	0	0	0	0	0 (Drigin	at SP	ij
	0	0	ō	0	0	0	0	5	0	0	0	0	0		New	Slip	I
	0	0	0	0	0	0	0		0	0	0	0	0	0) 0		2
Jog-drag?	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	ļ
	0	0	0	0	0	0	0	i.	0	0	0	0	0	0	0	0	ļ

0

lane

0

2D – view into the glide plane

Some questions:

Difference between edge and screw dislocations?

Cross-slip?

Climb?

Cutting?

Jog-drag?

Dislocation-Dislocation Interactions

Straight dislocation can intersect to leave Jogs and Kinks in the dislocation line

Extra segments in a dislocation line cost energy and require work done by the external force

2D – view parallel to dislocation line

Principle procedure

Use Peach Koehler

Move it

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Force
$$\vec{F}_a = \left(\underline{\sigma}^{\text{all others} \to a} \ \vec{b}_a \right) \times \vec{t}_a$$

Force on dislocation 'a' by all others

Equilibrium of forces

$\sum \vec{F}_i = 0$ $\sum \vec{F}_i = B\vec{x} + \vec{F}_a = 0$

$$\vec{F}_a = \left(\underline{\sigma}^{\text{alle} \to a} \ \vec{b}_a \right) \times \vec{t}_a$$

Equilibrium of forces

$$\sum F = 0$$

$$F_{disloc} + F_{self force} + F_{extern} + F_{therm} + F_{viscous} + F_{obstacle} + F_{Peierls} + F_{osmotic} + F_{image} + F_{inertia}$$

- *F*_{disloc}: elastic other dislocations
- $F_{self force}$: elastic self

*F*_{extern}: external

F_{therm}: Stochastic Langevin

F_{viscous} : viscous drag

*F*_{obstacle}: obstacle

- *F*_{Peierls}: Peierls
- *F*_{osmotic}: chemical forces

F_{image}: surface forces

*F*_{point defect}: point defects

Example of Discrete Dislocation Dynamics in 2D

Example of Discrete Dislocation Dynamics in 2D

▼ ← ?

- 1) Calculate stress field of machine and of all other dislocations at position of T
- 2) Use Peach-Koehler equation to get force on dislocation
- 3) Integrate with very small time step (explicit) viscous eq. of motion

Example of Discrete Dislocation Dynamics in 2D

Example of Discrete Dislocation Dynamics in 2D

Full 3D segment treatment

Some questions:

Difference between edge and screw dislocations?

Junctions?

Cutting?

Cores of the dislocations?

3D: DDD (discrete dislocation dynamics)

Example of Discrete Dislocation Dynamics in 3D

Example of Discrete Dislocation Dynamics in 3D: superalloys

Overview

- Some basic methods
 - Atomistic
 - Monte Carlo
 - Dislocations
 - Polycrystal mechanics
- Ab-initio informed constitutive models
 - Elasticity: from DFT to Homogenization
 - Atomistically informed simulation: from APT to MD
 - From DFT to dislocation rate models and yield surfaces

DFT: Density Functional Theory; APT: Atom Probe Tomography; MD: Molecular Dynamics; RVE: Representative Volume Element; ICME: Integrated Computational Materials Engineering

Single crystal plasticity: constructing the yield surface

What is the straining direction? The strain increment is given by: $d\varepsilon = \sum_{s} d\gamma^{(s)} b^{(s)} n^{(s)}$

2D case:

 $d\varepsilon_1 = d\gamma b_1 n_1; \ d\varepsilon_2 = d\gamma b_2 n_2$ vector perpendicular to the line for yield

Single crystal plasticity: constructing the yield surface

straining direction in stress space

normality rule for crystallographic slip

Any given stress state can in a crystal in large-strain elasto-plasticity act only in the form of shear (except hydrostatic effects)

Single crystal plasticity: constructing the yield surface

6

Active slip system:

 $\tau^{\alpha} = \tau_{\rm crit}$ $\tau^{\alpha} \approx \boldsymbol{T}_{\rm e} \cdot \boldsymbol{S}_{0}^{\alpha}$ with $\boldsymbol{S}_{0}^{\alpha} = \boldsymbol{m}_{0}^{\alpha} \otimes \boldsymbol{n}_{0}^{\alpha}$

bcc 48 slip systems orientation {001}<100>

12 x {110}<111> ---

12 x {112}<111>

24 x {123}<111> -----

Single crystal plasticity: constructing the yield surface

yield surface, bcc

single crystal, bcc, (001)[100]

Macroscopic – empiricial yield criteria

Yield criterion: determine the critical stress required to cause permanent deformation

Many different macroscopic yield criteria

 σ_{ij} stress acting on a solid σ 1, σ 2, σ 3 principal values of stress tensor Y yield stress of the material in uniaxial tension

Macroscopic yield criteria

Yield criterion: determine the critical stress required to cause permanent deformation

Many different macroscopic yield criteria

 σ_{ij} stress acting on a solid σ_{1} , σ_{2} , σ_{3} principal values of stress tensor Y yield stress of the material in uniaxial tension

von Mises

 $(\sigma_1 > \sigma_2 > \sigma_3)$

Grains in polycrystals do NOT experience the same boundary conditions.

Differentiate between GLOBAL bounday conditions (tool, process) and the LOCAL (micromechanical) boundary conditions. The latter are influenced by grain-to-grain interactions and local inhomogeneity.

The Taylor Model

$$\varepsilon_{ij} = \frac{1}{2} \sum_{s=1}^{5} \left(n_i^s b_j^s + n_j^s b_i^s \right) \gamma^s$$

$$\varepsilon_{ij} = \frac{1}{2} \sum_{s=1}^{5} \left(n_i^s b_j^s + n_j^s b_i^s \right) \gamma^s$$

plastic spin from polar decomposition

$$\dot{\omega}_{ij}^{K} = W_{ij}^{K} = \frac{1}{2} \left(\dot{u}_{i,j}^{K} - \dot{u}_{j,i}^{K} \right) = \sum_{s=1}^{N} m_{ij}^{\text{asym},s} \dot{\gamma}^{s}$$

Homogeneity and boundary conditions at grain scale

3%

Raabe et al. Acta Mater. 49 (2001) 3433

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Sachtleber, Zhao, Raabe: Mater. Sc. Engin. A 336 (2002) 81

Crystal Mechanics FEM, grain scale mechanics (2D)

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Zhao, Rameshwaran, Radovitzky, Cuitino, Roters, Raabe : Intern. J. Plast. 24 (2008) 06

ICME: Integrated Computational Materials Engineering

ICME applied to dual phase steel

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Integrated Computational Materials Engineering: DP steel 108

Real 3D Microstructure

Average grain size: 5 μm EBSD step size: 0,2 μm EBSD scan size: 20 × 70 μm Target polished thickness: 0,15 μm Total slices number: 22

Marker lines act as a realignment reference

Experiment by Dayong An, MPIE

1_ln(V) -1.000e-02 0.062 0.12 0.19 2.500e-01

1_ln(V) -1.000e-02 0.062 0.12 0.19 2.500e-01

Y Z

1_Cauchy -1.500e+09 0 7.5e+8 1.5e+9 2.2e+9 3.000e+09

Numerical Laboratory: From CPFEM to yield surface (engineering)

Texture component crystal plasticity FEM for large scale forming

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany D. Raabe and F. Roters: Intern. J. Plast. 20 (2004) 339

Simulation result: Taylor model

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Roters et al. Acta Mater.58 (2010)

Simulation result: RGC scheme

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Roters et al. Acta Mater.58 (2010)

Düsseldorf Advanced MAterial Simulation Kit, DAMASK

loĝazici University

Lawrence Livermore National Laboratory

IFE Gnsto

Crystal plasticity & phase field: Mechanics, damage, phase transformation, diffusion

> ibF Bildsore Forngeture

TU/e

> 15 years of development

- > 50 man years of expertise
- > 50.000 lines of code

Pre- and post-processing

Blends with MSC.Marc and Abaqus

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Standalone (FFT) spectral solver

Many user groups

http://DAMASK.mpie.de

bime

<stress

stress 22 /

1.8

stress ₁₁/ <stress>

Overview

- Some basic methods
 - Atomistic
 - Monte Carlo
 - Dislocations
 - Polycrystal mechanics
- Ab-initio informed constitutive models
 - Elasticity: from DFT to Homogenization
 - Atomistically informed simulation: from APT to MD
 - From DFT to dislocation rate models and yield surfaces

DFT: Density Functional Theory; APT: Atom Probe Tomography; MD: Molecular Dynamics; RVE: Representative Volume Element; ICME: Integrated Computational Materials Engineering

Titanium implant materials with bcc structure

Stress shielding Elastic Misfit Bone mineral dissolution, abrasion

ab-initio Simulation of elastic stiffness

Young's modulus surface plots

From APT to simulation: ICME at atomic scale (if required)

Example: 4th generation superalloys for turbine blades (SFB / TR 103)

The end \odot